Abstract
Autoimmune uveitis is a sight-threatening, rare disease, potentially leading to blindness. Uveitis is a synonym for intraocular inflammation, presenting as various clinical phenotypes with different underlying immune responses in patients, whereas different animal models usually represent one certain clinical and immunological type of uveitis due to genetic uniformity and the method of disease induction. T cells recognizing intraocular antigens initiate the disease, recruiting inflammatory cells (granulocytes, monocytes/macrophages) to the eyes, which cause the damage of the tissue. The treatment of uveitis so far aims at downregulation of inflammation to protect the ocular tissues from damage, and at immunosuppression to stop fueling T cell reactivity. Uveitis is usually prevented by specific mechanisms of the ocular immune privilege and the blood-eye-barriers, but once the disease is induced, mechanisms of the immune privilege as well as a variety of novel regulatory features including new Treg cell populations and suppressive cytokines are induced to downregulate the ocular inflammation and T cell responses and to avoid relapses and chronicity. Here we describe mechanisms of regulation observed in experimental animal models as well as detected in studies with peripheral lymphocytes from patients.
Similar content being viewed by others
References
Rothova A, Suttorp van Schulten MS, Frits Treffers W, Kijlstra A (1996) Causes and frequency of blindness in patients with intraocular inflammatory disease. Br J Ophthalmol 80(4):332–336 Issn: 0007–1161
Jabs DA, Nussenblatt RB, Rosenbaum JT (2005) Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am J Ophthalmol 140(3):509–516
Singh VK, Kalra HK, Yamaki K, Abe T, Donoso LA, Shinohara T (1990) Molecular mimicry between a uveitopathogenic site of S-antigen and viral peptides. Induction of experimental autoimmune uveitis in Lewis rats. J Immunol (Baltimore, Md : 1950) 144(4):1282–1287
Wildner G, Diedrichs-Möhring M (2003) Autoimmune uveitis induced by molecular mimicry of peptides from rotavirus, bovine casein and retinal S-antigen. Eur J Immunol 33(9):2577–2587. https://doi.org/10.1002/eji.200324058
Singh VK, Yamaki K, Donoso LA, Shinohara T (1989) Sequence homology between yeast histone H3 and uveitopathogenic site of S-antigen: lymphocyte cross-reaction and adoptive transfer of the disease. Cell Immunol 119(1):211–221
Garip A, Diedrichs-Mohring M, Thurau SR, Deeg CA, Wildner G (2009) Uveitis in a patient treated with Bacille-Calmette-Guerin: possible antigenic mimicry of mycobacterial and retinal antigens. Ophthalmology 116(12):2457–2462.e2451–2452. https://doi.org/10.1016/j.ophtha.2009.05.021
Mochizuki M, Kuwabara T, McAllister C, Nussenblatt RB, Gery I (1985) Adoptive transfer of experimental autoimmune uveoretinitis in rats. Immunopathogenic mechanisms and histologic features. Invest Ophthalmol Vis Sci 26:1):1–1):9
Smith JR, Stempel AJ, Bharadwaj A, Appukuttan B (2016) Involvement of B cells in non-infectious uveitis. Clin Transl Immunol 5(2):e63–e63. https://doi.org/10.1038/cti.2016.2
Wang R-X, Yu C-R, Dambuza IM, Mahdi RM, Dolinska MB, Sergeev YV, Wingfield PT, Kim S-H, Egwuagu CE (2014) Interleukin-35 induces regulatory B cells that suppress autoimmune disease. Nat Med 20:633–641. https://doi.org/10.1038/nm.3554 https://www.nature.com/articles/nm.3554#supplementary-information
Dambuza IM, He C, Choi JK, Yu C-R, Wang R, Mattapallil MJ, Wingfield PT, Caspi RR, Egwuagu CE (2017) IL-12p35 induces expansion of IL-10 and IL-35-expressing regulatory B cells and ameliorates autoimmune disease. Nat Commun 8(1):719–719. https://doi.org/10.1038/s41467-017-00838-4
Egwuagu CE, Yu C-R (2015) Interleukin 35-producing B cells (i35-Breg): a new mediator of regulatory B-cell functions in CNS autoimmune diseases. Crit Rev Immunol 35(1):49–57
Davis JL, Solomon D, Nussenblatt RB, Palestine AG, Chan C-C (1992) Immunocytochemical staining of vitreous cells: indications, techniques, and results. Ophthalmology 99(2):250–256. https://doi.org/10.1016/S0161-6420(92)31984-0
Hogan MJ, Wood IS, Godfrey WA (1973) Aqueous humor cytology in uveitis. JAMA Ophthalmol 89(3):217–220. https://doi.org/10.1001/archopht.1973.01000040219012
Belfort R Jr, Moura NC, Mendes NF (1982) T and B lymphocytes in the aqueous humor of patients with uveitis. JAMA Ophthalmol 100(3):465–467. https://doi.org/10.1001/archopht.1982.01030030467019
Wildner G, Hunig T, Thurau SR (1996) Orally induced, peptide-specific gamma/delta TCR+ cells suppress experimental autoimmune uveitis. Eur J Immunol 26(9):2140–2148. https://doi.org/10.1002/eji.1830260927
Grégoire S, Terrada C, Martin GH, Fourcade G, Baeyens A, Marodon G, Fisson S, Billiard F, Lucas B, Tadayoni R, Béhar-Cohen F, Levacher B, Galy A, LeHoang P, Klatzmann D, Bodaghi B, Salomon BL (2016) Treatment of uveitis by in situ administration of ex vivo–activated polyclonal regulatory T cells. J Immunol 196(5):2109–2118. https://doi.org/10.4049/jimmunol.1501723
Gilbert RM, Zhang X, Sampson RD, Ehrenstein MR, Nguyen DX, Chaudhry M, Mein C, Mahmud N, Galatowicz G, Tomkins-Netzer O, Calder VL, Lightman S (2018) Clinical remission of sight-threatening non-infectious uveitis is characterized by an upregulation of peripheral T-regulatory cell polarized towards T-bet and TIGIT. Front Immunol 9:907. https://doi.org/10.3389/fimmu.2018.00907
Jabs DA, Rosenbaum JT, Foster CS, Holland GN, Jaffe GJ, Louie JS, Nussenblatt RB, Stiehm ER, Tessler H, Van Gelder RN, Whitcup SM, Yocum D (2000) Guidelines for the use of immunosuppressive drugs in patients with ocular inflammatory disorders: recommendations of an expert panel. Am J Ophthalmol 130(4):492–513
Levy-Clarke G, Jabs DA, Read RW, Rosenbaum JT, Vitale A, Van Gelder RN (2014) Expert panel recommendations for the use of anti-tumor necrosis factor biologic agents in patients with ocular inflammatory disorders. Ophthalmology 121(3):785–796.e783. https://doi.org/10.1016/j.ophtha.2013.09.048
Miserocchi E, Modorati G (2012) Rituximab for noninfectious uveitis. Dev Ophthalmol 51:98–109. https://doi.org/10.1159/000336188
Tappeiner C, Heinz C, Specker C, Heiligenhaus A (2007) Rituximab as a treatment option for refractory endogenous anterior uveitis. Ophthalmic Res 39(3):184–186. https://doi.org/10.1159/000103239
Heiligenhaus A, Miserocchi E, Heinz C, Gerloni V, Kotaniemi K (2011) Treatment of severe uveitis associated with juvenile idiopathic arthritis with anti-CD20 monoclonal antibody (rituximab). Rheumatology 50(8):1390–1394. https://doi.org/10.1093/rheumatology/ker107
Simonini G, Xu Z, Caputo R, De Libero C, Pagnini I, Pascual V, Cimaz R (2013) Clinical and transcriptional response to the long-acting interleukin-1 blocker canakinumab in Blau syndrome-related uveitis. Arthritis Rheum 65(2):513–518. https://doi.org/10.1002/art.37776
Fabiani C, Vitale A, Emmi G, Lopalco G, Vannozzi L, Guerriero S, Gentileschi S, Bacherini D, Franceschini R, Frediani B, Galeazzi M, Iannone F, Tosi GM, Cantarini L (2017) Interleukin (IL)-1 inhibition with anakinra and canakinumab in Behçet’s disease-related uveitis: a multicenter retrospective observational study. Clin Rheumatol 36(1):191–197. https://doi.org/10.1007/s10067-016-3506-4
Tappeiner C, Mesquida M, Adan A, Anton J, Ramanan AV, Carreno E, Mackensen F, Kotaniemi K, de Boer JH, Bou R, de Vicuna CG, Heiligenhaus A (2016) Evidence for tocilizumab as a treatment option in refractory uveitis associated with juvenile idiopathic arthritis. 43(12) (0315-162X (Print)):2183–2188
Calvo-Río V, Santos-Gómez M, Calvo I, González-Fernández MI, López-Montesinos B, Mesquida M, Adán A, Hernández MV, Maíz O, Atanes A, Bravo B, Modesto C, Díaz-Cordovés G, Palmou-Fontana N, Loricera J, González-Vela MC, Demetrio-Pablo R, Hernández JL, González-Gay MA, Blanco R (2017) Anti–interleukin-6 receptor tocilizumab for severe juvenile idiopathic arthritis–associated uveitis refractory to anti–tumor necrosis factor therapy: a multicenter study of twenty-five patients. Arthritis Rheum 69(3):668–675. https://doi.org/10.1002/art.39940
Adán A, Mesquida M, Llorenç V, Espinosa G, Molins B, Hernández MV, Pelegrín L (2013) Tocilizumab treatment for refractory uveitis-related cystoid macular edema. Graefes Arch Clin Exp Ophthalmol 251(11):2627–2632. https://doi.org/10.1007/s00417-013-2436-y
Kempen JH, Altaweel MM, Holbrook JT, Jabs DA, Louis TA, Sugar EA, Thorne JE (2011) Randomized comparison of systemic anti-inflammatory therapy versus fluocinolone acetonide implant for intermediate, posterior, and panuveitis: the multicenter uveitis steroid treatment trial. Ophthalmology 118(10):1916–1926. https://doi.org/10.1016/j.ophtha.2011.07.027
Diedrichs-Möhring M, Niesik S, Priglinger CS, Thurau SR, Obermayr F, Sperl S, Wildner G (2018) Intraocular DHODH-inhibitor PP-001 suppresses relapsing experimental uveitis and cytokine production of human lymphocytes, but not of RPE cells. J Neuroinflammation 15(1):54. https://doi.org/10.1186/s12974-018-1088-6
Diedrichs-Möhring M, Leban J, Strobl S, Obermayr F, Wildner G (2015) A new small molecule for treating inflammation and chorioretinal neovascularization in relapsing-remitting and chronic experimental autoimmune uveitis: a new small molecule to treat monophasic and chronic EAU. Invest Ophthalmol Vis Sci 56(2):1147–1157. https://doi.org/10.1167/iovs.14-15518
Bose T, Diedrichs-Mohring M, Wildner G (2016) Dry eye disease and uveitis: a closer look at immune mechanisms in animal models of two ocular autoimmune diseases. Autoimmun Rev 15(12):1181–1192. https://doi.org/10.1016/j.autrev.2016.09.001
Wildner G, Diedrichs-Möhring M (2004) Autoimmune uveitis and antigenic mimicry of environmental antigens. Autoimmun Rev 3(5):383–387. https://doi.org/10.1016/j.autrev.2004.01.002
Horai R, Zárate-Bladés CR, Dillenburg-Pilla P, Chen J, Kielczewski JL, Silver PB, Jittayasothorn Y, Chan C-C, Yamane H, Honda K, Caspi RR (2015) Microbiota-dependent activation of an autoreactive T cell receptor provokes autoimmunity in an immunologically privileged site. Immunity 43(2):343–353. https://doi.org/10.1016/j.immuni.2015.07.014
Charukamnoetkanok P, Fukushima A, Whitcup SM, Gery I, Egwuagu CE (1998) Expression of ocular autoantigens in the mouse thymus. Curr Eye Res 17(8):788–792
Kyewski B, Derbinski J (2004) Self-representation in the thymus: an extended view. Nat Rev Immunol 4(9):688–698. https://doi.org/10.1038/nri1436
Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, von Boehmer H, Bronson R, Dierich A, Benoist C, Mathis D (2002) Projection of an immunological self shadow within the thymus by the aire protein. Science 298(5597):1395–1401. https://doi.org/10.1126/science.1075958
Shechter R, London A, Schwartz M (2013) Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat Rev Immunol 13(3):206–218. https://doi.org/10.1038/nri3391
Streilein JW (2003) Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol 3(11):879–889. https://doi.org/10.1038/nri1224
Stein-Streilein J, Lucas K (2011) A current understanding of ocular immune privilege. Curr Immunol Rev 7(3):336–343. https://doi.org/10.2174/157339511796196683
Taylor AW (2007) Ocular immunosuppressive microenvironment. Chem Immunol Allergy 92:71–85. https://doi.org/10.1159/000099255
Taylor AW, Streilein JW, Cousins SW (1992) Identification of alpha-melanocyte stimulating hormone as a potential immunosuppressive factor in aqueous humor. Curr Eye Res 11(12):1199–1206
Taylor AW, Yee DG (2003) Somatostatin is an immunosuppressive factor in aqueous humor. Invest Ophthalmol Vis Sci 44(6):2644–2649
McPherson SW, Heuss ND, Gregerson DS (2013) Local “On-Demand” Generation and Function of Antigen-Specific Foxp3+ Regulatory T Cells. J Immunol 190(10):4971–4981. https://doi.org/10.4049/jimmunol.1202625
Zhou R, Horai R, Silver PB, Mattapallil MJ, Zárate-Bladés CR, Chong WP, Chen J, Rigden RC, Villasmil R, Caspi RR (2012) the living eye “disarms” uncommitted autoreactive T cells by converting them to Foxp3(+) regulatory cells following local antigen recognition. J Immunol 188(4):1742. https://doi.org/10.4049/jimmunol.1102415
Whitcup SM, DeBarge LR, Caspi RR, Harning R, Nussenblatt RB, Chan CC (1993) Monoclonal antibodies against ICAM-1 (CD54) and LFA-1 (CD11a/CD18) inhibit experimental autoimmune uveitis. Clin Immunol Immunopathol 67(2):143–150
Thurau SR, Mempel TR, Flugel A, Diedrichs-Mohring M, Krombach F, Kawakami N, Wildner G (2004) The fate of autoreactive, GFP+ T cells in rat models of uveitis analyzed by intravital fluorescence microscopy and FACS. Int Immunol 16(11):1573–1582. https://doi.org/10.1093/intimm/dxh158
Forrester JV, Huitinga I, Lumsden L, Dijkstra CD (1998) Marrow-derived activated macrophages are required during the effector phase of experimental autoimmune uveoretinitis in rats. Curr Eye Res 17(4):426–437
Rosenbaum JT (2016) Extraarticular manifestations: uveitis. In: Inman R, Sieper J (eds) Textbook of axial spondylarthritis, 1st edn. Oxford University Press, Oxford, pp 145–148
Diedrichs-Mohring M, Hoffmann C, Wildner G (2008) Antigen-dependent monophasic or recurrent autoimmune uveitis in rats. Int Immunol 20(3):365–374. https://doi.org/10.1093/intimm/dxm148
von Toerne C, Sieg C, Kaufmann U, Diedrichs-Mohring M, Nelson PJ, Wildner G (2010) Effector T cells driving monophasic vs. relapsing/remitting experimental autoimmune uveitis show unique pathway signatures. Mol Immunol 48(1–3):272–280. https://doi.org/10.1016/j.molimm.2010.07.017
Wildner G, Kaufmann U (2013) What causes relapses of autoimmune diseases? The etiological role of autoreactive T cells. Autoimmun Rev 12(11):1070–1075. https://doi.org/10.1016/j.autrev.2013.04.001
Kaufmann U, Diedrichs-Mohring M, Wildner G (2012) Dynamics of intraocular IFN-gamma, IL-17 and IL-10-producing cell populations during relapsing and monophasic rat experimental autoimmune uveitis. PLoS One 7(11):e49008. https://doi.org/10.1371/journal.pone.0049008
Diedrichs-Möhring M, Kaufmann U, Wildner G (2018) The immunopathogenesis of chronic and relapsing autoimmune uveitis – lessons from experimental rat models. Prog Retin Eye Res. https://doi.org/10.1016/j.preteyeres.2018.02.003
Lee YS, Amadi-Obi A, Yu C-R, Egwuagu CE (2011) Retinal cells suppress intraocular inflammation (uveitis) through production of interleukin-27 and interleukin-10. Immunology 132(4):492–502. https://doi.org/10.1111/j.1365-2567.2010.03379.x
Meka RR, Venkatesha SH, Dudics S, Acharya B, Moudgil KD (2015) IL-27-induced modulation of autoimmunity and its therapeutic potential. Autoimmun Rev 14(12):1131–1141. https://doi.org/10.1016/j.autrev.2015.08.001
Takeda A, Hasegawa E, Fukuhara T, Hirakawa S, Yamada H, Yang Y, Yoshimura T, Hisatomi T, Oshima Y, Yoshida H, Sonoda KH, Ishibashi T (2014) EBI3 is pivotal for the initiation of experimental autoimmune uveitis. Exp Eye Res 125:107–113. https://doi.org/10.1016/j.exer.2014.06.004
Sonoda KH, Yoshimura T, Takeda A, Ishibashi T, Hamano S, Yoshida H (2007) WSX-1 plays a significant role for the initiation of experimental autoimmune uveitis. Int Immunol 19(1):93–98. https://doi.org/10.1093/intimm/dxl125
Adamus G, Manczak M, Machnicki M (2001) Expression of CC chemokines and their receptors in the eye in autoimmune anterior uveitis associated with EAE. Investigative ophthalmology & visual science 42(12):2894–2903
Chong WP, Horai R, Mattapallil MJ, Silver PB, Chen J, Zhou R, Sergeev Y, Villasmil R, Chan CC, Caspi RR (2014) IL-27p28 inhibits central nervous system autoimmunity by concurrently antagonizing Th1 and Th17 responses. J Autoimmun 50:12–22. https://doi.org/10.1016/j.jaut.2013.08.003
Wang RX, Yu CR, Mahdi RM, Egwuagu CE (2012) Novel IL27p28/IL12p40 cytokine suppressed experimental autoimmune uveitis by inhibiting autoreactive Th1/Th17 cells and promoting expansion of regulatory T cells. J Biol Chem 287(43):36012–36021. https://doi.org/10.1074/jbc.M112.390625
Hashida N, Ohguro N, Nishida K (2012) Expression analysis of cytokine and chemokine genes during the natural course of murine experimental autoimmune uveoretinitis. ISRN Inflammation 2012:471617–471617. https://doi.org/10.5402/2012/471617
Owaki T, Asakawa M, Kamiya S, Takeda K, Fukai F, Mizuguchi J, Yoshimoto T (2006) IL-27 suppresses CD28-medicated IL-2 production through suppressor of cytokine signaling 3. J Immunol 176(5):2773–2780. https://doi.org/10.4049/jimmunol.176.5.2773
Caspi RR, Chan CC, Grubbs BG, Silver PB, Wiggert B, Parsa CF, Bahmanyar S, Billiau A, Heremans H (1994) Endogenous systemic IFN-gamma has a protective role against ocular autoimmunity in mice. J Immunol (Baltimore, Md : 1950) 152(2):890–899 Issn: 0022–1767
Hu MH, Zheng QF, Jia XZ, Li Y, Dong YC, Wang CY, Lin QY, Zhang FY, Zhao RB, Xu HW, Zhou JH, Yuan HP, Zhang WH, Ren H (2014) Neuroprotection effect of interleukin (IL)-17 secreted by reactive astrocytes is emerged from a high-level IL-17-containing environment during acute neuroinflammation. Clin Exp Immunol 175(2):268–284. https://doi.org/10.1111/cei.12219
Theodoropoulou S, Copland DA, Liu J, Wu J, Gardner PJ, Ozaki E, Doyle SL, Campbell M, Dick AD (2017) Interleukin-33 regulates tissue remodelling and inhibits angiogenesis in the eye. J Pathol 241(1):45–56. https://doi.org/10.1002/path.4816
Barbour M, Allan D, Xu H, Pei C, Chen M, Niedbala W, Fukada SY, Besnard AG, Alves-Filho JC, Tong X, Forrester JV, Liew FY, Jiang HR (2014) IL-33 attenuates the development of experimental autoimmune uveitis. Eur J Immunol 44(11):3320–3329. https://doi.org/10.1002/eji.201444671
Rizzo LV, Miller Rivero NE, Chan CC, Wiggert B, Nussenblatt RB, Caspi RR (1994) Interleukin-2 treatment potentiates induction of oral tolerance in a murine model of autoimmunity. J Clin Invest 94(4):1668–1672 Issn: 0021–9738. https://doi.org/10.1172/JCI117511
Wang L, Yu CR, Kim HP, Liao W, Telford WG, Egwuagu CE, Leonard WJ (2011) Key role for IL-21 in experimental autoimmune uveitis. Proc Natl Acad Sci U S A 108(23):9542–9547. https://doi.org/10.1073/pnas.1018182108
Murray PJ (2006) Understanding and exploiting the endogenous interleukin-10/STAT3-mediated anti-inflammatory response. Curr Opin Pharmacol 6(4):379–386. https://doi.org/10.1016/j.coph.2006.01.010
Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19(1):683–765. https://doi.org/10.1146/annurev.immunol.19.1.683
De Kozak Y, Thillaye Goldenberg B, Naud MC, Da Costa AV, Auriault C, Verwaerde C (2002) Inhibition of experimental autoimmune uveoretinitis by systemic and subconjunctival adenovirus-mediated transfer of the viral IL-10 gene. Clin Exp Immunol 130(2):212–223
Smith JR, Verwaerde C, Rolling F, Naud MC, Delanoye A, Thillaye Goldenberg B, Apparailly F, De Kozak Y (2005) Tetracycline-inducible viral interleukin-10 intraocular gene transfer, using adeno-associated virus in experimental autoimmune uveoretinitis. Hum Gene Ther 16(9):1037–1046. https://doi.org/10.1089/hum.2005.16.1037
Agarwal RK, Horai R, Viley AM, Silver PB, Grajewski RS, Bo Su S, Yazdani AT, Zhu W, Kronenberg M, Murray PJ, Rutschman RL, Chan C-C, Caspi RR (2008) Abrogation of anti-retinal autoimmunity in IL-10 transgenic mice due to reduced T cell priming and inhibition of disease effector mechanisms. J Immunol 180(8):5423–5429. https://doi.org/10.4049/jimmunol.180.8.5423
Streilein JW, Okamoto S, Hara Y, Kosiewicz M, Ksander B (1997) Blood-borne signals that induce anterior chamber-associated immune deviation after intracameral injection of antigen. Invest Ophthalmol Vis Sci 38(11):2245–2254
Zamiri P, Masli S, Kitaichi N, Taylor AW, Streilein JW (2005) Thrombospondin plays a vital role in the immune privilege of the eye. Invest Ophthalmol Vis Sci 46(3):908–919. https://doi.org/10.1167/iovs.04-0362
Namba K, Kitaichi N, Nishida T, Taylor AW (2002) Induction of regulatory T cells by the immunomodulating cytokines alpha-melanocyte-stimulating hormone and transforming growth factor-beta2. J Leukoc Biol 72(5):946–952
Wildner G (2019) Are rats more human than mice? Immunobiology 224(1):172–176. https://doi.org/10.1016/j.imbio.2018.09.002
Kitaichi N, Namba K, Taylor AW (2005) Inducible immune regulation following autoimmune disease in the immune-privileged eye. J Leukoc Biol 77(4):496–502. https://doi.org/10.1189/jlb.0204114
Lee DJ, Taylor AW (2013) Both MC5r and A2Ar are required for protective regulatory immunity in the spleen of post-experimental autoimmune uveitis in mice. J Immunol (Baltimore, Md : 1950) 191(8):4103–4111. https://doi.org/10.4049/jimmunol.1300182
Lee DJ, Taylor AW (2015) Recovery from experimental autoimmune uveitis promotes induction of antiuveitic inducible Tregs. J Leukoc Biol 97(6):1101–1109. https://doi.org/10.1189/jlb.3A1014-466RR
Lee DJ, Preble J, Lee S, Foster CS, Taylor AW (2016) MC5r and A2Ar deficiencies during experimental autoimmune uveitis identifies distinct T cell polarization programs and a biphasic regulatory response. Sci Rep 6:37790. https://doi.org/10.1038/srep37790
Silver P, Horai R, Chen J, Jittayasothorn Y, Chan C-C, Villasmil R, Kesen MR, Caspi RR (2015) Retina-specific T regulatory cells bring about resolution and maintain remission of autoimmune uveitis. J Immunol (Baltimore, Md : 1950) 194(7):3011–3019. https://doi.org/10.4049/jimmunol.1402650
Jia X, Hu M, Wang C, Wang C, Zhang F, Han Q, Zhao R, Huang Q, Xu H, Yuan H, Ren H (2011) Coordinated gene expression of Th17- and Treg-associated molecules correlated with resolution of the monophasic experimental autoimmune uveitis. Mol Vis 17:1493–1507
Peng G, Guo Z, Kiniwa Y, Ks V, Peng W, Fu T, Wang DY, Li Y, Wang HY, Wang R-F (2005) Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function. Science 309(5739):1380–1384. https://doi.org/10.1126/science.1113401
Crane IJ, Kuppner MC, McKillop-Smith S, Knott RM, Forrester JV (1998) Cytokine regulation of RANTES production by human retinal pigment epithelial cells. Cell Immunol 184(1):37–44. https://doi.org/10.1006/cimm.1997.1235
Crane IJ, Wallace CA, McKillop-Smith S, Forrester JV (2000) Control of chemokine production at the blood-retina barrier. Immunology 101(3):426–433
Ruggieri S, Frassanito MA, Dammacco R, Guerriero S (2012) Treg lymphocytes in autoimmune uveitis. Ocul Immunol Inflamm 20(4):255–261. https://doi.org/10.3109/09273948.2012.681830
Yeh S, Li Z, Forooghian F, Hwang FS, Cunningham MA, Pantanelli S, Lew JC, Wroblewski KK, Vitale S, Nussenblatt RB (2009) CD4+Foxp3+ T-regulatory cells in noninfectious uveitis. Arch Ophthalmol 127(4):407–413. https://doi.org/10.1001/archophthalmol.2009.32
Floess S, Freyer J, Siewert C, Baron U, Olek S, Polansky J, Schlawe K, Chang H-D, Bopp T, Schmitt E, Klein-Hessling S, Serfling E, Hamann A, Huehn J (2007) Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol 5(2):e38. https://doi.org/10.1371/journal.pbio.0050038
Huehn J, Polansky JK, Hamann A (2009) Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat Rev Immunol 9:83–89. https://doi.org/10.1038/nri2474
Polansky JK, Kretschmer K, Freyer J, Floess S, Garbe A, Baron U, Olek S, Hamann A, von Boehmer H, Huehn J (2008) DNA methylation controls Foxp3 gene expression. Eur J Immunol 38(6):1654–1663. https://doi.org/10.1002/eji.200838105
Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY (2010) Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463:808–812. https://doi.org/10.1038/nature08750 https://www.nature.com/articles/nature08750#supplementary-information
Janson PCJ, Winerdal ME, Marits P, Thörn M, Ohlsson R, Winqvist O (2008) FOXP3 promoter demethylation reveals the committed Treg population in humans. PLoS One 3(2):e1612. https://doi.org/10.1371/journal.pone.0001612
Kim Y, Kim TW, Park YS, Jeong EM, Lee D-S, Kim I-G, Chung H, Hwang Y-i, Lee WJ, Yu HG, Kang JS (2016) The role of interleukin-22 and its receptor in the development and pathogenesis of experimental autoimmune uveitis. PLoS One 11(5):e0154904. https://doi.org/10.1371/journal.pone.0154904
Koch MA, Tucker-Heard G, Perdue NR, Killebrew JR, Urdahl KB, Campbell DJ (2009) The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat Immunol 10:595–602. https://doi.org/10.1038/ni.1731 https://www.nature.com/articles/ni.1731#supplementary-information
Levine AG, Mendoza A, Hemmers S, Moltedo B, Niec RE, Schizas M, Hoyos BE, Putintseva EV, Chaudhry A, Dikiy S, Fujisawa S, Chudakov DM, Treuting PM, Rudensky AY (2017) Stability and function of regulatory T cells expressing the transcription factor T-bet. Nature 546:421–425. https://doi.org/10.1038/nature22360 https://www.nature.com/articles/nature22360#supplementary-information
Ohnmacht C, Park J-H, Cording S, Wing JB, Atarashi K, Obata Y, Gaboriau-Routhiau V, Marques R, Dulauroy S, Fedoseeva M, Busslinger M, Cerf-Bensussan N, Boneca IG, Voehringer D, Hase K, Honda K, Sakaguchi S, Eberl G (2015) The microbiota regulates type 2 immunity through RORγt T cells. Science 349(6251):989–993. https://doi.org/10.1126/science.aac4263
Sefik E, Geva-Zatorsky N, Oh S, Konnikova L, Zemmour D, McGuire AM, Burzyn D, Ortiz-Lopez A, Lobera M, Yang J, Ghosh S, Earl A, Snapper SB, Jupp R, Kasper D, Mathis D, Benoist C (2015) Individual intestinal symbionts induce a distinct population of RORγt regulatory T cells. Science 349(6251):993–997. https://doi.org/10.1126/science.aaa9420
Acknowledgments
We thank Stephan Thurau for critically reading the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
This article is a contribution to the special issue on Resolution of Inflammation in Chronic Diseases - Guest Editor: Markus Neurath
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wildner, G., Diedrichs-Möhring, M. Resolution of uveitis. Semin Immunopathol 41, 727–736 (2019). https://doi.org/10.1007/s00281-019-00758-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00281-019-00758-z