Skip to main content

Leishmaniasis immunopathology—impact on design and use of vaccines, diagnostics and drugs

Abstract

Leishmaniasis is a disease complex caused by 20 species of protozoan parasites belonging to the genus Leishmania. In humans, it has two main clinical forms, visceral leishmaniasis (VL) and cutaneous or tegumentary leishmaniasis (CL), as well as several other cutaneous manifestations in a minority of cases. In the mammalian host Leishmania parasites infect different populations of macrophages where they multiply and survive in the phagolysosomal compartment. The progression of both VL and CL depends on the maintenance of a parasite-specific immunosuppressive state based around this host macrophage infection. The complexity and variation of immune responses and immunopathology in humans and the different host interactions of the different Leishmania species has an impact upon the effectiveness of vaccines, diagnostics and drugs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7(5):e35671

    CAS  Article  Google Scholar 

  2. Burza S, Croft SL, Boelaert M (2018) Leishmaniasis. Lancet 392(10151):951–970. https://doi.org/10.1016/s0140-6736(18)31204-2

    Article  PubMed  Google Scholar 

  3. Mukhopadhyay D, Dalton JE, Kaye PM, Chatterjee M (2014) Post kala-azar dermal leishmaniasis: an unresolved mystery. Trends Parasitol 30(2):65–74. https://doi.org/10.1016/j.pt.2013.12.004

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sacks DL (1989) Metacyclogenesis in Leishmania promastigotes. Exp Parasitol 69(1):100–103

    CAS  Article  Google Scholar 

  5. Dostalova A, Volf P (2012) Leishmania development in sand flies: parasite-vector interactions overview. Parasit Vectors 5:276. https://doi.org/10.1186/1756-3305-5-276

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Serafim TD, Coutinho-Abreu IV, Oliveira F, Meneses C, Kamhawi S, Valenzuela JG (2018) Sequential blood meals promote Leishmania replication and reverse metacyclogenesis augmenting vector infectivity. Nat Microbiol 3(5):548–555. https://doi.org/10.1038/s41564-018-0125-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Kloehn J, Saunders EC, O’Callaghan S, Dagley MJ, McConville MJ (2015) Characterization of metabolically quiescent Leishmania parasites in murine lesions using heavy water labeling. PLoS Pathog 11(2):e1004683. https://doi.org/10.1371/journal.ppat.1004683

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Mandell MA, Beverley SM (2017) Continual renewal and replication of persistent Leishmania major parasites in concomitantly immune hosts. Proc Natl Acad Sci U S A 114(5):E801–e810. https://doi.org/10.1073/pnas.1619265114

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Burchmore RJS, Barrett MP (2001) Life in vacuoles – nutrient acquisition by Leishmania amastigotes. Int J Parasitol 31(12):1311–1320. https://doi.org/10.1016/S0020-7519(01)00259-4

    CAS  Article  PubMed  Google Scholar 

  10. Rogers ME, Chance ML, Bates PA (2002) The role of promastigote secretory gel in the origin and transmission of the infective stage of Leishmania mexicana by the sandfly Lutzomyia longipalpis. Parasitology 124:495–507

    CAS  Article  Google Scholar 

  11. Giraud E, Svobodova M, Muller I, Volf P, Rogers ME (2019) Promastigote secretory gel from natural and unnatural sand fly vectors exacerbate Leishmania major and Leishmania tropica cutaneous leishmaniasis in mice. Parasitology:1–7. https://doi.org/10.1017/s0031182019001069

  12. Pirmez C, Yamamura M, Uyemura K, Paes-Oliveira M, Conceicao-Silva F, Modlin RL (1993) Cytokine patterns in the pathogenesis of human leishmaniasis. J Clin Invest 91(4):1390–1395. https://doi.org/10.1172/jci116341

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Nylen S, Sacks D (2007) Interleukin-10 and the pathogenesis of human visceral leishmaniasis. Trends Immunol 28(9):378–384. https://doi.org/10.1016/j.it.2007.07.004

    CAS  Article  PubMed  Google Scholar 

  14. Caldas A, Favali C, Aquino D, Vinhas V, van Weyenbergh J, Brodskyn C, Costa J, Barral-Netto M, Barral A (2005) Balance of IL-10 and interferon-gamma plasma levels in human visceral leishmaniasis: implications in the pathogenesis. BMC Infect Dis 5:113–113. https://doi.org/10.1186/1471-2334-5-113

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Kaye P, Scott P (2011) Leishmaniasis: complexity at the host-pathogen interface. Nat Rev Microbiol 9(8):604–615

    CAS  Article  Google Scholar 

  16. Scott P, Novais FO (2016) Cutaneous leishmaniasis: immune responses in protection and pathogenesis. Nat Rev Immunol 16(9):581–592. https://doi.org/10.1038/nri.2016.72

    CAS  Article  PubMed  Google Scholar 

  17. Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R (2017) Leishmaniasis: a review. F1000Research 6:750. https://doi.org/10.12688/f1000research.11120.1

    Article  PubMed  PubMed Central  Google Scholar 

  18. Atayde VD, Hassani K, da Silva Lira Filho A, Borges AR, Adhikari A, Martel C, Olivier M (2016) Leishmania exosomes and other virulence factors: impact on innate immune response and macrophage functions. Cell Immunol 309:7–18. https://doi.org/10.1016/j.cellimm.2016.07.013

    CAS  Article  PubMed  Google Scholar 

  19. Biedermann T, Zimmermann S, Himmelrich H, Gumy A, Egeter O, Sakrauski AK, Seegmuller I, Voigt H, Launois P, Levine AD, Wagner H, Heeg K, Louis JA, Rocken M (2001) IL-4 instructs TH1 responses and resistance to Leishmania major in susceptible BALB/c mice. Nat Immunol 2(11):1054–1060. https://doi.org/10.1038/ni725

    CAS  Article  PubMed  Google Scholar 

  20. Stager S, Alexander J, Kirby AC, Botto M, Rooijen NV, Smith DF, Brombacher F, Kaye PM (2003) Natural antibodies and complement are endogenous adjuvants for vaccine-induced CD8+ T-cell responses. Nat Med 9(10):1287–1292. https://doi.org/10.1038/nm933

    CAS  Article  PubMed  Google Scholar 

  21. McFarlane E, Mokgethi T, Kaye PM, Hurdayal R, Brombacher F, Alexander J, Carter KC (2019) IL-4 mediated resistance of BALB/c mice to visceral Leishmaniasis is independent of IL-4Rα signaling via T cells. Front Immunol 10(1957). https://doi.org/10.3389/fimmu.2019.01957

  22. Alexander J, Carter KC, Al-Fasi N, Satoskar A, Brombacher F (2000) Endogenous IL-4 is necessary for effective drug therapy against visceral leishmaniasis. Eur J Immunol 30(10):2935–2943. https://doi.org/10.1002/1521-4141(200010)30:10<2935::aid-immu2935>3.0.co;2-q

    CAS  Article  PubMed  Google Scholar 

  23. Sernee MF, Ralton JE, Nero TL, Sobala LF, Kloehn J, Vieira-Lara MA, Cobbold SA, Stanton L, Pires DEV, Hanssen E, Males A, Ward T, Bastidas LM, van der Peet PL, Parker MW, Ascher DB, Williams SJ, Davies GJ, McConville MJ (2019) A family of dual-activity glycosyltransferase-phosphorylases mediates Mannogen turnover and virulence in Leishmania parasites. Cell Host Microbe 26(3):385–399.e389. https://doi.org/10.1016/j.chom.2019.08.009

    CAS  Article  PubMed  Google Scholar 

  24. Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, Strauss-Ayali D, Viukov S, Guilliams M, Misharin A, Hume DA, Perlman H, Malissen B, Zelzer E, Jung S (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38(1):79–91. https://doi.org/10.1016/j.immuni.2012.12.001

    CAS  Article  PubMed  Google Scholar 

  25. Guilliams M, Scott CL (2017) Does niche competition determine the origin of tissue-resident macrophages? Nat Rev Immunol 17(7):451–460. https://doi.org/10.1038/nri.2017.42

    CAS  Article  PubMed  Google Scholar 

  26. Lee SH, Charmoy M, Romano A, Paun A, Chaves MM, Cope FO, Ralph DA, Sacks DL (2018) Mannose receptor high, M2 dermal macrophages mediate nonhealing Leishmania major infection in a Th1 immune environment. J Exp Med 215(1):357–375. https://doi.org/10.1084/jem.20171389

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Beattie L, Sawtell A, Mann J, Frame TCM, Teal B, de Labastida RF, Brown N, Walwyn-Brown K, Moore JWJ, MacDonald S, Lim EK, Dalton JE, Engwerda CR, MacDonald KP, Kaye PM (2016) Bone marrow-derived and resident liver macrophages display unique transcriptomic signatures but similar biological functions. J Hepatol 65(4):758–768. https://doi.org/10.1016/j.jhep.2016.05.037

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Heyde S, Philipsen L, Formaglio P, Fu Y, Baars I, Hobbel G, Kleinholz CL, Seiss EA, Stettin J, Gintschel P, Dudeck A, Bousso P, Schraven B, Muller AJ (2018) CD11c-expressing Ly6C+CCR2+ monocytes constitute a reservoir for efficient Leishmania proliferation and cell-to-cell transmission. PLoS Pathog 14(10):e1007374. https://doi.org/10.1371/journal.ppat.1007374

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Romano A, Carneiro MBH, Doria NA, Roma EH, Ribeiro-Gomes FL, Inbar E, Lee SH, Mendez J, Paun A, Sacks DL, Peters NC (2017) Divergent roles for Ly6C+CCR2+CX3CR1+ inflammatory monocytes during primary or secondary infection of the skin with the intra-phagosomal pathogen Leishmania major. PLoS Pathog 13(6):e1006479. https://doi.org/10.1371/journal.ppat.1006479

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Terrazas C, Varikuti S, Oghumu S, Steinkamp HM, Ardic N, Kimble J, Nakhasi H, Satoskar AR (2017) Ly6C(hi) inflammatory monocytes promote susceptibility to Leishmania donovani infection. Sci Rep 7(1):14693. https://doi.org/10.1038/s41598-017-14935-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Tiburcio R, Nunes S, Nunes I, Rosa Ampuero M, Silva IB, Lima R, Machado Tavares N, Brodskyn C (2019) Molecular aspects of dendritic cell activation in Leishmaniasis: an immunobiological view. Front Immunol 10:227. https://doi.org/10.3389/fimmu.2019.00227

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Hurrell BP, Regli IB, Tacchini-Cottier F (2016) Different Leishmania species drive distinct neutrophil functions. Trends Parasitol 32(5):392–401. https://doi.org/10.1016/j.pt.2016.02.003

    CAS  Article  PubMed  Google Scholar 

  33. Pinto AI, Brown N, Preham O, Doehl JSP, Ashwin H, Kaye PM (2017) TNF signalling drives expansion of bone marrow CD4+ T cells responsible for HSC exhaustion in experimental visceral leishmaniasis. PLoS Pathog 13(7):e1006465. https://doi.org/10.1371/journal.ppat.1006465

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Abidin BM, Hammami A, Stager S, Heinonen KM (2017) Infection-adapted emergency hematopoiesis promotes visceral leishmaniasis. PLoS Pathog 13(8):e1006422. https://doi.org/10.1371/journal.ppat.1006422

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Kaye PM, Beattie L (2016) Lessons from other diseases: granulomatous inflammation in leishmaniasis. Semin Immunopathol 38(2):249–260. https://doi.org/10.1007/s00281-015-0548-7

    Article  PubMed  Google Scholar 

  36. Angarano G, Maggi P, Rollo MA, Larocca AM, Quarto M, Scalone A, Gradoni L (1998) Diffuse necrotic hepatic lesions due to visceral leishmaniasis in AIDS. J infect 36(2):167–169. https://doi.org/10.1016/s0163-4453(98)80007-8

    CAS  Article  PubMed  Google Scholar 

  37. Yazici P, Yeniay L, Aydin U, Tasbakan M, Ozutemiz O, Yilmaz R (2008) Visceral leishmaniasis as a rare cause of granulomatosis hepatitis: a case report. Turkiye parazitolojii dergisi 32(1):12–15

    PubMed  Google Scholar 

  38. Boussoffara T, Boubaker MS, Ben Ahmed M, Mokni M, Guizani I, Ben Salah A, Louzir H (2019) Histological and immunological differences between zoonotic cutaneous leishmaniasis due to Leishmania major and sporadic cutaneous leishmaniasis due to Leishmania infantum. Parasite (Paris, France) 26:9. https://doi.org/10.1051/parasite/2019007

    Article  Google Scholar 

  39. Sandoval Pacheco CM, Araujo Flores GV, Favero Ferreira A, Sosa Ochoa W, Ribeiro da Matta VL, Zuniga Valeriano C, Pereira Corbett CE, Dalastra Laurenti M (2018) Histopathological features of skin lesions in patients affected by non-ulcerated or atypical cutaneous leishmaniasis in Honduras, Central America. Int J Exp Pathol 99(5):249–257. https://doi.org/10.1111/iep.12295

    Article  PubMed  PubMed Central  Google Scholar 

  40. Thilakarathne IK, Ratnayake P, Vithanage A, Sugathadasa DP (2019) Role of histopathology in the diagnosis of cutaneous Leishmaniasis: a case-control study in Sri Lanka. Am J Dermatopathol 41(8):566–570. https://doi.org/10.1097/dad.0000000000001367

    Article  PubMed  Google Scholar 

  41. Grimaldi G Jr, Teva A, Porrozzi R, Pinto MA, Marchevsky RS, Rocha MG, Dutra MS, Bruna-Romero O, Fernandes AP, Gazzinelli RT (2014) Clinical and parasitological protection in a Leishmania infantum-macaque model vaccinated with adenovirus and the recombinant A2 antigen. PLoS Negl Trop Dis 8(6):e2853. https://doi.org/10.1371/journal.pntd.0002853

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Khamesipour A, Dowlati Y, Asilian A, Hashemi-Fesharki R, Javadi A, Noazin S, Modabber F (2005) Leishmanization: use of an old method for evaluation of candidate vaccines against leishmaniasis. Vaccine 23(28):3642–3648. https://doi.org/10.1016/j.vaccine.2005.02.015

    CAS  Article  PubMed  Google Scholar 

  43. Mebius RE, Kraal G (2005) Structure and function of the spleen. Nat Rev Immunol 5(8):606–616. https://doi.org/10.1038/nri1669

    CAS  Article  PubMed  Google Scholar 

  44. Kaye PM (2018) Stromal cell responses in infection. Adv Exp Med Biol 1060:23–36. https://doi.org/10.1007/978-3-319-78127-3_2

    CAS  Article  PubMed  Google Scholar 

  45. Stanley AC, Engwerda CR (2007) Balancing immunity and pathology in visceral leishmaniasis. Immunol Cell Biol 85(2):138–147. https://doi.org/10.1038/sj.icb7100011

    CAS  Article  PubMed  Google Scholar 

  46. Hermida MD, de Melo CVB, Lima IDS, Oliveira GGS, Dos-Santos WLC (2018) Histological disorganization of spleen compartments and severe visceral Leishmaniasis. Front Cell Infect Microbiol 8:394. https://doi.org/10.3389/fcimb.2018.00394

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Gardinassi LG, Garcia GR, Costa CH, Costa Silva V, de Miranda Santos IK (2016) Blood transcriptional profiling reveals immunological signatures of distinct states of infection of humans with Leishmania infantum. PLoS Negl Trop Dis 10(11):e0005123. https://doi.org/10.1371/journal.pntd.0005123

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Fakiola M, Singh OP, Syn G, Singh T, Singh B, Chakravarty J, Sundar S, Blackwell JM (2019) Transcriptional blood signatures for active and amphotericin B treated visceral leishmaniasis in India. PLoS Negl Trop Dis 13(8):e0007673. https://doi.org/10.1371/journal.pntd.0007673

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Ashwin H, Seifert K, Forrester S, Brown N, MacDonald S, James S, Lagos D, Timmis J, Mottram JC, Croft SL, Kaye PM (2018) Tissue and host species-specific transcriptional changes in models of experimental visceral leishmaniasis. Wellcome Open Research 3:135. https://doi.org/10.12688/wellcomeopenres.14867.2

    Article  PubMed  Google Scholar 

  50. Kong F, Saldarriaga OA, Spratt H, Osorio EY, Travi BL, Luxon BA, Melby PC (2017) Transcriptional profiling in experimental visceral Leishmaniasis reveals a broad splenic inflammatory environment that conditions macrophages toward a disease-promoting phenotype. PLoS Pathog 13(1):e1006165. https://doi.org/10.1371/journal.ppat.1006165

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Loria-Cervera EN, Andrade-Narvaez FJ (2014) Animal models for the study of leishmaniasis immunology. Rev Inst Med Trop Sao Paulo 56(1):1–11. https://doi.org/10.1590/s0036-46652014000100001

    Article  PubMed  PubMed Central  Google Scholar 

  52. Carvalho LP, Passos S, Schriefer A, Carvalho EM (2012) Protective and pathologic immune responses in human tegumentary leishmaniasis. Front Immunol 3:301. https://doi.org/10.3389/fimmu.2012.00301

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Ives A, Ronet C, Prevel F, Ruzzante G, Fuertes-Marraco S, Schutz F, Zangger H, Revaz-Breton M, Lye LF, Hickerson SM, Beverley SM, Acha-Orbea H, Launois P, Fasel N, Masina S (2011) Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science (New York, NY) 331(6018):775–778. https://doi.org/10.1126/science.1199326

    CAS  Article  Google Scholar 

  54. Novais FO, Carvalho AM, Clark ML, Carvalho LP, Beiting DP, Brodsky IE, Carvalho EM, Scott P (2017) CD8+ T cell cytotoxicity mediates pathology in the skin by inflammasome activation and IL-1beta production. PLoS Pathog 13(2):e1006196. https://doi.org/10.1371/journal.ppat.1006196

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Rossi M, Castiglioni P, Hartley MA, Eren RO, Prevel F, Desponds C, Utzschneider DT, Zehn D, Cusi MG, Kuhlmann FM, Beverley SM, Ronet C, Fasel N (2017) Type I interferons induced by endogenous or exogenous viral infections promote metastasis and relapse of leishmaniasis. Proc Natl Acad Sci U S A 114(19):4987–4992. https://doi.org/10.1073/pnas.1621447114

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Alvar J, Croft SL, Kaye P, Khamesipour A, Sundar S, Reed SG (2013) Case study for a vaccine against leishmaniasis. Vaccine 31(Suppl 2):B244–B249. https://doi.org/10.1016/j.vaccine.2012.11.080

    CAS  Article  PubMed  Google Scholar 

  57. Schroeder J, Aebischer T (2011) Vaccines for leishmaniasis: from proteome to vaccine candidates. Hum Vaccin 7(Suppl):10–15. https://doi.org/10.4161/hv.7.0.14556

    Article  PubMed  Google Scholar 

  58. Masic A, Hurdayal R, Nieuwenhuizen NE, Brombacher F, Moll H (2012) Dendritic cell-mediated vaccination relies on interleukin-4 receptor signaling to avoid tissue damage after Leishmania major infection of BALB/c mice. PLoS Negl Trop Dis 6(7):e1721. https://doi.org/10.1371/journal.pntd.0001721

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Majumder S, Bhattacharjee A, Paul Chowdhury B, Bhattacharyya Majumdar S, Majumdar S (2014) Antigen-pulsed CpG-ODN-activated dendritic cells induce host-protective immune response by regulating the T regulatory cell functioning in Leishmania donovani-infected mice: critical role of CXCL10. Front Immunol 5(261). https://doi.org/10.3389/fimmu.2014.00261

  60. Cecilio P, Perez-Cabezas B, Fernandez L, Moreno J, Carrillo E, Requena JM, Fichera E, Reed SG, Coler RN, Kamhawi S, Oliveira F, Valenzuela JG, Gradoni L, Glueck R, Gupta G, Cordeiro-da-Silva A (2017) Pre-clinical antigenicity studies of an innovative multivalent vaccine for human visceral leishmaniasis. PLoS Negl Trop Dis 11(11):e0005951. https://doi.org/10.1371/journal.pntd.0005951

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Das S, Freier A, Boussoffara T, Das S, Oswald D, Losch FO, Selka M, Sacerdoti-Sierra N, Schonian G, Wiesmuller KH, Seifert K, Schroff M, Juhls C, Jaffe CL, Roy S, Das P, Louzir H, Croft SL, Modabber F, Walden P (2014) Modular multiantigen T cell epitope-enriched DNA vaccine against human leishmaniasis. Sci Transl Med 6(234):234ra256. https://doi.org/10.1126/scitranslmed.3008222

    CAS  Article  Google Scholar 

  62. Osman M, Mistry A, Keding A, Gabe R, Cook E, Forrester S, Wiggins R, Di Marco S, Colloca S, Siani L, Cortese R, Smith DF, Aebischer T, Kaye PM, Lacey CJ (2017) A third generation vaccine for human visceral leishmaniasis and post kala azar dermal leishmaniasis: first-in-human trial of ChAd63-KH. PLoS Negl Trop Dis 11(5):e0005527. https://doi.org/10.1371/journal.pntd.0005527

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Gannavaram S, Torcivia J, Gasparyan L, Kaul A, Ismail N, Simonyan V, Nakhasi HL (2017) Whole genome sequencing of live attenuated Leishmania donovani parasites reveals novel biomarkers of attenuation and enables product characterization. Sci Rep 7(1):4718. https://doi.org/10.1038/s41598-017-05088-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Maroof A, Brown N, Smith B, Hodgkinson MR, Maxwell A, Losch FO, Fritz U, Walden P, Lacey CN, Smith DF, Aebischer T, Kaye PM (2012) Therapeutic vaccination with recombinant adenovirus reduces splenic parasite burden in experimental visceral leishmaniasis. J Infect Dis 205(5):853–863. https://doi.org/10.1093/infdis/jir842

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Toepp A, Larson M, Wilson G, Grinnage-Pulley T, Bennett C, Leal-Lima A, Anderson B, Parrish M, Anderson M, Fowler H, Hinman J, Kontowicz E, Jefferies J, Beeman M, Buch J, Saucier J, Tyrrell P, Gharpure R, Cotter C, Petersen C (2018) Randomized, controlled, double-blinded field trial to assess Leishmania vaccine effectiveness as immunotherapy for canine leishmaniosis. Vaccine 36(43):6433–6441. https://doi.org/10.1016/j.vaccine.2018.08.087

    CAS  Article  PubMed  Google Scholar 

  66. WHO (2016) Leishmaniasis in high-burden countries: An epidemiological update based on data reported in 2014 WHO Weekly epidemiological record 22 (91):285–296

  67. Organization WECotCotLWH (2010) Control of the leishmaniases: report of a meeting of the WHO expert committee on the control of Leishmaniases vol 949. World Health Organization, Geneva

  68. Ghose AC, Haldar JP, Pal SC, Mishra BP, Mishra KK (1980) Serological investigations on Indian kala-azar. Clin Exp Immunol 40(2):318–326

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Boelaert M, Verdonck K, Menten J, Sunyoto T, van Griensven J, Chappuis F, Rijal S (2014) Rapid tests for the diagnosis of visceral leishmaniasis in patients with suspected disease. The Cochrane database of systematic reviews (6):Cd009135. https://doi.org/10.1002/14651858.CD009135.pub2

  70. Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S, Peeling RW, Alvar J, Boelaert M (2007) Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 5(11):873–882

    CAS  Article  Google Scholar 

  71. Bhattacharyya T, Boelaert M, Miles MA (2013) Comparison of visceral leishmaniasis diagnostic antigens in African and Asian Leishmania donovani reveals extensive diversity and region-specific polymorphisms. PLoS Negl Trop Dis 7(2):e2057. https://doi.org/10.1371/journal.pntd.0002057

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bhattacharyya T, Bowes DE, El-Safi S, Sundar S, Falconar AK, Singh OP, Kumar R, Ahmed O, Boelaert M, Miles MA (2014) Significantly lower anti-Leishmania IgG responses in Sudanese versus Indian visceral leishmaniasis. PLoS Negl Trop Dis 8(2):e2675. https://doi.org/10.1371/journal.pntd.0002675

    Article  PubMed  PubMed Central  Google Scholar 

  73. Pattabhi S, Whittle J, Mohamath R, El-Safi S, Moulton GG, Guderian JA, Colombara D, Abdoon AO, Mukhtar MM, Mondal D, Esfandiari J, Kumar S, Chun P, Reed SG, Bhatia A (2010) Design, development and evaluation of rK28-based point-of-care tests for improving rapid diagnosis of visceral leishmaniasis. PLoS Negl Trop Dis 4(9). https://doi.org/10.1371/journal.pntd.0000822

  74. Bezuneh A, Mukhtar M, Abdoun A, Teferi T, Takele Y, Diro E, Jemaneh A, Shiferaw W, Wondimu H, Bhatia A, Howard RF, Ghalib H, Ireton GC, Hailu A, Reed SG (2014) Comparison of point-of-care tests for the rapid diagnosis of visceral leishmaniasis in East African patients. Am J Trop Med Hyg 91(6):1109–1115. https://doi.org/10.4269/ajtmh.13-0759

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mukhtar M, Abdoun A, Ahmed AE, Ghalib H, Reed SG, Boelaert M, Menten J, Khair MM, Howard RF (2015) Diagnostic accuracy of rK28-based immunochromatographic rapid diagnostic tests for visceral leishmaniasis: a prospective clinical cohort study in Sudan. Trans R Soc Trop Med Hyg 109(9):594–600. https://doi.org/10.1093/trstmh/trv060

    CAS  Article  PubMed  Google Scholar 

  76. Mukhtar M, Ali SS, Boshara SA, Albertini A, Monnerat S, Bessell P, Mori Y, Kubota Y, Ndung'u JM, Cruz I (2018) Sensitive and less invasive confirmatory diagnosis of visceral leishmaniasis in Sudan using loop-mediated isothermal amplification (LAMP). PLoS Negl Trop Dis 12(2):e0006264. https://doi.org/10.1371/journal.pntd.0006264

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Subramaniam KS, Austin V, Schocker NS, Montoya AL, Anderson MS, Ashmus RA, Mesri M, Al-Salem W, Almeida IC, Michael K, Acosta-Serrano A (2018) Anti-alpha-Gal antibodies detected by novel neoglycoproteins as a diagnostic tool for Old World cutaneous leishmaniasis caused by Leishmania major. Parasitology 145(13):1758–1764. https://doi.org/10.1017/s0031182018000860

    Article  PubMed  Google Scholar 

  78. Monge-Maillo B, Norman FF, Cruz I, Alvar J, Lopez-Velez R (2014) Visceral leishmaniasis and HIV coinfection in the Mediterranean region. PLoS Negl Trop Dis 8(8):e3021. https://doi.org/10.1371/journal.pntd.0003021

    Article  PubMed  PubMed Central  Google Scholar 

  79. Diro E, Lynen L, Ritmeijer K, Boelaert M, Hailu A, van Griensven J (2014) Visceral Leishmaniasis and HIV coinfection in East Africa. PLoS Negl Trop Dis 8(6):e2869. https://doi.org/10.1371/journal.pntd.0002869

    Article  PubMed  PubMed Central  Google Scholar 

  80. Gidwani K, Picado A, Ostyn B, Singh SP, Kumar R, Khanal B, Lejon V, Chappuis F, Boelaert M, Sundar S (2011) Persistence of Leishmania donovani antibodies in past visceral leishmaniasis cases in India. Clin Vaccine Immunol 18(2):346–348. https://doi.org/10.1128/cvi.00473-10

    CAS  Article  PubMed  Google Scholar 

  81. Bhattacharyya T, Ayandeh A, Falconar AK, Sundar S, El-Safi S, Gripenberg MA, Bowes DE, Thunissen C, Singh OP, Kumar R, Ahmed O, Eisa O, Saad A, Silva Pereira S, Boelaert M, Mertens P, Miles MA (2014) IgG1 as a potential biomarker of post-chemotherapeutic relapse in visceral leishmaniasis, and adaptation to a rapid diagnostic test. PLoS Negl Trop Dis 8(10):e3273. https://doi.org/10.1371/journal.pntd.0003273

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. Marlais T, Bhattacharyya T, Singh OP, Mertens P, Gilleman Q, Thunissen C, Hinckel BCB, Pearson C, Gardner BL, Airs S, de la Roche M, Hayes K, Hafezi H, Falconar AK, Eisa O, Saad A, Khanal B, Bhattarai NR, Rijal S, Boelaert M, El-Safi S, Sundar S, Miles MA (2018) Visceral Leishmaniasis IgG1 rapid monitoring of cure vs. relapse, and potential for diagnosis of post kala-azar dermal Leishmaniasis. Front Cell Infect Microbiol 8:427. https://doi.org/10.3389/fcimb.2018.00427

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Mollett G, Bremer Hinckel BC, Bhattacharyya T, Marlais T, Singh OP, Mertens P, Falconar AK, El-Safi S, Sundar S, Miles MA (2019) Detection of immunoglobulin G1 against rK39 improves monitoring of treatment outcomes in visceral Leishmaniasis. Clin Infect Dis 69(7):1130–1135. https://doi.org/10.1093/cid/ciy1062

    CAS  Article  PubMed  Google Scholar 

  84. Kohanteb J, Ardehali SM, Rezai HR (1987) Detection of Leishmania donovani soluble antigen and antibody in the urine of visceral leishmaniasis patients. Trans R Soc Trop Med Hyg 81(4):578–580. https://doi.org/10.1016/0035-9203(87)90414-7

    CAS  Article  PubMed  Google Scholar 

  85. De Colmenares M, Portus M, Riera C, Gallego M, Aisa MJ, Torras S, Munoz C (1995) Short report: detection of 72-75-kD and 123-kD fractions of Leishmania antigen in urine of patients with visceral leishmaniasis. Am J Trop Med Hyg 52(5):427–428. https://doi.org/10.4269/ajtmh.1995.52.427

    Article  PubMed  Google Scholar 

  86. Azazy AA, Chance ML, Devaney E (1997) A time-course study of circulating antigen and parasite-specific antibody in cotton rats infected with Leishmania donovani. Ann Trop Med Parasitol 91(2):153–162. https://doi.org/10.1080/00034983.1997.11813125

    CAS  Article  PubMed  Google Scholar 

  87. Vallur AC, Tutterrow YL, Mohamath R, Pattabhi S, Hailu A, Abdoun AO, Ahmed AE, Mukhtar M, Salam MA, Almeida ML, Almeida RP, Mondal D, Albertini A, Ghalib H, Duthie MS, Reed SG (2015) Development and comparative evaluation of two antigen detection tests for visceral Leishmaniasis. BMC Infect Dis 15:384. https://doi.org/10.1186/s12879-015-1125-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. Gao CH, Yang YT, Shi F, Wang JY, Steverding D, Wang X (2015) Development of an Immunochromatographic test for diagnosis of visceral Leishmaniasis based on detection of a circulating antigen. PLoS Negl Trop Dis 9(6):e0003902. https://doi.org/10.1371/journal.pntd.0003902

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. Cruz I, Albertini A, Barbeitas M, Arana B, Picado A, Ruiz-Postigo JA, Ndung'u JM (2019) Target product profile for a point-of-care diagnostic test for dermal leishmaniases. Parasite Epidemiol Control 5:e00103. https://doi.org/10.1016/j.parepi.2019.e00103

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ben Salah A, Zaatour A, Gharbi A, Bettaieb J, Ghawar W, Khedher a Clinical evaluation of CL detect TM rapid test for cutaneous leishmaniasis: performance characteristics when compared to smear microscopy at multiple test sites. In: ASTMH, New Orleans, 2014

  91. Bennis I, Verdonck K, El Khalfaoui N, Riyad M, Fellah H, Dujardin JC, Sahibi H, Bouhout S, Van der Auwera G, Boelaert M (2018) Accuracy of a rapid diagnostic test based on antigen detection for the diagnosis of cutaneous Leishmaniasis in patients with suggestive skin lesions in Morocco. Am J Trop Med Hyg 99(3):716–722. https://doi.org/10.4269/ajtmh.18-0066

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. Vink MMT, Nahzat SM, Rahimi H, Buhler C, Ahmadi BA, Nader M, Zazai FR, Yousufzai AS, van Loenen M, Schallig H, Picado A, Cruz I (2018) Evaluation of point-of-care tests for cutaneous leishmaniasis diagnosis in Kabul, Afghanistan. EBioMedicine 37:453–460. https://doi.org/10.1016/j.ebiom.2018.10.063

    Article  PubMed  PubMed Central  Google Scholar 

  93. de Ruiter CM, van der Veer C, Leeflang MM, Deborggraeve S, Lucas C, Adams ER (2014) Molecular tools for diagnosis of visceral leishmaniasis: systematic review and meta-analysis of diagnostic test accuracy. J Clin Microbiol 52(9):3147–3155. https://doi.org/10.1128/jcm.00372-14

    Article  PubMed  PubMed Central  Google Scholar 

  94. Weigle KA, Labrada LA, Lozano C, Santrich C, Barker DC (2002) PCR-based diagnosis of acute and chronic cutaneous leishmaniasis caused by Leishmania (Viannia). J Clin Microbiol 40(2):601–606. https://doi.org/10.1128/jcm.40.2.601-606.2002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. Eroglu F, Uzun S, Koltas IS (2014) Comparison of clinical samples and methods in chronic cutaneous leishmaniasis. Am J Tropical Med Hyg 91(5):895–900. https://doi.org/10.4269/ajtmh.13-0582

    CAS  Article  Google Scholar 

  96. Nzelu CO, Kato H, Peters NC (2019) Loop-mediated isothermal amplification (LAMP): an advanced molecular point-of-care technique for the detection of Leishmania infection. PLoS Negl Trop Dis 13(11):e0007698. https://doi.org/10.1371/journal.pntd.0007698

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. Selvapandiyan A, Croft SL, Rijal S, Nakhasi HL, Ganguly NK (2019) Innovations for the elimination and control of visceral leishmaniasis. PLoS Negl Trop Dis 13(9):e0007616. https://doi.org/10.1371/journal.pntd.0007616

    Article  PubMed  PubMed Central  Google Scholar 

  98. WHO (2017) Integrating neglected tropical diseases into global health and development: fourth WHO report on neglected tropical diseases. World Health Organisation,

    Google Scholar 

  99. Rijal S, Sundar S, Mondal D, Das P, Alvar J, Boelaert M (2019) Eliminating visceral leishmaniasis in South Asia: the road ahead. BMJ (Clinical research ed) 364:k5224. https://doi.org/10.1136/bmj.k5224

    Article  Google Scholar 

  100. Medley GF, Hollingsworth TD, Olliaro PL, Adams ER (2015) Health-seeking behaviour, diagnostics and transmission dynamics in the control of visceral leishmaniasis in the Indian subcontinent. Nature 528(7580):S102–S108. https://doi.org/10.1038/nature16042 http://www.nature.com/nature/journal/v528/n7580_supp_custom/abs/nature16042.html#supplementary-information

    Article  PubMed  Google Scholar 

  101. Rijal S, Boelaert M, Regmi S, Karki BM, Jacquet D, Singh R, Chance ML, Chappuis F, Hommel M, Desjeux P, Van der Stuyft P, Le Ray D, Koirala S (2004) Evaluation of a urinary antigen-based latex agglutination test in the diagnosis of kala-azar in eastern Nepal. Trop Med Int Health 9(6):724–729. https://doi.org/10.1111/j.1365-3156.2004.01251.x

    CAS  Article  PubMed  Google Scholar 

  102. Salam MA, Khan MG, Mondal D (2011) Urine antigen detection by latex agglutination test for diagnosis and assessment of initial cure of visceral leishmaniasis. Trans R Soc Trop Med Hyg 105(5):269–272. https://doi.org/10.1016/j.trstmh.2010.12.007

    CAS  Article  PubMed  Google Scholar 

  103. Attar ZJ, Chance ML, el-Safi S, Carney J, Azazy A, El-Hadi M, Dourado C, Hommel M (2001) Latex agglutination test for the detection of urinary antigens in visceral leishmaniasis. Acta Trop 78(1):11–16. https://doi.org/10.1016/s0001-706x(00)00155-8

    CAS  Article  PubMed  Google Scholar 

  104. Picado A, Cruz I, Sampath R, Ndung'u JM (2019) An antigen detecting rapid diagnostic test (RDT) to accelerate control and elimination of visceral leishmaniasis. 11th European congress on tropical medicine and international health 113. https://doi.org/10.1093/trstmh/trz0

  105. Molina R, Gradoni L, Alvar J (2003) HIV and the transmission of Leishmania. Ann Trop Med Parasitol 97(Suppl 1):29–45. https://doi.org/10.1179/000349803225002516

    Article  PubMed  Google Scholar 

  106. Molina R, Ghosh D, Carrillo E, Monnerat S, Bern C, Mondal D, Alvar J (2017) Infectivity of post-kala-azar dermal Leishmaniasis patients to sand flies: revisiting a proof of concept in the context of the kala-azar elimination program in the Indian subcontinent. Clin Infect Dis 65(1):150–153. https://doi.org/10.1093/cid/cix245

    Article  PubMed  PubMed Central  Google Scholar 

  107. Zijlstra EE (2019) Biomarkers in post-kala-azar dermal Leishmaniasis. Front Cell Infect Microbiol 9:228. https://doi.org/10.3389/fcimb.2019.00228

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  108. Verma S, Avishek K, Sharma V, Negi NS, Ramesh V, Salotra P (2013) Application of loop-mediated isothermal amplification assay for the sensitive and rapid diagnosis of visceral leishmaniasis and post-kala-azar dermal leishmaniasis. Diagn Microbiol Infect Dis 75(4):390–395. https://doi.org/10.1016/j.diagmicrobio.2013.01.011

    CAS  Article  PubMed  Google Scholar 

  109. Silva-Barrios S, Stager S (2019) Hypergammaglobulinemia sustains the development of regulatory responses during chronic Leishmania donovani infection in mice. Eur J Immunol 49(7):1082–1091. https://doi.org/10.1002/eji.201847917

    CAS  Article  PubMed  Google Scholar 

  110. da Silva Junior GB, Guardão Barros EJ, De Francesco DE (2014) Kidney involvement in leishmaniasis—a review. Braz J Infect Dis 18(4):434–440. https://doi.org/10.1016/j.bjid.2013.11.013

  111. Cello JP, Day LW (2009) Idiopathic AIDS enteropathy and treatment of gastrointestinal opportunistic pathogens. Gastroenterology 136(6):1952–1965. https://doi.org/10.1053/j.gastro.2008.12.073

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  112. Aronson N, Herwaldt BL, Libman M, Pearson R, Lopez-Velez R, Weina P, Carvalho E, Ephros M, Jeronimo S, Magill A (2017) Diagnosis and treatment of Leishmaniasis: clinical practice guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). Am J Tropical Med Hyg 96(1):24–45. https://doi.org/10.4269/ajtmh.16-84256

    Article  Google Scholar 

  113. González U, Pinart M, Reveiz L, Alvar J (2008) Interventions for Old World cutaneous leishmaniasis. The Cochrane database of systematic reviews 4:111. https://doi.org/10.1002/14651858.CD005067.pub3

    Article  Google Scholar 

  114. González U, Pinart M, Rengifo-Pardo M, Macaya A, Alvar J, Tweed JA (2009) Interventions for American cutaneous and mucocutaneous leishmaniasis. Cochrane database systematic reviews 15 (2 (CD004834)):1-171

  115. DNDi (2019) DNDi - Disease projects - Portfolio. Drugs for Neglected Diseases Initiative. https://www.dndi.org/diseases-projects/portfolio/. Accessed 7/11/2019 2019

  116. Khare S, Nagle AS, Biggart A, Lai YH, Liang F, Davis LC, Barnes SW, Mathison CJN, Myburgh E, Gao M-Y, Gillespie JR, Liu X, Tan JL, Stinson M, Rivera IC, Ballard J, Yeh V, Groessl T, Federe G, Koh HXY, Venable JD, Bursulaya B, Shapiro M, Mishra PK, Spraggon G, Brock A, Mottram JC, Buckner FS, Rao SPS, Wen BG, Walker JR, Tuntland T, Molteni V, Glynne RJ, Supek F (2016) Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature 537:229. https://doi.org/10.1038/nature19339 https://www.nature.com/articles/nature19339#supplementary-information

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  117. Thompson AM, O’Connor PD, Marshall AJ, Blaser A, Yardley V, Maes L, Gupta S, Launay D, Braillard S, Chatelain E, Wan B, Franzblau SG, Ma Z, Cooper CB, Denny WA (2018) Development of (6 R)-2-Nitro-6-[4-(trifluoromethoxy)phenoxy]-6,7-dihydro-5 H-imidazo[2,1- b][1,3]oxazine (DNDI-8219): a new Lead for visceral Leishmaniasis. J Med Chem 61(6):2329–2352. https://doi.org/10.1021/acs.jmedchem.7b01581

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  118. Van Bocxlaer K, Caridha D, Black C, Vesely B, Leed S, Sciotti RJ, Wijnant GJ, Yardley V, Braillard S, Mowbray CE, Ioset JR, Croft SL (2019) Novel benzoxaborole, nitroimidazole and aminopyrazoles with activity against experimental cutaneous leishmaniasis. Int J Parasitol Drugs Drug Resist. https://doi.org/10.1016/j.ijpddr.2019.02.002

  119. Caridha D, Vesely B, van Bocxlaer K, Arana B, Mowbray CE, Rafati S, Uliana S, Reguera R, Kreishman-Deitrick M, Sciotti R, Buffet P, Croft SL (2019) Route map for the discovery and pre-clinical development of new drugs and treatments for cutaneous leishmaniasis. Int J Parasitol Drugs Drug Resist. https://doi.org/10.1016/j.ijpddr.2019.06.003

  120. Yang JH, Bhargava P, McCloskey D, Mao N, Palsson BO, Collins JJ (2017) Antibiotic-induced changes to the host metabolic environment inhibit drug efficacy and alter immune function. Cell Host Microbe 22(6):757–765.e753. https://doi.org/10.1016/j.chom.2017.10.020

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  121. Burza S, Mahajan R, Sinha PK, van Griensven J, Pandey K, Lima MA, Sanz MG, Sunyoto T, Kumar S, Mitra G, Kumar R, Verma N, Das P (2014) Visceral leishmaniasis and HIV co-infection in Bihar, India: long-term effectiveness and treatment outcomes with liposomal amphotericin B (AmBisome). PLoS Negl Trop Dis 8(8):e3053. https://doi.org/10.1371/journal.pntd.0003053

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  122. Adam AAO, Dafalla MMM, Mohammed HA, Elamin MY, Younis BM, Elfaki ME, Musa AM, Elhassan AM, Khalil EAG (2014) Visceral leishmaniasis-hepatitis B/C coinfections: a rising necessity to triage patients for treatment. Ann Saudi Med 34(2):143–146. https://doi.org/10.5144/0256-4947.2014.143

    Article  PubMed Central  Google Scholar 

  123. Hailu W, Weldegebreal T, Hurissa Z, Tafes H, Omollo R, Yifru S, Balasegaram M, Hailu A (2010) Safety and effectiveness of meglumine antimoniate in the treatment of Ethiopian visceral leishmaniasis patients with and without HIV co-infection. Trans R Soc Trop Med Hyg 104(11):706–712. https://doi.org/10.1016/j.trstmh.2010.07.007

    CAS  Article  PubMed  Google Scholar 

  124. Mbui J, Olobo J, Omollo R, Solomos A, Kip AE, Kirigi G, Sagaki P, Kimutai R, Were L, Omollo T, Egondi TW, Wasunna M, Alvar J, Dorlo TPC, Alves F (2019) Pharmacokinetics, safety, and efficacy of an Allometric Miltefosine regimen for the treatment of visceral Leishmaniasis in eastern African children: an open-label, phase II clinical trial. Clin Infect Dis 68(9):1530–1538. https://doi.org/10.1093/cid/ciy747

    CAS  Article  PubMed  Google Scholar 

  125. Murray HW (2000) Suppression of posttreatment recurrence of experimental visceral Leishmaniasis in T-cell-deficient mice by oral Miltefosine. Antimicrob Agents Chemother 44(11):3235–3236

    CAS  Article  Google Scholar 

  126. Murray HW, Delph-Etienne S (2000) Visceral leishmanicidal activity of hexadecylphosphocholine (miltefosine) in mice deficient in T cells and activated macrophage microbicidal mechanisms. J Infect Dis 181(2):795–799

    CAS  Article  Google Scholar 

  127. Escobar P, Yardley V, Croft SL (2001) Activities of hexadecylphosphocholine (miltefosine), AmBisome, and sodium stibogluconate (Pentostam) against Leishmania donovani in immunodeficient scid mice. (0066–4804 (Print))

  128. Dorlo TP, Balasegaram M, Beijnen JH, de Vries PJ (2012) Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniaisis. J Antimicrob Chemother 67(11):2576–2597

    CAS  Article  Google Scholar 

  129. Cohen BE (2016) The role of signaling via aqueous pore formation in resistance responses to amphotericin B. 60 (9):5122-5129. https://doi.org/10.1128/AAC.00878-16

  130. Murray HW, Berman JD, Davies CR, Saravia NG (2005) Advances in leishmaniasis. Lancet 366(9496):1577

    Article  Google Scholar 

  131. Chavez-Galan L, Vesin D, Martinvalet D, Garcia I (2016) Low dose BCG infection as a model for macrophage activation maintaining cell viability %J journal of immunology. Research 2016:17. https://doi.org/10.1155/2016/4048235

    CAS  Article  Google Scholar 

  132. Convit J, Ulrich M, Zerpa O, Borges R, Aranzazu N, Valera M, Villarroel H, Zapata Z, Tomedes I (2003) Immunotherapy of American cutaneous leishmaniasis in Venezuela during the period 1990-99. Trans R Soc Trop Med Hyg 97(4):469–472. https://doi.org/10.1016/s0035-9203(03)90093-9

    CAS  Article  PubMed  Google Scholar 

  133. Musa AM, Khalil EAG, Mahgoub FAE, Elgawi SHH, Modabber F, Elkadaru AEMY, Aboud MH, Noazin S, Ghalib HW, El-Hassan AM Group/Sudan TLR (2008) Immunochemotherapy of persistent post-kala-azar dermal leishmaniasis: a novel approach to treatment. Trans R Soc Trop Med Hyg 102(1):58–63. https://doi.org/10.1016/j.trstmh.2007.08.006

  134. Cohen HA (1979) Induction of delayed-type sensitivity to Leishmania parasite in a case of leishmaniasis cutanea diffusa with BCG and cord-factor (Trehalose-6-6′ dimycolate). Acta Derm Venereol 59(6):547–549. https://doi.org/10.2340/0001555559547549

    CAS  Article  PubMed  Google Scholar 

  135. Adinolfi LE, Bonventre PF, Vander Pas M, Eppstein DA (1985) Synergistic effect of glucantime and a liposome-encapsulated muramyl dipeptide analog in therapy of experimental visceral leishmaniasis. Infect Immun 48(2):409–416

    CAS  Article  Google Scholar 

  136. Badaro R, Johnson WD Jr (1993) The role of interferon-gamma in the treatment of visceral and diffuse cutaneous leishmaniasis. J Infect Dis 167(Suppl 1):S13–S17. https://doi.org/10.1093/infdis/167.supplement_1.s13

    Article  PubMed  Google Scholar 

  137. Badaro R, Nascimento C, Carvalho JS, Badaro F, Russo D, Ho JL, Reed SG, Johnson WD Jr, Jones TC (1994) Granulocyte-macrophage colony-stimulating factor in combination with pentavalent antimony for the treatment of visceral Leishmaniasis. Eur J Clin Microbiol Infect Dis 13(Suppl 2):S23–S28. https://doi.org/10.1007/bf01973598

    Article  PubMed  Google Scholar 

  138. Almeida R, D'Oliveira A Jr, Machado P, Bacellar O, Ko AI, de Jesus AR, Mobashery N, Brito Santos J, Carvalho EM (1999) Randomized, double-blind study of stibogluconate plus human granulocyte macrophage colony-stimulating factor versus stibogluconate alone in the treatment of cutaneous Leishmaniasis. J Infect Dis 180(5):1735–1737. https://doi.org/10.1086/315082

    CAS  Article  PubMed  Google Scholar 

  139. Santos JB, de Jesus AR, Machado PR, Magalhaes A, Salgado K, Carvalho EM, Almeida RP (2004) Antimony plus recombinant human granulocyte-macrophage colony-stimulating factor applied topically in low doses enhances healing of cutaneous Leishmaniasis ulcers: a randomized, double-blind, placebo-controlled study. J Infect Dis 190(10):1793–1796. https://doi.org/10.1086/424848

    CAS  Article  PubMed  Google Scholar 

  140. Murray HW (2005) Interleukin 10 receptor blockade--pentavalent antimony treatment in experimental visceral leishmaniasis. Acta Trop 93(3):295–301. https://doi.org/10.1016/j.actatropica.2004.11.008

    CAS  Article  PubMed  Google Scholar 

  141. Flynn B, Wang V, Sacks DL, Seder RA, Verthelyi D (2005) Prevention and treatment of cutaneous leishmaniasis in primates by using synthetic type D/A oligodeoxynucleotides expressing CpG motifs. Infect Immun 73(8):4948–4954. https://doi.org/10.1128/iai.73.8.4948-4954.2005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  142. Verthelyi D, Ishii KJ, Gursel M, Takeshita F, Klinman DM (2001) Human peripheral blood cells differentially recognize and respond to two distinct CPG motifs. J Immunol (Baltimore, Md : 1950) 166(4):2372–2377. https://doi.org/10.4049/jimmunol.166.4.2372

    CAS  Article  Google Scholar 

  143. Buates S, Matlashewski G (1999) Treatment of experimental leishmaniasis with the immunomodulators imiquimod and S-28463: efficacy and mode of action. J Infect Dis 179:1485–1494

    CAS  Article  Google Scholar 

  144. Arevalo I, Tulliano G, Quispe A, Spaeth G, Matlashewski G, Llanos-Cuentas A, Pollack H (2007) Role of imiquimod and parenteral meglumine antimoniate in the initial treatment of cutaneous leishmaniasis. Clin Infect Dis 44(12):1549–1554

    CAS  Article  Google Scholar 

  145. Miranda-Verastegui C, Llanos-Cuentas A, Arevalo I, Ward BJ, Matlashewski G (2005) Randomized, double-blind clinical trial of topical imiquimod 5% with parenteral meglumine antimoniate in the treatment of cutaneous leishmaniasis in Peru. Clin Infect Dis 40(10):1395–1403

    CAS  Article  Google Scholar 

  146. Firooz A, Khamesipour A, Ghoorchi MH, Nassiri-Kashani M, Eskandari SE, Khatami A, Hooshmand B, Gorouhi F, Rashighi-Firoozabadi M, Dowlati Y (2006) Imiquimod in combination with meglumine antimoniate for cutaneous leishmaniasis. Arch Dermatol 142(12):1575–1579

    CAS  Article  Google Scholar 

  147. El Hajj R, Bou Youness H, Lachaud L, Bastien P, Masquefa C, Bonnet PA, El Hajj H, Khalifeh I (2018) EAPB0503: an Imiquimod analog with potent in vitro activity against cutaneous leishmaniasis caused by Leishmania major and Leishmania tropica. PLoS Negl Trop Dis 12(11):e0006854. https://doi.org/10.1371/journal.pntd.0006854

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  148. Smith AC, Yardley V, Rhodes J, Croft SL (2000) Activity of the novel immunomodulatory compound tucaresol against experimental visceral leishmaniasis. Antimicrob Agents Chemother 44(6):1494–1498. https://doi.org/10.1128/aac.44.6.1494-1498.2000

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  149. Dalton JE, Kaye PM (2010) Immunomodulators: use in combined therapy against leishmaniasis. Expert Rev Anti-Infect Ther 8(7):739–742. https://doi.org/10.1586/eri.10.64

    Article  PubMed  Google Scholar 

  150. Machado PR, Lessa H, Lessa M, Guimaraes LH, Bang H, Ho JL, Carvalho EM (2007) Oral pentoxifylline combined with pentavalent antimony: a randomized trial for mucosal leishmaniasis. Clin Infect Dis 44(6):788–793. https://doi.org/10.1086/511643

    CAS  Article  PubMed  Google Scholar 

  151. Brito G, Dourado M, Polari L, Celestino D, Carvalho LP, Queiroz A, Carvalho EM, Machado PR, Passos S (2014) Clinical and immunological outcome in cutaneous leishmaniasis patients treated with pentoxifylline. Am J Trop Med Hyg 90(4):617–620. https://doi.org/10.4269/ajtmh.12-0729

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  152. Brito G, Dourado M, Guimaraes LH, Meireles E, Schriefer A, de Carvalho EM, Machado PRL (2017) Oral pentoxifylline associated with pentavalent antimony: a randomized trial for cutaneous Leishmaniasis. Am J Trop Med Hyg 96(5):1155–1159. https://doi.org/10.4269/ajtmh.16-0435

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  153. Faria DR, Gollob KJ, Barbosa J Jr, Schriefer A, Machado PR, Lessa H, Carvalho LP, Romano-Silva MA, de Jesus AR, Carvalho EM, Dutra WO (2005) Decreased in situ expression of interleukin-10 receptor is correlated with the exacerbated inflammatory and cytotoxic responses observed in mucosal leishmaniasis. Infect Immun 73(12):7853–7859. https://doi.org/10.1128/iai.73.12.7853-7859.2005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  154. Sadeghian G, Nilforoushzadeh MA (2006) Effect of combination therapy with systemic glucantime and pentoxifylline in the treatment of cutaneous leishmaniasis. Int J Dermatol 45(7):819–821. https://doi.org/10.1111/j.1365-4632.2006.02867.x

    CAS  Article  PubMed  Google Scholar 

  155. Taslimi Y, Zahedifard F, Rafati S (2018) Leishmaniasis and various immunotherapeutic approaches. Parasitology 145(4):497–507. https://doi.org/10.1017/s003118201600216x

    CAS  Article  PubMed  Google Scholar 

  156. Adriaensen W, Dorlo TPC, Vanham G, Kestens L, Kaye PM, van Griensven J (2017) Immunomodulatory therapy of visceral Leishmaniasis in human immunodeficiency virus-coinfected patients. Front Immunol 8:1943. https://doi.org/10.3389/fimmu.2017.01943

    CAS  Article  PubMed  Google Scholar 

  157. Sakthianandeswaren A, Elso CM, Simpson K, Curtis JM, Kumar B, Speed TP, Handman E, Foote SJ (2005) The wound repair response controls outcome to cutaneous leishmaniasis. Proc Natl Acad Sci U S A 102(43):15551–15556

    CAS  Article  Google Scholar 

  158. Van Bocxlaer K, Yardley V, Murdan S, Croft SL (2016) Drug permeation and barrier damage in Leishmania-infected mouse skin. J Antimicrob Chemother 71(6):1578–1585. https://doi.org/10.1093/jac/dkw012

    CAS  Article  PubMed  Google Scholar 

  159. Wijnant GJ, Van Bocxlaer K, Fortes Francisco A, Yardley V, Harris A, Alavijeh M, Murdan S, Croft SL (2018) Local skin inflammation in cutaneous Leishmaniasis as a source of variable pharmacokinetics and therapeutic efficacy of liposomal amphotericin B. Antimicrob Agents Chemother 62(10):e00631–e00618. https://doi.org/10.1128/aac.00631-18

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  160. Wijnant GJ, Van Bocxlaer K, Yardley V, Harris A, Alavijeh M, Silva-Pedrosa R, Antunes S, Mauricio I, Murdan S, Croft SL (2018) Comparative efficacy, toxicity and biodistribution of the liposomal amphotericin B formulations Fungisome((R)) and AmBisome((R)) in murine cutaneous leishmaniasis. Int J Parasitol Drugs Drug Resist 8 (2):223–228. doi:https://doi.org/10.1016/j.ijpddr.2018.04.001

  161. Coombs GH, Wolf CR, Morrison VM, Craft JA (1990) Changes in hepatic xenobiotic-metabolising enzymes in mouse liver following infection with Leishmania donovani. Mol Biochem Parasitol 41(1):17–24. https://doi.org/10.1016/0166-6851(90)90092-z

    CAS  Article  PubMed  Google Scholar 

  162. Mukhopadhyay R, Madhubala R (1994) Antileishmanial activity and modification of hepatic xenobiotic metabolizing enzymes in golden hamster by 2(3)-tert-butyl-4-hydroxyanisole following infection with Leishmania donovani. Biochem Pharmacol 47(2):253–256. https://doi.org/10.1016/0006-2952(94)90014-0

    CAS  Article  PubMed  Google Scholar 

  163. Sindermann H, Engel J (2006) Development of miltefosine as an oral treatment for leishmaniasis. Trans R Soc Trop Med Hyg 100(Suppl 1):S17–S20. https://doi.org/10.1016/j.trstmh.2006.02.010

    CAS  Article  PubMed  Google Scholar 

  164. Castro MM, Cossio A, Velasco C, Osorio L (2017) Risk factors for therapeutic failure to meglumine antimoniate and miltefosine in adults and children with cutaneous leishmaniasis in Colombia: a cohort study. PLoS Negl Trop Dis 11(4):e0005515. https://doi.org/10.1371/journal.pntd.0005515

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  165. Voak AA, Standing JF, Sepulveda N, Harris A, Croft SL, Seifert K (2018) Pharmacodynamics and cellular accumulation of amphotericin B and miltefosine in Leishmania donovani-infected primary macrophages. J Antimicrob Chemother 73(5):1314–1323. https://doi.org/10.1093/jac/dky014

    Article  PubMed  PubMed Central  Google Scholar 

  166. Dartois V (2014) The path of anti-tuberculosis drugs: from blood to lesions to mycobacterial cells. Nat Rev Microbiol 12(3):159–167. https://doi.org/10.1038/nrmicro3200

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  167. Bryant CE, Monie TP (2012) Mice, men and the relatives: cross-species studies underpin innate immunity. Open Biol 2(4):120015. https://doi.org/10.1098/rsob.120015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  168. Zhao M, Lepak AJ, Andes DR (2016) Animal models in the pharmacokinetic/pharmacodynamic evaluation of antimicrobial agents. Bioorg Med Chem 24(24):6390–6400. https://doi.org/10.1016/j.bmc.2016.11.008

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

PK is supported by a Wellcome Trust Investigator Award (WT1063203); KVB is supported by a fellowship awarded from the Research Council United Kingdom Grand Challenges Research Funder under grant agreement ‘A Global Network for Neglected Tropical Diseases’ grant number MR/P027989/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon L. Croft.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This article is a contribution to the special issue on: Immunopathology of unresolved tropical diseases - Guest Editor: Marcel Tanner

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaye, P.M., Cruz, I., Picado, A. et al. Leishmaniasis immunopathology—impact on design and use of vaccines, diagnostics and drugs. Semin Immunopathol 42, 247–264 (2020). https://doi.org/10.1007/s00281-020-00788-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-020-00788-y

Keywords

  • Leishmaniasis
  • Immunopathology
  • Vaccines
  • Diagnostics
  • Drugs