Skip to main content

Advertisement

Log in

Memory responses of innate lymphocytes and parallels with T cells

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Natural killer (NK) cells are classified as innate immune cells, given their ability to rapidly respond and kill transformed or virally infected cells without prior sensitization. Recently, accumulating evidence suggests that NK cells also exhibit many characteristics similar to cells of the adaptive immune system. Analogous to T cells, NK cells acquire self-tolerance during development, express antigen-specific receptors, undergo clonal-like expansion, and can become long-lived, self-renewing memory cells with potent effector function providing potent protection against reappearing pathogens. In this review, we discuss the requirements for memory NK cell generation and highlight the similarities with the formation of memory T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274. https://doi.org/10.1146/annurev.immunol.23.021704.115526

    Article  PubMed  CAS  Google Scholar 

  2. Kondo M, Weissman IL, Akashi K (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91(5):661–672

    Article  PubMed  CAS  Google Scholar 

  3. Di Santo JP (2006) Natural killer cell developmental pathways: a question of balance. Annu Rev Immunol 24:257–286. https://doi.org/10.1146/annurev.immunol.24.021605.090700

    Article  PubMed  CAS  Google Scholar 

  4. Karo JM, Schatz DG, Sun JC (2014) The RAG recombinase dictates functional heterogeneity and cellular fitness in natural killer cells. Cell 159(1):94–107. https://doi.org/10.1016/j.cell.2014.08.026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Fernandez NC, Treiner E, Vance RE, Jamieson AM, Lemieux S, Raulet DH (2005) A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood 105(11):4416–4423. https://doi.org/10.1182/blood-2004-08-3156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kim S, Poursine-Laurent J, Truscott SM, Lybarger L, Song YJ, Yang L, French AR, Sunwoo JB, Lemieux S, Hansen TH, Yokoyama WM (2005) Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436(7051):709–713. https://doi.org/10.1038/nature03847

    Article  PubMed  CAS  Google Scholar 

  7. Orr MT, Lanier LL (2010) Natural killer cell education and tolerance. Cell 142(6):847–856. https://doi.org/10.1016/j.cell.2010.08.031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Dokun AO, Kim S, Smith HR, Kang HS, Chu DT, Yokoyama WM (2001) Specific and nonspecific NK cell activation during virus infection. Nat Immunol 2(10):951–956. https://doi.org/10.1038/ni714

    Article  PubMed  CAS  Google Scholar 

  9. Sun JC, Beilke JN, Lanier LL (2009) Adaptive immune features of natural killer cells. Nature 457(7229):557–561. https://doi.org/10.1038/nature07665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Lanier LL (2008) Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 9(5):495–502. https://doi.org/10.1038/ni1581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. O'Sullivan TE, Sun JC, Lanier LL (2015) Natural killer cell memory. Immunity 43(4):634–645. https://doi.org/10.1016/j.immuni.2015.09.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Sun JC, Lopez-Verges S, Kim CC, DeRisi JL, Lanier LL (2011) NK cells and immune “memory”. J Immunol 186(4):1891–1897. https://doi.org/10.4049/jimmunol.1003035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sun JC, Ugolini S, Vivier E (2014) Immunological memory within the innate immune system. EMBO J 33(12):1295–1303. https://doi.org/10.1002/embj.201387651

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Williams MA, Bevan MJ (2007) Effector and memory CTL differentiation. Annu Rev Immunol 25:171–192. https://doi.org/10.1146/annurev.immunol.25.022106.141548

    Article  PubMed  CAS  Google Scholar 

  15. Carbone FR (2015) Tissue-resident memory T cells and fixed immune surveillance in nonlymphoid organs. J Immunol 195(1):17–22. https://doi.org/10.4049/jimmunol.1500515

    Article  PubMed  CAS  Google Scholar 

  16. O'Leary JG, Goodarzi M, Drayton DL, von Andrian UH (2006) T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat Immunol 7(5):507–516. https://doi.org/10.1038/ni1332

    Article  PubMed  CAS  Google Scholar 

  17. Paust S, Gill HS, Wang BZ, Flynn MP, Moseman EA, Senman B, Szczepanik M, Telenti A, Askenase PW, Compans RW, von Andrian UH (2010) Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nat Immunol 11(12):1127–1135. https://doi.org/10.1038/ni.1953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. van den Boorn JG, Jakobs C, Hagen C, Renn M, Luiten RM, Melief CJ, Tuting T, Garbi N, Hartmann G, Hornung V (2016) Inflammasome-dependent induction of adaptive NK cell memory. Immunity 44(6):1406–1421. https://doi.org/10.1016/j.immuni.2016.05.008

    Article  PubMed  CAS  Google Scholar 

  19. Peng H, Jiang X, Chen Y, Sojka DK, Wei H, Gao X, Sun R, Yokoyama WM, Tian Z (2013) Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J Clin Invest 123(4):1444–1456. https://doi.org/10.1172/JCI66381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Majewska-Szczepanik M, Paust S, von Andrian UH, Askenase PW, Szczepanik M (2013) Natural killer cell-mediated contact sensitivity develops rapidly and depends on interferon-alpha, interferon-gamma and interleukin-12. Immunology 140(1):98–110. https://doi.org/10.1111/imm.12120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Zhang LH, Shin JH, Haggadone MD, Sunwoo JB (2016) The aryl hydrocarbon receptor is required for the maintenance of liver-resident natural killer cells. J Exp Med 213(11):2249–2257. https://doi.org/10.1084/jem.20151998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Smith HR, Heusel JW, Mehta IK, Kim S, Dorner BG, Naidenko OV, Iizuka K, Furukawa H, Beckman DL, Pingel JT, Scalzo AA, Fremont DH, Yokoyama WM (2002) Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci U S A 99(13):8826–8831. https://doi.org/10.1073/pnas.092258599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL (2002) Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296(5571):1323–1326. https://doi.org/10.1126/science.1070884

    Article  PubMed  CAS  Google Scholar 

  24. Brown MG, Dokun AO, Heusel JW, Smith HR, Beckman DL, Blattenberger EA, Dubbelde CE, Stone LR, Scalzo AA, Yokoyama WM (2001) Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science 292(5518):934–937. https://doi.org/10.1126/science.1060042

    Article  PubMed  CAS  Google Scholar 

  25. Daniels KA, Devora G, Lai WC, O'Donnell CL, Bennett M, Welsh RM (2001) Murine cytomegalovirus is regulated by a discrete subset of natural killer cells reactive with monoclonal antibody to Ly49H. J Exp Med 194(1):29–44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lanier LL (2009) DAP10- and DAP12-associated receptors in innate immunity. Immunol Rev 227(1):150–160. https://doi.org/10.1111/j.1600-065X.2008.00720.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Orr MT, Sun JC, Hesslein DG, Arase H, Phillips JH, Takai T, Lanier LL (2009) Ly49H signaling through DAP10 is essential for optimal natural killer cell responses to mouse cytomegalovirus infection. J Exp Med 206(4):807–817. https://doi.org/10.1084/jem.20090168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Madera S, Sun JC (2015) Cutting edge: stage-specific requirement of IL-18 for antiviral NK cell expansion. J Immunol 194(4):1408–1412. https://doi.org/10.4049/jimmunol.1402001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Nabekura T, Girard JP, Lanier LL (2015) IL-33 receptor ST2 amplifies the expansion of NK cells and enhances host defense during mouse cytomegalovirus infection. J Immunol 194(12):5948–5952. https://doi.org/10.4049/jimmunol.1500424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Beaulieu AM, Zawislak CL, Nakayama T, Sun JC (2014) The transcription factor Zbtb32 controls the proliferative burst of virus-specific natural killer cells responding to infection. Nat Immunol 15(6):546–553. https://doi.org/10.1038/ni.2876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Zawislak CL, Beaulieu AM, Loeb GB, Karo J, Canner D, Bezman NA, Lanier LL, Rudensky AY, Sun JC (2013) Stage-specific regulation of natural killer cell homeostasis and response against viral infection by microRNA-155. Proc Natl Acad Sci U S A 110(17):6967–6972. https://doi.org/10.1073/pnas.1304410110

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rapp M, Lau CM, Adams NM, Weizman OE, O'Sullivan TE, Geary CD, Sun JC (2017) Core-binding factor beta and Runx transcription factors promote adaptive natural killer cell responses. Sci Immunol 2(18):eaan3796. https://doi.org/10.1126/sciimmunol.aan3796

    Article  PubMed  Google Scholar 

  33. Madera S, Rapp M, Firth MA, Beilke JN, Lanier LL, Sun JC (2016) Type I IFN promotes NK cell expansion during viral infection by protecting NK cells against fratricide. J Exp Med 213(2):225–233. https://doi.org/10.1084/jem.20150712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Sun JC, Madera S, Bezman NA, Beilke JN, Kaplan MH, Lanier LL (2012) Proinflammatory cytokine signaling required for the generation of natural killer cell memory. J Exp Med 209(5):947–954. https://doi.org/10.1084/jem.20111760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3(2):133–146. https://doi.org/10.1038/nri1001

    Article  PubMed  CAS  Google Scholar 

  36. Min-Oo G, Bezman NA, Madera S, Sun JC, Lanier LL (2014) Proapoptotic Bim regulates antigen-specific NK cell contraction and the generation of the memory NK cell pool after cytomegalovirus infection. J Exp Med 211(7):1289–1296. https://doi.org/10.1084/jem.20132459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333(6046):1109–1112. https://doi.org/10.1126/science.1201940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. O'Sullivan TE, Johnson LR, Kang HH, Sun JC (2015) BNIP3- and BNIP3L-mediated mitophagy promotes the generation of natural killer cell memory. Immunity 43(2):331–342. https://doi.org/10.1016/j.immuni.2015.07.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Sun JC, Beilke JN, Lanier LL (2010) Immune memory redefined: characterizing the longevity of natural killer cells. Immunol Rev 236:83–94. https://doi.org/10.1111/j.1600-065X.2010.00900.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Firth MA, Madera S, Beaulieu AM, Gasteiger G, Castillo EF, Schluns KS, Kubo M, Rothman PB, Vivier E, Sun JC (2013) Nfil3-independent lineage maintenance and antiviral response of natural killer cells. J Exp Med 210(13):2981–2990. https://doi.org/10.1084/jem.20130417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Kamimura Y, Lanier LL (2015) Homeostatic control of memory cell progenitors in the natural killer cell lineage. Cell Rep 10(2):280–291. https://doi.org/10.1016/j.celrep.2014.12.025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Badovinac VP, Messingham KA, Hamilton SE, Harty JT (2003) Regulation of CD8+ T cells undergoing primary and secondary responses to infection in the same host. J Immunol 170(10):4933–4942

    Article  PubMed  CAS  Google Scholar 

  43. Belz GT, Bedoui S, Kupresanin F, Carbone FR, Heath WR (2007) Minimal activation of memory CD8+ T cell by tissue-derived dendritic cells favors the stimulation of naive CD8+ T cells. Nat Immunol 8(10):1060–1066. https://doi.org/10.1038/ni1505

    Article  PubMed  CAS  Google Scholar 

  44. Grayson JM, Harrington LE, Lanier JG, Wherry EJ, Ahmed R (2002) Differential sensitivity of naive and memory CD8+ T cells to apoptosis in vivo. J Immunol 169(7):3760–3770

    Article  PubMed  CAS  Google Scholar 

  45. Jabbari A, Harty JT (2006) Secondary memory CD8+ T cells are more protective but slower to acquire a central-memory phenotype. J Exp Med 203(4):919–932. https://doi.org/10.1084/jem.20052237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Zimmermann C, Prevost-Blondel A, Blaser C, Pircher H (1999) Kinetics of the response of naive and memory CD8 T cells to antigen: similarities and differences. Eur J Immunol 29(1):284–290

    Article  PubMed  CAS  Google Scholar 

  47. Guma M, Angulo A, Vilches C, Gomez-Lozano N, Malats N, Lopez-Botet M (2004) Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood 104(12):3664–3671. https://doi.org/10.1182/blood-2004-05-2058

    Article  PubMed  CAS  Google Scholar 

  48. Guma M, Cabrera C, Erkizia I, Bofill M, Clotet B, Ruiz L, Lopez-Botet M (2006) Human cytomegalovirus infection is associated with increased proportions of NK cells that express the CD94/NKG2C receptor in aviremic HIV-1-positive patients. J Infect Dis 194(1):38–41. https://doi.org/10.1086/504719

    Article  PubMed  Google Scholar 

  49. Lopez-Verges S, Milush JM, Schwartz BS, Pando MJ, Jarjoura J, York VA, Houchins JP, Miller S, Kang SM, Norris PJ, Nixon DF, Lanier LL (2011) Expansion of a unique CD57(+)NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc Natl Acad Sci U S A 108(36):14725–14732. https://doi.org/10.1073/pnas.1110900108

    Article  PubMed  PubMed Central  Google Scholar 

  50. Foley B, Cooley S, Verneris MR, Curtsinger J, Luo X, Waller EK, Anasetti C, Weisdorf D, Miller JS (2012) Human cytomegalovirus (CMV)-induced memory-like NKG2C(+) NK cells are transplantable and expand in vivo in response to recipient CMV antigen. J Immunol 189(10):5082–5088. https://doi.org/10.4049/jimmunol.1201964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Hendricks DW, Balfour HH Jr, Dunmire SK, Schmeling DO, Hogquist KA, Lanier LL (2014) Cutting edge: NKG2C(hi)CD57+ NK cells respond specifically to acute infection with cytomegalovirus and not Epstein-Barr virus. J Immunol 192(10):4492–4496. https://doi.org/10.4049/jimmunol.1303211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Lopez-Verges S, Milush JM, Pandey S, York VA, Arakawa-Hoyt J, Pircher H, Norris PJ, Nixon DF, Lanier LL (2010) CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood 116(19):3865–3874. https://doi.org/10.1182/blood-2010-04-282301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Della Chiesa M, Falco M, Podesta M, Locatelli F, Moretta L, Frassoni F, Moretta A (2012) Phenotypic and functional heterogeneity of human NK cells developing after umbilical cord blood transplantation: a role for human cytomegalovirus? Blood 119(2):399–410. https://doi.org/10.1182/blood-2011-08-372003

    Article  PubMed  CAS  Google Scholar 

  54. Foley B, Cooley S, Verneris MR, Pitt M, Curtsinger J, Luo X, Lopez-Verges S, Lanier LL, Weisdorf D, Miller JS (2012) Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood 119(11):2665–2674. https://doi.org/10.1182/blood-2011-10-386995

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Muccio L, Bertaina A, Falco M, Pende D, Meazza R, Lopez-Botet M, Moretta L, Locatelli F, Moretta A, Della Chiesa M (2016) Analysis of memory-like natural killer cells in human cytomegalovirus-infected children undergoing alphabeta+T and B cell-depleted hematopoietic stem cell transplantation for hematological malignancies. Haematologica 101(3):371–381. https://doi.org/10.3324/haematol.2015.134155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Wu Z, Sinzger C, Frascaroli G, Reichel J, Bayer C, Wang L, Schirmbeck R, Mertens T (2013) Human cytomegalovirus-induced NKG2C(hi) CD57(hi) natural killer cells are effectors dependent on humoral antiviral immunity. J Virol 87(13):7717–7725. https://doi.org/10.1128/JVI.01096-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Beziat V, Liu LL, Malmberg JA, Ivarsson MA, Sohlberg E, Bjorklund AT, Retiere C, Sverremark-Ekstrom E, Traherne J, Ljungman P, Schaffer M, Price DA, Trowsdale J, Michaelsson J, Ljunggren HG, Malmberg KJ (2013) NK cell responses to cytomegalovirus infection lead to stable imprints in the human KIR repertoire and involve activating KIRs. Blood 121(14):2678–2688. https://doi.org/10.1182/blood-2012-10-459545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Luetke-Eversloh M, Hammer Q, Durek P, Nordstrom K, Gasparoni G, Pink M, Hamann A, Walter J, Chang HD, Dong J, Romagnani C (2014) Human cytomegalovirus drives epigenetic imprinting of the IFNG locus in NKG2Chi natural killer cells. PLoS Pathog 10(10):e1004441. https://doi.org/10.1371/journal.ppat.1004441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Rolle A, Pollmann J, Ewen EM, Le VT, Halenius A, Hengel H, Cerwenka A (2014) IL-12-producing monocytes and HLA-E control HCMV-driven NKG2C+ NK cell expansion. J Clin Invest 124(12):5305–5316. https://doi.org/10.1172/jci77440

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cooper MA, Elliott JM, Keyel PA, Yang L, Carrero JA, Yokoyama WM (2009) Cytokine-induced memory-like natural killer cells. Proc Natl Acad Sci U S A 106(6):1915–1919. https://doi.org/10.1073/pnas.0813192106

    Article  PubMed  PubMed Central  Google Scholar 

  61. Keppel MP, Yang L, Cooper MA (2013) Murine NK cell intrinsic cytokine-induced memory-like responses are maintained following homeostatic proliferation. J Immunol 190(9):4754–4762. https://doi.org/10.4049/jimmunol.1201742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Ni J, Miller M, Stojanovic A, Garbi N, Cerwenka A (2012) Sustained effector function of IL-12/15/18-preactivated NK cells against established tumors. J Exp Med 209(13):2351–2365. https://doi.org/10.1084/jem.20120944

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Romee R, Rosario M, Berrien-Elliott MM, Wagner JA, Jewell BA, Schappe T, Leong JW, Abdel-Latif S, Schneider SE, Willey S, Neal CC, Yu L, Oh ST, Lee YS, Mulder A, Claas F, Cooper MA, Fehniger TA (2016) Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med 8(357):357ra123. https://doi.org/10.1126/scitranslmed.aaf2341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Ni J, Holsken O, Miller M, Hammer Q, Luetke-Eversloh M, Romagnani C, Cerwenka A (2016) Adoptively transferred natural killer cells maintain long-term antitumor activity by epigenetic imprinting and CD4(+) T cell help. Oncoimmunology 5(9):e1219009. https://doi.org/10.1080/2162402X.2016.1219009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Nabekura T, Lanier LL (2016) Tracking the fate of antigen-specific versus cytokine-activated natural killer cells after cytomegalovirus infection. J Exp Med 213(12):2745–2758. https://doi.org/10.1084/jem.20160726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Min-Oo G, Lanier LL (2014) Cytomegalovirus generates long-lived antigen-specific NK cells with diminished bystander activation to heterologous infection. J Exp Med 211(13):2669–2680. https://doi.org/10.1084/jem.20141172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Jamieson AM, Isnard P, Dorfman JR, Coles MC, Raulet DH (2004) Turnover and proliferation of NK cells in steady state and lymphopenic conditions. J Immunol 172(2):864–870

    Article  PubMed  CAS  Google Scholar 

  68. Prlic M, Blazar BR, Farrar MA, Jameson SC (2003) In vivo survival and homeostatic proliferation of natural killer cells. J Exp Med 197(8):967–976. https://doi.org/10.1084/jem.20021847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Ranson T, Vosshenrich CA, Corcuff E, Richard O, Muller W, Di Santo JP (2003) IL-15 is an essential mediator of peripheral NK-cell homeostasis. Blood 101(12):4887–4893. https://doi.org/10.1182/blood-2002-11-3392

    Article  PubMed  CAS  Google Scholar 

  70. Sun JC, Beilke JN, Bezman NA, Lanier LL (2011) Homeostatic proliferation generates long-lived natural killer cells that respond against viral infection. J Exp Med 208(2):357–368. https://doi.org/10.1084/jem.20100479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. O'Sullivan TE, Geary CD, Weizman OE, Geiger TL, Rapp M, Dorn GW 2nd, Overholtzer M, Sun JC (2016) Atg5 is essential for the development and survival of innate lymphocytes. Cell Rep 15(9):1910–1919. https://doi.org/10.1016/j.celrep.2016.04.082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Sun JC, Lanier LL (2011) NK cell development, homeostasis and function: parallels with CD8(+) T cells. Nat Rev Immunol 11(10):645–657. https://doi.org/10.1038/nri3044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68(5):869–877

    Article  PubMed  CAS  Google Scholar 

  74. Teng G, Maman Y, Resch W, Kim M, Yamane A, Qian J, Kieffer-Kwon KR, Mandal M, Ji Y, Meffre E, Clark MR, Cowell LG, Casellas R, Schatz DG (2015) RAG represents a widespread threat to the lymphocyte genome. Cell 162(4):751–765. https://doi.org/10.1016/j.cell.2015.07.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Su HC, Ishikawa R, Biron CA (1993) Transforming growth factor-beta expression and natural killer cell responses during virus infection of normal, nude, and SCID mice. J Immunol 151(9):4874–4890

    PubMed  CAS  Google Scholar 

  76. Kumar V, Ben-Ezra J, Bennett M, Sonnenfeld G (1979) Natural killer cells in mice treated with 89strontium: normal target-binding cell numbers but inability to kill even after interferon administration. J Immunol 123(4):1832–1838

    PubMed  CAS  Google Scholar 

  77. Klein L, Kyewski B, Allen PM, Hogquist KA (2014) Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat Rev Immunol 14(6):377–391. https://doi.org/10.1038/nri3667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Anfossi N, Andre P, Guia S, Falk CS, Roetynck S, Stewart CA, Breso V, Frassati C, Reviron D, Middleton D, Romagne F, Ugolini S, Vivier E (2006) Human NK cell education by inhibitory receptors for MHC class I. Immunity 25(2):331–342. https://doi.org/10.1016/j.immuni.2006.06.013

    Article  PubMed  CAS  Google Scholar 

  79. Belanger S, Tu MM, Rahim MM, Mahmoud AB, Patel R, Tai LH, Troke AD, Wilhelm BT, Landry JR, Zhu Q, Tung KS, Raulet DH, Makrigiannis AP (2012) Impaired natural killer cell self-education and “missing-self” responses in Ly49-deficient mice. Blood 120(3):592–602. https://doi.org/10.1182/blood-2012-02-408732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Chalifour A, Scarpellino L, Back J, Brodin P, Devevre E, Gros F, Levy F, Leclercq G, Hoglund P, Beermann F, Held W (2009) A role for cis interaction between the inhibitory Ly49A receptor and MHC class I for natural killer cell education. Immunity 30(3):337–347. https://doi.org/10.1016/j.immuni.2008.12.019

    Article  PubMed  CAS  Google Scholar 

  81. Ma A, Koka R, Burkett P (2006) Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu Rev Immunol 24:657–679. https://doi.org/10.1146/annurev.immunol.24.021605.090727

    Article  PubMed  CAS  Google Scholar 

  82. Badovinac VP, Porter BB, Harty JT (2002) Programmed contraction of CD8(+) T cells after infection. Nat Immunol 3(7):619–626. https://doi.org/10.1038/ni804

    Article  PubMed  CAS  Google Scholar 

  83. Ahmed R, Gray D (1996) Immunological memory and protective immunity: understanding their relation. Science 272(5258):54–60

    Article  PubMed  CAS  Google Scholar 

  84. Mescher MF, Curtsinger JM, Agarwal P, Casey KA, Gerner M, Hammerbeck CD, Popescu F, Xiao Z (2006) Signals required for programming effector and memory development by CD8+ T cells. Immunol Rev 211:81–92. https://doi.org/10.1111/j.0105-2896.2006.00382.x

    Article  PubMed  CAS  Google Scholar 

  85. Curtsinger JM, Schmidt CS, Mondino A, Lins DC, Kedl RM, Jenkins MK, Mescher MF (1999) Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J Immunol 162(6):3256–3262

    PubMed  CAS  Google Scholar 

  86. Curtsinger JM, Valenzuela JO, Agarwal P, Lins D, Mescher MF (2005) Type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation. Journal of immunology (Baltimore, Md : 1950) 174(8):4465–4469

    Article  CAS  Google Scholar 

  87. Wu J, Cherwinski H, Spies T, Phillips JH, Lanier LL (2000) DAP10 and DAP12 form distinct, but functionally cooperative, receptor complexes in natural killer cells. J Exp Med 192(7):1059–1068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Aguilar OA, Berry R, Rahim MMA, Reichel JJ, Popovic B, Tanaka M, Fu Z, Balaji GR, Lau TNH, Tu MM, Kirkham CL, Mahmoud AB, Mesci A, Krmpotic A, Allan DSJ, Makrigiannis AP, Jonjic S, Rossjohn J, Carlyle JR (2017) A viral immunoevasin controls innate immunity by targeting the prototypical natural killer cell receptor family. Cell 169(1):58–71 e14. https://doi.org/10.1016/j.cell.2017.03.002

    Article  PubMed  CAS  Google Scholar 

  89. Nabekura T, Kanaya M, Shibuya A, Fu G, Gascoigne NR, Lanier LL (2014) Costimulatory molecule DNAM-1 is essential for optimal differentiation of memory natural killer cells during mouse cytomegalovirus infection. Immunity 40(2):225–234. https://doi.org/10.1016/j.immuni.2013.12.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Rolle A, Halenius A, Ewen EM, Cerwenka A, Hengel H, Momburg F (2016) CD2-CD58 interactions are pivotal for the activation and function of adaptive natural killer cells in human cytomegalovirus infection. Eur J Immunol 46(10):2420–2425. https://doi.org/10.1002/eji.201646492

    Article  PubMed  CAS  Google Scholar 

  91. Liu LL, Landskron J, Ask EH, Enqvist M, Sohlberg E, Traherne JA, Hammer Q, Goodridge JP, Larsson S, Jayaraman J, Oei VYS, Schaffer M, Tasken K, Ljunggren HG, Romagnani C, Trowsdale J, Malmberg KJ, Beziat V (2016) Critical role of CD2 co-stimulation in adaptive natural killer cell responses revealed in NKG2C-deficient humans. Cell Rep 15(5):1088–1099. https://doi.org/10.1016/j.celrep.2016.04.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Crotty S, Johnston RJ, Schoenberger SP (2010) Effectors and memories: Bcl-6 and Blimp-1 in T and B lymphocyte differentiation. Nat Immunol 11(2):114–120. https://doi.org/10.1038/ni.1837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Collins A, Littman DR, Taniuchi I (2009) RUNX proteins in transcription factor networks that regulate T-cell lineage choice. Nat Rev Immunol 9(2):106–115. https://doi.org/10.1038/nri2489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Egawa T, Tillman RE, Naoe Y, Taniuchi I, Littman DR (2007) The role of the Runx transcription factors in thymocyte differentiation and in homeostasis of naive T cells. J Exp Med 204(8):1945–1957. https://doi.org/10.1084/jem.20070133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Busch DH, Pamer EG (1999) T lymphocyte dynamics during Listeria monocytogenes infection. Immunol Lett 65(1–2):93–98

    Article  PubMed  CAS  Google Scholar 

  96. Grayson JM, Zajac AJ, Altman JD, Ahmed R (2000) Cutting edge: increased expression of Bcl-2 in antigen-specific memory CD8+ T cells. J Immunol 164(8):3950–3954

    Article  PubMed  CAS  Google Scholar 

  97. Kurtulus S, Tripathi P, Opferman JT, Hildeman DA (2010) Contracting the ‘mus cells’—does down-sizing suit us for diving into the memory pool? Immunol Rev 236:54–67. https://doi.org/10.1111/j.1600-065X.2010.00920.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Yajima T, Yoshihara K, Nakazato K, Kumabe S, Koyasu S, Sad S, Shen H, Kuwano H, Yoshikai Y (2006) IL-15 regulates CD8+ T cell contraction during primary infection. J Immunol 176(1):507–515

    Article  PubMed  CAS  Google Scholar 

  99. Rubinstein MP, Lind NA, Purton JF, Filippou P, Best JA, McGhee PA, Surh CD, Goldrath AW (2008) IL-7 and IL-15 differentially regulate CD8+ T-cell subsets during contraction of the immune response. Blood 112(9):3704–3712. https://doi.org/10.1182/blood-2008-06-160945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Tang C, Yamada H, Shibata K, Yoshida S, Wajjwalku W, Yoshikai Y (2009) IL-15 protects antigen-specific CD8+ T cell contraction after Mycobacterium bovis bacillus Calmette-Guerin infection. J Leukoc Biol 86(1):187–194. https://doi.org/10.1189/jlb.0608363

    Article  PubMed  CAS  Google Scholar 

  101. Huntington ND, Puthalakath H, Gunn P, Naik E, Michalak EM, Smyth MJ, Tabarias H, Degli-Esposti MA, Dewson G, Willis SN, Motoyama N, Huang DC, Nutt SL, Tarlinton DM, Strasser A (2007) Interleukin 15-mediated survival of natural killer cells is determined by interactions among Bim, Noxa and Mcl-1. Nat Immunol 8(8):856–863. https://doi.org/10.1038/ni1487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Xu X, Araki K, Li S, Han JH, Ye L, Tan WG, Konieczny BT, Bruinsma MW, Martinez J, Pearce EL, Green DR, Jones DP, Virgin HW, Ahmed R (2014) Autophagy is essential for effector CD8(+) T cell survival and memory formation. Nat Immunol 15(12):1152–1161. https://doi.org/10.1038/ni.3025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Kaech SM, Wherry EJ (2007) Heterogeneity and cell-fate decisions in effector and memory CD8+ T cell differentiation during viral infection. Immunity 27(3):393–405. https://doi.org/10.1016/j.immuni.2007.08.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Sallusto F, Geginat J, Lanzavecchia A (2004) Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 22:745–763. https://doi.org/10.1146/annurev.immunol.22.012703.104702

    Article  PubMed  CAS  Google Scholar 

  105. Huster KM, Stemberger C, Busch DH (2006) Protective immunity towards intracellular pathogens. Curr Opin Immunol 18(4):458–464. https://doi.org/10.1016/j.coi.2006.05.008

    Article  PubMed  CAS  Google Scholar 

  106. Klose CSN, Flach M, Mohle L, Rogell L, Hoyler T, Ebert K, Fabiunke C, Pfeifer D, Sexl V, Fonseca-Pereira D, Domingues RG, Veiga-Fernandes H, Arnold SJ, Busslinger M, Dunay IR, Tanriver Y, Diefenbach A (2014) Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157(2):340–356. https://doi.org/10.1016/j.cell.2014.03.030

    Article  PubMed  CAS  Google Scholar 

  107. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401(6754):708–712. https://doi.org/10.1038/44385

    Article  PubMed  CAS  Google Scholar 

  108. Bezman NA, Kim CC, Sun JC, Min-Oo G, Hendricks DW, Kamimura Y, Best JA, Goldrath AW, Lanier LL (2012) Molecular definition of the identity and activation of natural killer cells. Nat Immunol 13(10):1000–1009. https://doi.org/10.1038/ni.2395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Zediak VP, Johnnidis JB, Wherry EJ, Berger SL (2011) Cutting edge: persistently open chromatin at effector gene loci in resting memory CD8+ T cells independent of transcriptional status. J Immunol 186(5):2705–2709. https://doi.org/10.4049/jimmunol.1003741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Dunn J, McCuaig R, Tu WJ, Hardy K, Rao S (2015) Multi-layered epigenetic mechanisms contribute to transcriptional memory in T lymphocytes. BMC Immunol 16:27. https://doi.org/10.1186/s12865-015-0089-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Gray SM, Kaech SM, Staron MM (2014) The interface between transcriptional and epigenetic control of effector and memory CD8(+) T-cell differentiation. Immunol Rev 261(1):157–168. https://doi.org/10.1111/imr.12205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Lee J, Zhang T, Hwang I, Kim A, Nitschke L, Kim M, Scott JM, Kamimura Y, Lanier LL, Kim S (2015) Epigenetic modification and antibody-dependent expansion of memory-like NK cells in human cytomegalovirus-infected individuals. Immunity 42(3):431–442. https://doi.org/10.1016/j.immuni.2015.02.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Schlums H, Cichocki F, Tesi B, Theorell J, Beziat V, Holmes TD, Han H, Chiang SC, Foley B, Mattsson K, Larsson S, Schaffer M, Malmberg KJ, Ljunggren HG, Miller JS, Bryceson YT (2015) Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity 42(3):443–456. https://doi.org/10.1016/j.immuni.2015.02.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Jameson SC, Lee YJ, Hogquist KA (2015) Innate memory T cells. Adv Immunol 126:173–213. https://doi.org/10.1016/bs.ai.2014.12.001

    Article  PubMed  PubMed Central  Google Scholar 

  115. Artis D, Spits H (2015) The biology of innate lymphoid cells. Nature 517(7534):293–301. https://doi.org/10.1038/nature14189

    Article  PubMed  CAS  Google Scholar 

  116. Martinez-Gonzalez I, Matha L, Steer CA, Ghaedi M, Poon GF, Takei F (2016) Allergen-experienced group 2 innate lymphoid cells acquire memory-like properties and enhance allergic lung inflammation. Immunity 45(1):198–208. https://doi.org/10.1016/j.immuni.2016.06.017

    Article  PubMed  CAS  Google Scholar 

  117. Withers DR, Gaspal FM, Mackley EC, Marriott CL, Ross EA, Desanti GE, Roberts NA, White AJ, Flores-Langarica A, McConnell FM, Anderson G, Lane PJ (2012) Cutting edge: lymphoid tissue inducer cells maintain memory CD4 T cells within secondary lymphoid tissue. J Immunol 189(5):2094–2098. https://doi.org/10.4049/jimmunol.1201639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Ravens S, Schultze-Florey C, Raha S, Sandrock I, Drenker M, Oberdorfer L, Reinhardt A, Ravens I, Beck M, Geffers R, von Kaisenberg C, Heuser M, Thol F, Ganser A, Forster R, Koenecke C, Prinz I (2017) Human gammadelta T cells are quickly reconstituted after stem-cell transplantation and show adaptive clonal expansion in response to viral infection. Nat Immunol 18(4):393–401. https://doi.org/10.1038/ni.3686

    Article  PubMed  CAS  Google Scholar 

  119. Sheridan BS, Romagnoli PA, Pham QM, Fu HH, Alonzo F 3rd, Schubert WD, Freitag NE, Lefrancois L (2013) gammadelta T cells exhibit multifunctional and protective memory in intestinal tissues. Immunity 39(1):184–195. https://doi.org/10.1016/j.immuni.2013.06.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Clair Geary and Nicholas Adams for insightful discussions and the critical review of the manuscript.

Funding

M.R. was supported by a fellowship from the German Academic Exchange Service (DAAD; Germany). G.M.W. was supported by Deutsche Forschungsgemeinschaft DFG (Forschungsstipendium GZ: WI 4927/1-1). J.C.S. was supported by the Ludwig Center for Cancer Immunotherapy, the Burroughs Wellcome Fund, the American Cancer Society, and grants from the NIH (AI100874, AI130043, AI123658, and P30CA008748).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph C. Sun.

Additional information

This article is a contribution to the special issue on Innate Lymphoid Cells in Inflammation and Immunity - Guest Editors: Jan-Eric Turner and Georg Gasteiger

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rapp, M., Wiedemann, G.M. & Sun, J.C. Memory responses of innate lymphocytes and parallels with T cells. Semin Immunopathol 40, 343–355 (2018). https://doi.org/10.1007/s00281-018-0686-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-018-0686-9

Keywords

Navigation