The Mathematical Intelligencer

, Volume 34, Issue 2, pp 38–49 | Cite as

Folding the Hyperbolic Crane

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Alperin 11]
    Roger Alperin. “Origami Alignments and Constructions in the Hyperbolic Plane.” In Origami 5, edited by Patsy Wang-Iverson, Robert J. Lang, and Mark Yim, p. in press. A K Peters Ltd., 2011.Google Scholar
  2. [belcastro and Yackel 07]
    sarah-marie belcastro and Carolyn Yackel. Making Mathematics with Needlework: Ten Papers and Ten Projects. A K Peters Ltd., 2007.Google Scholar
  3. [Demaine,.
    et al. 11]Erik D. Demaine, Martin L. Demaine, Vi Hart, Gregory N. Price, and Tomohiro Tachi. “(Non)-existence of Pleated Folds: How Paper Folds Between Creases.” Graphs and Combinatorics 27 (2001), no. 3, 377–397.Google Scholar
  4. [Fuchs and Tabachnikov 99]
    Dmitry Fuchs and Serge Tabachnikov. “More on Paperfolding.” The American Mathematical Monthly 106:1 (1999), 27–35.MathSciNetMATHCrossRefGoogle Scholar
  5. [Fuse 90]
    Tomoko Fuse. Unit Origami: Multidimensional Transformations. Tokyo, Japan: Japan Publications, 1990.Google Scholar
  6. [Hull 02]
    Thomas Hull. “The combinatorics of flat folds: a survey.” In Origami 3, pp. 29–37. A K Peters Ltd., 2002.Google Scholar
  7. [Huzita 89]
    Humiaki Huzita, editor. Proceedings of the First International meeting of Origami Science and Technology. Department of Physics, University of Padova, 1989.Google Scholar
  8. [Justin 89]
    Jacques Justin. “Aspects mathématiques du pliage de papier.” In Proceedings of the First International Meeting of Origami Science and Technology, edited by Humiaki Huzita, pp. 263–277, 1989.Google Scholar
  9. [Kasahara 88]
    Kunihiko Kasahara. Origami Omnibus. Tokyo, Japan: Japan Publications, 1988.Google Scholar
  10. [Kirschenbaum 11]
    Marc Kirschenbaum. “Traditional Crane.” http://www.origami-usa.org/files/traditional-crane.pdf, 2011.
  11. [Lang 03]
    Robert J. Lang. Origami Design Secrets: Mathematical Methods for an Ancient Art. A K Peters, 2003.Google Scholar
  12. [Montroll 85]
    John Montroll. “Five-Sided Square.” In Animal Origami for the Enthusiast, pp. 21–22. Dover Publications, 1985.Google Scholar
  13. [Mukerji 07]
    Meenakshi Mukerji. Marvelous Modular Origami. A K Peters Ltd., 2007.Google Scholar
  14. [Tachi 09]
    Tomohiro Tachi. “3D Origami Design Based on Tucking Molecules.” In Origami 4, edited by Robert J. Lang, pp. 259–272. A K Peters Ltd, 2009.Google Scholar
  15. [Taimina 09]
    Daina Taimina. Crocheting Adventures with Hyperbolic Planes. A K Peters Ltd., 2009.Google Scholar
  16. [Treiberg 03]
    Andrejs Treiberg. “The hyperbolic plane and its immersion into \({\mathbb{R}}^3\).” http://www.math.utah.edu/~treiberg/Hilbert/Hilber.ps, retrieved 2011-02-10, 2003.
  17. [Treiberg 08]
    Andrejs Treiberg. “Geometry of Surfaces.” http://www.math.utah.edu/~treiberg/ERD_1-22-2010.pdf, retrieved 2011-02-10, 2008.
  18. [Weisstein 04]
    Eric W. Weisstein. “Dini’s Surface.” http://mathworld.wolfram.com/DinisSurface.html, 2004.
  19. [Yoshino 96]
    Issei Yoshino. Issei Super Complex Origami. Tokyo: Gallery Origami House, 1996.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Roger C. Alperin
    • 1
  • Barry Hayes
    • 2
  • Robert J. Lang
    • 3
  1. 1.San Jose State UniversitySan JoseUSA
  2. 2.Stanford UniversityStanfordUSA
  3. 3.Langorigami.comAlamoUSA

Personalised recommendations