Benford’s Law Strikes Back: No Simple Explanation in Sight for Mathematical Gem

This is a preview of subscription content, access via your institution.

References

  1. [AP1]

    Aldous, D., and Phan, T. (2009), “When Can One Test an Explanation? Compare and Contrast Benford’s Law and the Fuzzy CLT”, Class project report dated May 11, 2009, Statistics Department, UC Berkeley; accessed on May 14, 2010, at [BH].

  2. [AP2]

    Aldous, D., and Phan, T. (2010), “When Can One Test an Explanation? Compare and Contrast Benford’s Law and the Fuzzy CLT”, Preprint dated Jan. 3, 2010, Statistics Department, UC Berkeley; accessed on May 14, 2010, at [BH].

  3. [Ben]

    Benford, F. (1938), “The Law of Anomalous Numbers”, Proc. Amer. Philosophical Soc. 78, 551–572.

    Google Scholar 

  4. [Ber]

    Berger, A. (2010), “Large Spread Does Not Imply Benford’s Law”, Preprint; accessed on May 14, 2010, at http://www.math.ualberta.ca/~aberger/Publications.html.

  5. [BBH]

    Berger, A., Bunimovich, L., and Hill, T.P. (2005), “One-dimensional Dynamical Systems and Benford’s Law”, Trans. Amer. Math. Soc. 357, 197–219.

    MathSciNet  MATH  Article  Google Scholar 

  6. [BH]

    Berger, A., and Hill, T.P. (2009), Benford Online Bibliography; accessed May 14, 2010, at http://www.benfordonline.net.

  7. [Fel]

    Feller, W. (1966), An Introduction to Probability Theory and Its Applications vol. 2, 2nd ed., J. Wiley, New York.

    MATH  Google Scholar 

  8. [Few]

    Fewster, R. (2009), “A Simple Explanation of Benford’s Law”, American Statistician 63(1), 20–25.

    MathSciNet  Article  Google Scholar 

  9. [Ga]

    Gardner, M. (1959), “Mathematical Games: Problems involving questions of probability and ambiguity”, Scientific American 201, 174–182.

    Article  Google Scholar 

  10. [GD]

    Gauvrit, N., and Delahaye, J.P. (2009), “Loi de Benford générale”, Mathématiques et sciences humaines 186, 5–15; accessed May 14, 2010, at http://msh.revues.org/document11034.html.

  11. [H1]

    Hill, T.P. (1995), “Base-Invariance Implies Benford’s Law”, Proc. Amer. Math. Soc. 123(3), 887–895.

    MathSciNet  MATH  Google Scholar 

  12. [H2]

    Hill, T.P. (1995), “A Statistical Derivation of the Significant-Digit Law”, Statistical Science 10(4), 354–363.

    MathSciNet  MATH  Google Scholar 

  13. [K]

    Knuth, D. (1997), The Art of Computer Programming, pp. 253-264, vol. 2, 3rd ed, Addison-Wesley, Reading, MA.

    Google Scholar 

  14. [N]

    Newcomb, S. (1881), “Note on the Frequency of Use of the Different Digits in Natural Numbers”, Amer. J. Math. 4(1), 39–40.

    MathSciNet  Article  Google Scholar 

  15. [P]

    Pinkham, R. (1961), “On the Distribution of First Significant Digits”, Annals of Mathematical Statistics 32(4), 1223–1230.

    MathSciNet  MATH  Article  Google Scholar 

  16. [R1]

    Raimi, R. (1976), “The First Digit Problem”, Amer. Mathematical Monthly 83(7), 521–538.

    MathSciNet  MATH  Article  Google Scholar 

  17. [R2]

    Raimi, R. (1985), “The First Digit Phenomenon Again”, Proc. Amer. Philosophical Soc. 129, 211–219.

    Google Scholar 

  18. [S]

    Speed, T. (2009), “You Want Proof?”, Bull. Inst. Math. Statistics 38, p 11.

    Google Scholar 

  19. [W]

    Wagon, S. (2010), “Benford’s Law and Data Spread”; accessed May 14, 2010, at http://demonstrations.wolfram.com/BenfordsLawAndDataSpread.

Download references

Acknowledgment

The authors are grateful to Rachel Fewster, Kent Morrison, and Stan Wagon for excellent suggestions that helped to improve the exposition.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arno Berger.

Additional information

Arno Berger was supported by an NSERC Discovery Grant.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Berger, A., Hill, T.P. Benford’s Law Strikes Back: No Simple Explanation in Sight for Mathematical Gem. Math Intelligencer 33, 85–91 (2011). https://doi.org/10.1007/s00283-010-9182-3

Download citation

Keywords

  • Large Spread
  • Decimal Digit
  • Positive Random Variable
  • Mathematical Intelligencer Figure
  • Easy Derivation