The Mathematical Intelligencer

, Volume 34, Issue 2, pp 38–49 | Cite as

Folding the Hyperbolic Crane

Article

Keywords

Gaussian Curvature Hyperbolic Plane Hyperbolic Geometry Hyperbolic Surface Corner Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Alperin 11]
    Roger Alperin. “Origami Alignments and Constructions in the Hyperbolic Plane.” In Origami 5, edited by Patsy Wang-Iverson, Robert J. Lang, and Mark Yim, p. in press. A K Peters Ltd., 2011.Google Scholar
  2. [belcastro and Yackel 07]
    sarah-marie belcastro and Carolyn Yackel. Making Mathematics with Needlework: Ten Papers and Ten Projects. A K Peters Ltd., 2007.Google Scholar
  3. [Demaine,.
    et al. 11]Erik D. Demaine, Martin L. Demaine, Vi Hart, Gregory N. Price, and Tomohiro Tachi. “(Non)-existence of Pleated Folds: How Paper Folds Between Creases.” Graphs and Combinatorics 27 (2001), no. 3, 377–397.Google Scholar
  4. [Fuchs and Tabachnikov 99]
    Dmitry Fuchs and Serge Tabachnikov. “More on Paperfolding.” The American Mathematical Monthly 106:1 (1999), 27–35.MathSciNetMATHCrossRefGoogle Scholar
  5. [Fuse 90]
    Tomoko Fuse. Unit Origami: Multidimensional Transformations. Tokyo, Japan: Japan Publications, 1990.Google Scholar
  6. [Hull 02]
    Thomas Hull. “The combinatorics of flat folds: a survey.” In Origami 3, pp. 29–37. A K Peters Ltd., 2002.Google Scholar
  7. [Huzita 89]
    Humiaki Huzita, editor. Proceedings of the First International meeting of Origami Science and Technology. Department of Physics, University of Padova, 1989.Google Scholar
  8. [Justin 89]
    Jacques Justin. “Aspects mathématiques du pliage de papier.” In Proceedings of the First International Meeting of Origami Science and Technology, edited by Humiaki Huzita, pp. 263–277, 1989.Google Scholar
  9. [Kasahara 88]
    Kunihiko Kasahara. Origami Omnibus. Tokyo, Japan: Japan Publications, 1988.Google Scholar
  10. [Kirschenbaum 11]
    Marc Kirschenbaum. “Traditional Crane.” http://www.origami-usa.org/files/traditional-crane.pdf, 2011.
  11. [Lang 03]
    Robert J. Lang. Origami Design Secrets: Mathematical Methods for an Ancient Art. A K Peters, 2003.Google Scholar
  12. [Montroll 85]
    John Montroll. “Five-Sided Square.” In Animal Origami for the Enthusiast, pp. 21–22. Dover Publications, 1985.Google Scholar
  13. [Mukerji 07]
    Meenakshi Mukerji. Marvelous Modular Origami. A K Peters Ltd., 2007.Google Scholar
  14. [Tachi 09]
    Tomohiro Tachi. “3D Origami Design Based on Tucking Molecules.” In Origami 4, edited by Robert J. Lang, pp. 259–272. A K Peters Ltd, 2009.Google Scholar
  15. [Taimina 09]
    Daina Taimina. Crocheting Adventures with Hyperbolic Planes. A K Peters Ltd., 2009.Google Scholar
  16. [Treiberg 03]
    Andrejs Treiberg. “The hyperbolic plane and its immersion into \({\mathbb{R}}^3\).” http://www.math.utah.edu/~treiberg/Hilbert/Hilber.ps, retrieved 2011-02-10, 2003.
  17. [Treiberg 08]
    Andrejs Treiberg. “Geometry of Surfaces.” http://www.math.utah.edu/~treiberg/ERD_1-22-2010.pdf, retrieved 2011-02-10, 2008.
  18. [Weisstein 04]
    Eric W. Weisstein. “Dini’s Surface.” http://mathworld.wolfram.com/DinisSurface.html, 2004.
  19. [Yoshino 96]
    Issei Yoshino. Issei Super Complex Origami. Tokyo: Gallery Origami House, 1996.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Roger C. Alperin
    • 1
  • Barry Hayes
    • 2
  • Robert J. Lang
    • 3
  1. 1.San Jose State UniversitySan JoseUSA
  2. 2.Stanford UniversityStanfordUSA
  3. 3.Langorigami.comAlamoUSA

Personalised recommendations