The Mathematical Intelligencer

, Volume 33, Issue 1, pp 33–45 | Cite as

Mathematical Vanity Plates

Open Access
Mathematical Entertainments Michael Kleber and Ravi Vakil, Editors

References

  1. [1]
    Anonymous, “First new California plates appear,” Los Angeles Times (6 December 1962), A1.Google Scholar
  2. [2]
    Anonymous, “Playful plates: Connecticut tags identify owners,” Life 31, 23 (3 December 1951), 133.Google Scholar
  3. [3]
    D. H. Bailey, J. M. Borwein, P. B. Borwein, and S. Plouffe, “The quest for pi,” The Mathematical Intelligencer 19, 1 (Winter 1997), 50–57.Google Scholar
  4. [4]
    David Bayer and Michael Stillman, “On the complexity of computing syzygies; computational aspects of commutative algebra,” J. Symbolic Comp. 6 (1988), 135–147.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Fabrice Bellard, “Pi computation record,” http://bellard.org/pi/pi2700e9/announce.html [accessed January 2010].
  6. [6]
    G. Boccara, “Nombre de representations d’une permutation comme produit de deux cycles de longueurs donnees,” Discrete Mathematics 29 (1980), 105–134.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Richard P. Brent, “Computation of the regular continued fraction for Euler’s constant,” Mathematics of Computation 31 (1977), 771–777.MathSciNetMATHGoogle Scholar
  8. [8]
    State of California, Department of Motor Vehicles, Environmental License Plate Numbers (21 July 1981).Google Scholar
  9. [9]
    F. R. K. Chung and R. L. Graham, “Quasi-random set systems,” Journal of the Amer. Math. Soc. 4 (1991), 151–196.MathSciNetMATHGoogle Scholar
  10. [10]
    R. F. Churchhouse, “Covering sets and systems of congruences,” in Computers in Mathematical Research, edited by R. F. Churchhouse and J.-C. Herz (Amsterdam: North-Holland, 1968), 20–36.Google Scholar
  11. [11]
    Matt Cunningham, “A bumper crop of physics plates,” Symmetry 5, 3 (August 2008), 22–27.Google Scholar
  12. [12]
    Jean-Marie De Koninck, Those Fascinating Numbers (American Mathematical Society, 2009).Google Scholar
  13. [13]
    Faith W. Eckler, “Vanity of vanities,” Word Ways 19 (1986), 195–198; All is vanity,” Word Ways 20 (1987), 141–143.Google Scholar
  14. [14]
    Paul Erdös, “On integers of the form 2k +p and some related problems,” Summa Brasiliensis mathematicæ 2 (1950), 113–123.Google Scholar
  15. [15]
    Michel X. Goemans and David P. Williamson, “Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming,” Journal of the ACM 42 (1995), 1115–1145.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    Solomon W. Golomb, “Run-length encodings,” IEEE Transactions on Information Theory IT-12 (1966), 399–401.MathSciNetCrossRefGoogle Scholar
  17. [17]
    Solomon W. Golomb, Robert E. Peile, and Robert A. Scholtz, Basic Concepts in Information Theory and Coding: The Adventures of Secret Agent 00111 (New York: Plenum, 1994).MATHGoogle Scholar
  18. [18]
    Gerry Griffin, “New Hampshire license plate museum,” panel 3, http://nhlpm.com/3.html [accessed November 2009]
  19. [19]
    Walter Hansen, “Zum Scholz–Brauerschen Problem,” Journal für die reine und angewandte Mathematik 202 (1959), 129–136.MATHCrossRefGoogle Scholar
  20. [20]
    G. H. Hardy, Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work (Cambridge, England: Cambridge Univ. Press, 1940).Google Scholar
  21. [21]
    Donald E. Knuth, Seminumerical Algorithms, Volume 2 of The Art of Computer Programming (Reading, Mass.: Addison–Wesley, 1969).Google Scholar
  22. [22]
    Donald E. Knuth, Surreal Numbers: How Two Ex-Students Turned On to Pure Mathematics and Found Total Happiness (Reading, Mass.: Addison–Wesley, 1974).Google Scholar
  23. [23]
    Donald E. Knuth, \(\hbox{T}\kern-.1667em\lower.7ex\hbox{E}\kern-.125em\hbox{X}\): The Program, Volume B of Computers & Typesetting (Reading, Mass.: Addison–Wesley, 1986), 2. [Versions 3.14, 3.141, 3.1415, 3.14159, 3.141592, 3.1415926 were released respectively in 1991, 1992, 1993, 1995, 2002, 2008.]Google Scholar
  24. [24]
    Donald E. Knuth, “Teach calculus with Big O,” Notices of the Amer. Math. Soc. 45 (1998), 687–688.Google Scholar
  25. [25]
    Donald E. Knuth, MMIX: A RISC Computer for the New Millennium, Volume 1, Fascicle 1 of new material for The Art of Computer Programming (Upper Saddle River, New Jersey: Addison–Wesley, 2005).Google Scholar
  26. [26]
    Donald E. Knuth, Combinatorial Algorithms, part 1: Volume 4A of The Art of Computer Programming (Upper Saddle River, New Jersey: Addison–Wesley, 2010).Google Scholar
  27. [27]
    David Larsen, “Words you can’t drive by,” Los Angeles Times (20 January 1970), B1, B8.Google Scholar
  28. [28]
    François Le Lionnais, Les Nombres Remarquables (Paris: Hermann, 1983).Google Scholar
  29. [29]
    Tien-Yien Li and James A. Yorke, “Period three implies chaos,” Amer. Math. Monthly 82 (1975), 985–992.MathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    Megan Luther, “A license to make a statement,” Argus Leader (25 October 2009), appendix, http://www.argusleader.com/assets/pdf/DF1451091023.PDF [accessed November 2009].
  31. [31]
    Andy Magid, “Mathematics and the public,” Notices of the Amer. Math. Soc. 51 (2004), 1181.Google Scholar
  32. [32]
    Colman McCarthy, “A PLATE 2 CALL YOUR OWN,” The Washington Post Times Herald (2 March 1969), Potomac magazine, 25–27.Google Scholar
  33. [33]
    Pace P. Nielsen, “A covering system whose smallest modulus is 40,” Journal of Number Theory 129 (2009), 640–666.MathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    Ontario Ministry of Transportation, “Personalized licence plates,” http://www.mto.gov.on.ca/english/dandv/vehicle/plates.shtml [accessed November 2009].
  35. [35]
    The Open Group, “The history of the \(\hbox{UNIX}^{\circledR}\) license plate,” http://www.unix.org/license-plate.html [accessed November 2009].
  36. [36]
    Grisha Perelman, “The entropy formula for the Ricci flow and its geometric applications,” http://arxiv.org/abs/math/0211159
  37. [37]
    Herbert E. Salzer, “Tables of coefficients for obtaining central differences from the derivatives,” Journal of Mathematics and Physics 42 (1963), insert facing page 163.Google Scholar
  38. [38]
    Neil J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org/ [accessed November 2009].
  39. [39]
    Gay Talese, “State unit urges car law changes,” The New York Times (16 January 1959), 12.Google Scholar
  40. [40]
    UTAH.GOV services, “Personalized license plates,” http://dmv.utah.gov/licensepersonalized.html [Accessed November 2009].
  41. [41]
    David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Harmondsworth, Middlesex, England: Penguin Books, 1986).Google Scholar
  42. [42]
    George Woltman, “Great Internet Mersenne Prime Search GIMPS,” http://www.mersenne.org [accessed November 2009].

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Computer Science Department, Gates Building 4BStanford UniversityStanfordUSA

Personalised recommendations