Advertisement

Seminars in Immunopathology

, Volume 40, Issue 4, pp 393–406 | Cite as

Innate lymphoid cells in autoimmunity and chronic inflammatory diseases

  • Tingting Xiong
  • Jan-Eric Turner
Review

Abstract

Abnormal activation of the innate immune system is a common feature of autoimmune and chronic inflammatory diseases. Since their identification as a separate family of leukocytes, innate lymphoid cells (ILCs) have emerged as important effector cells of the innate immune system. Alterations in ILC function and subtype distribution have been observed in a variety of immune-mediated diseases in humans and evidence from experimental models suggests a subtype specific role of ILCs in the pathophysiology of autoimmune inflammation. In this review, we discuss recent advances in the understanding of ILC biology in autoimmune and chronic inflammatory disorders, including multiple sclerosis, inflammatory bowel diseases, psoriasis, and rheumatic diseases, with a special focus on the potential of ILCs as therapeutic targets for the development of novel treatment strategies in humans.

Keywords

Innate lymphoid cells Autoimmune disease Rheumatic disease Inflammatory bowel disease Multiple sclerosis Psoriasis 

Notes

Acknowledgements

We thank Martina Becker for the excellent help with preparing the figures.

Funding

J.-E.T. is supported by an Emmy Noether Grant of the Deutsche Forschungsgemeinschaft (TU316/1-2) and by the Collaborative Research Center 1192 “Immune-Mediated Glomerular Diseases” funded by the Deutsche Forschungsgemeinschaft.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Cho JH, Gregersen PK (2011) Genomics and the multifactorial nature of human autoimmune disease. N Engl J Med 365:1612–1623.  https://doi.org/10.1056/NEJMra1100030 CrossRefPubMedGoogle Scholar
  2. 2.
    Park H, Bourla AB, Kastner DL, Colbert RA, Siegel RM (2012) Lighting the fires within: the cell biology of autoinflammatory diseases. Nat Rev Immunol 12:570–580.  https://doi.org/10.1038/nri3261 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Artis D, Spits H (2015) The biology of innate lymphoid cells. Nature 517:293–301.  https://doi.org/10.1038/nature14189 CrossRefPubMedGoogle Scholar
  4. 4.
    Eberl G, Colonna M, Di Santo JP, McKenzie AN (2015) Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology. Science 348:aaa6566.  https://doi.org/10.1126/science.aaa6566 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie AN, Mebius RE, Powrie F, Vivier E (2013) Innate lymphoid cells—a proposal for uniform nomenclature. Nat Rev Immunol 13:145–149.  https://doi.org/10.1038/nri3365 CrossRefPubMedGoogle Scholar
  6. 6.
    Eberl G, Di Santo JP, Vivier E (2015) The brave new world of innate lymphoid cells. Nat Immunol 16:1–5.  https://doi.org/10.1038/ni.3059 CrossRefPubMedGoogle Scholar
  7. 7.
    Mebius RE, Rennert P, Weissman IL (1997) Developing lymph nodes collect CD4+CD3- LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7:493–504 https://doi.org/S1074-7613(00)80371-4 CrossRefPubMedGoogle Scholar
  8. 8.
    Spits H, Bernink JH, Lanier L (2016) NK cells and type 1 innate lymphoid cells: partners in host defense. Nat Immunol 17:758–764.  https://doi.org/10.1038/ni.3482 CrossRefPubMedGoogle Scholar
  9. 9.
    Klose CSN, Flach M, Mohle L, Rogell L, Hoyler T, Ebert K, Fabiunke C, Pfeifer D, Sexl V, Fonseca-Pereira D, Domingues RG, Veiga-Fernandes H, Arnold SJ, Busslinger M, Dunay IR, Tanriver Y, Diefenbach A (2014) Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157:340–356.  https://doi.org/10.1016/j.cell.2014.03.030 CrossRefPubMedGoogle Scholar
  10. 10.
    Fuchs A, Vermi W, Lee JS, Lonardi S, Gilfillan S, Newberry RD, Cella M, Colonna M (2013) Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity 38:769–781.  https://doi.org/10.1016/j.immuni.2013.02.010 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gasteiger G, Rudensky AY (2014) Interactions between innate and adaptive lymphocytes. Nat Rev Immunol 14:631–639.  https://doi.org/10.1038/nri3726 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Papp KA, Blauvelt A, Bukhalo M, Gooderham M, Krueger JG, Lacour JP, Menter A, Philipp S, Sofen H, Tyring S, Berner BR, Visvanathan S, Pamulapati C, Bennett N, Flack M, Scholl P, Padula SJ (2017) Risankizumab versus ustekinumab for moderate-to-severe plaque psoriasis. N Engl J Med 376:1551–1560.  https://doi.org/10.1056/NEJMoa1607017 CrossRefPubMedGoogle Scholar
  13. 13.
    Blanco FJ, Moricke R, Dokoupilova E, Codding C, Neal J, Andersson M, Rohrer S, Richards H (2017) Secukinumab in active rheumatoid arthritis: a phase III randomized, double-blind, active comparator- and placebo-controlled study. Arthritis Rheumatol 69:1144–1153.  https://doi.org/10.1002/art.40070 CrossRefPubMedGoogle Scholar
  14. 14.
    Baeten D, Baraliakos X, Braun J, Sieper J, Emery P, van der Heijde D, McInnes I, van Laar JM, Landewe R, Wordsworth P, Wollenhaupt J, Kellner H, Paramarta J, Wei J, Brachat A, Bek S, Laurent D, Li Y, Wang YA, Bertolino AP, Gsteiger S, Wright AM, Hueber W (2013) Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: a randomised, double-blind, placebo-controlled trial. Lancet 382:1705–1713.  https://doi.org/10.1016/S0140-6736(13)61134-4 CrossRefPubMedGoogle Scholar
  15. 15.
    Sonnenberg GF, Monticelli LA, Alenghat T, Fung TC, Hutnick NA, Kunisawa J, Shibata N, Grunberg S, Sinha R, Zahm AM, Tardif MR, Sathaliyawala T, Kubota M, Farber DL, Collman RG, Shaked A, Fouser LA, Weiner DB, Tessier PA, Friedman JR, Kiyono H, Bushman FD, Chang KM, Artis D (2012) Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336:1321–1325.  https://doi.org/10.1126/science.1222551 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Papi A, Brightling C, Pedersen SE, Reddel HK (2017) Asthma. Lancet.  https://doi.org/10.1016/S0140-6736(17)33311-1 Google Scholar
  17. 17.
    Gieseck RL 3rd, Wilson MS, Wynn TA (2017) Type 2 immunity in tissue repair and fibrosis. Nat Rev Immunol 18:62–76.  https://doi.org/10.1038/nri.2017.90 CrossRefPubMedGoogle Scholar
  18. 18.
    Mjosberg JM, Trifari S, Crellin NK, Peters CP, van Drunen CM, Piet B, Fokkens WJ, Cupedo T, Spits H (2011) Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol 12:1055–1062.  https://doi.org/10.1038/ni.2104 CrossRefPubMedGoogle Scholar
  19. 19.
    Lim AI, Li Y, Lopez-Lastra S, Stadhouders R, Paul F, Casrouge A, Serafini N, Puel A, Bustamante J, Surace L, Masse-Ranson G, David E, Strick-Marchand H, Le Bourhis L, Cocchi R, Topazio D, Graziano P, Muscarella LA, Rogge L, Norel X, Sallenave JM, Allez M, Graf T, Hendriks RW, Casanova JL, Amit I, Yssel H, Di Santo JP (2017) Systemic human ILC precursors provide a substrate for tissue ILC differentiation. Cell 168:1086–1100.e10.  https://doi.org/10.1016/j.cell.2017.02.021 CrossRefPubMedGoogle Scholar
  20. 20.
    Dendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15:545–558.  https://doi.org/10.1038/nri3871 CrossRefPubMedGoogle Scholar
  21. 21.
    Mair F, Becher B (2014) Thy1+ Sca1+ innate lymphoid cells infiltrate the CNS during autoimmune inflammation, but do not contribute to disease development. Eur J Immunol 44:37–45.  https://doi.org/10.1002/eji.201343653 CrossRefPubMedGoogle Scholar
  22. 22.
    Hatfield JK, Brown MA (2015) Group 3 innate lymphoid cells accumulate and exhibit disease-induced activation in the meninges in EAE. Cell Immunol 297:69–79.  https://doi.org/10.1016/j.cellimm.2015.06.006 CrossRefPubMedGoogle Scholar
  23. 23.
    Kwong B, Rua R, Gao Y, Flickinger J Jr, Wang Y, Kruhlak MJ, Zhu J, Vivier E, McGavern DB, Lazarevic V (2017) T-bet-dependent NKp46+ innate lymphoid cells regulate the onset of TH17-induced neuroinflammation. Nat Immunol 18:1117–1127.  https://doi.org/10.1038/ni.3816 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Russi AE, Walker-Caulfield ME, Ebel ME, Brown MA (2015) Cutting edge: c-kit signaling differentially regulates type 2 innate lymphoid cell accumulation and susceptibility to central nervous system demyelination in male and female SJL mice. J Immunol 194:5609–5613.  https://doi.org/10.4049/jimmunol.1500068 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Jiang HR, Milovanovic M, Allan D, Niedbala W, Besnard AG, Fukada SY, Alves-Filho JC, Togbe D, Goodyear CS, Linington C, Xu D, Lukic ML, Liew FY (2012) IL-33 attenuates EAE by suppressing IL-17 and IFN-gamma production and inducing alternatively activated macrophages. Eur J Immunol 42:1804–1814.  https://doi.org/10.1002/eji.201141947 CrossRefPubMedGoogle Scholar
  26. 26.
    Milovanovic M, Volarevic V, Ljujic B, Radosavljevic G, Jovanovic I, Arsenijevic N, Lukic ML (2012) Deletion of IL-33R (ST2) abrogates resistance to EAE in BALB/C mice by enhancing polarization of APC to inflammatory phenotype. PLoS One 7:e45225.  https://doi.org/10.1371/journal.pone.0045225 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gadani SP, Smirnov I, Smith AT, Overall CC, Kipnis J (2017) Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury. J Exp Med 214:285–296.  https://doi.org/10.1084/jem.20161982 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Perry JS, Han S, Xu Q, Herman ML, Kennedy LB, Csako G, Bielekova B (2012) Inhibition of LTi cell development by CD25 blockade is associated with decreased intrathecal inflammation in multiple sclerosis. Sci Transl Med 4:145ra106.  https://doi.org/10.1126/scitranslmed.3004140 CrossRefPubMedGoogle Scholar
  29. 29.
    Gross CC, Schulte-Mecklenbeck A, Hanning U, Posevitz-Fejfar A, Korsukewitz C, Schwab N, Meuth SG, Wiendl H, Klotz L (2017) Distinct pattern of lesion distribution in multiple sclerosis is associated with different circulating T-helper and helper-like innate lymphoid cell subsets. Mult Scler 23:1025–1030.  https://doi.org/10.1177/1352458516662726 CrossRefPubMedGoogle Scholar
  30. 30.
    Gross CC, Ahmetspahic D, Ruck T, Schulte-Mecklenbeck A, Schwarte K, Jorgens S, Scheu S, Windhagen S, Graefe B, Melzer N, Klotz L, Arolt V, Wiendl H, Meuth SG, Alferink J (2016) Alemtuzumab treatment alters circulating innate immune cells in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 3:e289.  https://doi.org/10.1212/NXI.0000000000000289 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gillard GO, Saenz SA, Huss DJ, Fontenot JD (2016) Circulating innate lymphoid cells are unchanged in response to DAC HYP therapy. J Neuroimmunol 294:41–45.  https://doi.org/10.1016/j.jneuroim.2016.03.008 CrossRefPubMedGoogle Scholar
  32. 32.
    Lin YC, Winokur P, Blake A, Wu T, Romm E, Bielekova B (2015) Daclizumab reverses intrathecal immune cell abnormalities in multiple sclerosis. Ann Clin Transl Neurol 2:445–455.  https://doi.org/10.1002/acn3.181 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Abraham C, Cho JH (2009) Inflammatory bowel disease. N Engl J Med 361:2066–2078.  https://doi.org/10.1056/NEJMra0804647 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Neurath MF (2014) Cytokines in inflammatory bowel disease. Nat Rev Immunol 14:329–342.  https://doi.org/10.1038/nri3661 CrossRefPubMedGoogle Scholar
  35. 35.
    Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Stevens S, Flavell RA (2008) Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity 29:947–957.  https://doi.org/10.1016/j.immuni.2008.11.003 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Satoh-Takayama N, Vosshenrich CA, Lesjean-Pottier S, Sawa S, Lochner M, Rattis F, Mention JJ, Thiam K, Cerf-Bensussan N, Mandelboim O, Eberl G, Di Santo JP (2008) Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29:958–970.  https://doi.org/10.1016/j.immuni.2008.11.001 CrossRefPubMedGoogle Scholar
  37. 37.
    Sanos SL, Bui VL, Mortha A, Oberle K, Heners C, Johner C, Diefenbach A (2009) RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol 10:83–91.  https://doi.org/10.1038/ni.1684 CrossRefPubMedGoogle Scholar
  38. 38.
    Luci C, Reynders A, Ivanov II, Cognet C, Chiche L, Chasson L, Hardwigsen J, Anguiano E, Banchereau J, Chaussabel D, Dalod M, Littman DR, Vivier E, Tomasello E (2009) Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin. Nat Immunol 10:75–82.  https://doi.org/10.1038/ni.1681 CrossRefPubMedGoogle Scholar
  39. 39.
    Cella M, Fuchs A, Vermi W, Facchetti F, Otero K, Lennerz JK, Doherty JM, Mills JC, Colonna M (2009) A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457:722–725.  https://doi.org/10.1038/nature07537 CrossRefPubMedGoogle Scholar
  40. 40.
    Sawa S, Lochner M, Satoh-Takayama N, Dulauroy S, Berard M, Kleinschek M, Cua D, Di Santo JP, Eberl G (2011) RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol 12:320–326.  https://doi.org/10.1038/ni.2002 CrossRefPubMedGoogle Scholar
  41. 41.
    Vonarbourg C, Mortha A, Bui VL, Hernandez PP, Kiss EA, Hoyler T, Flach M, Bengsch B, Thimme R, Holscher C, Honig M, Pannicke U, Schwarz K, Ware CF, Finke D, Diefenbach A (2010) Regulated expression of nuclear receptor RORgammat confers distinct functional fates to NK cell receptor-expressing RORgammat(+) innate lymphocytes. Immunity 33:736–751.  https://doi.org/10.1016/j.immuni.2010.10.017 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Buonocore S, Ahern PP, Uhlig HH, Ivanov II, Littman DR, Maloy KJ, Powrie F (2010) Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464:1371–1375.  https://doi.org/10.1038/nature08949 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Pearson C, Thornton EE, McKenzie B, Schaupp AL, Huskens N, Griseri T, West N, Tung S, Seddon BP, Uhlig HH, Powrie F (2016) ILC3 GM-CSF production and mobilisation orchestrate acute intestinal inflammation. elife 5:e10066.  https://doi.org/10.7554/eLife.10066 PubMedPubMedCentralGoogle Scholar
  44. 44.
    Powell N, Walker AW, Stolarczyk E, Canavan JB, Gokmen MR, Marks E, Jackson I, Hashim A, Curtis MA, Jenner RG, Howard JK, Parkhill J, MacDonald TT, Lord GM (2012) The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity 37:674–684.  https://doi.org/10.1016/j.immuni.2012.09.008 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Monticelli LA, Osborne LC, Noti M, Tran SV, Zaiss DM, Artis D (2015) IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin-EGFR interactions. Proc Natl Acad Sci U S A 112:10762–10767.  https://doi.org/10.1073/pnas.1509070112 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Rankin LC, Girard-Madoux MJ, Seillet C, Mielke LA, Kerdiles Y, Fenis A, Wieduwild E, Putoczki T, Mondot S, Lantz O, Demon D, Papenfuss AT, Smyth GK, Lamkanfi M, Carotta S, Renauld JC, Shi W, Carpentier S, Soos T, Arendt C, Ugolini S, Huntington ND, Belz GT, Vivier E (2016) Complementarity and redundancy of IL-22-producing innate lymphoid cells. Nat Immunol 17:179–186.  https://doi.org/10.1038/ni.3332 CrossRefPubMedGoogle Scholar
  47. 47.
    Vely F, Barlogis V, Vallentin B, Neven B, Piperoglou C, Ebbo M, Perchet T, Petit M, Yessaad N, Touzot F, Bruneau J, Mahlaoui N, Zucchini N, Farnarier C, Michel G, Moshous D, Blanche S, Dujardin A, Spits H, Distler JH, Ramming A, Picard C, Golub R, Fischer A, Vivier E (2016) Evidence of innate lymphoid cell redundancy in humans. Nat Immunol 17:1291–1299.  https://doi.org/10.1038/ni.3553 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Takayama T, Kamada N, Chinen H, Okamoto S, Kitazume MT, Chang J, Matuzaki Y, Suzuki S, Sugita A, Koganei K, Hisamatsu T, Kanai T, Hibi T (2010) Imbalance of NKp44(+)NKp46(−) and NKp44(−)NKp46(+) natural killer cells in the intestinal mucosa of patients with Crohn’s disease. Gastroenterology 139:882–892, 892 e881–883.  https://doi.org/10.1053/j.gastro.2010.05.040 CrossRefPubMedGoogle Scholar
  49. 49.
    Bernink JH, Peters CP, Munneke M, te Velde AA, Meijer SL, Weijer K, Hreggvidsdottir HS, Heinsbroek SE, Legrand N, Buskens CJ, Bemelman WA, Mjosberg JM, Spits H (2013) Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol 14:221–229.  https://doi.org/10.1038/ni.2534 CrossRefPubMedGoogle Scholar
  50. 50.
    Bernink JH, Krabbendam L, Germar K, de Jong E, Gronke K, Kofoed-Nielsen M, Munneke JM, Hazenberg MD, Villaudy J, Buskens CJ, Bemelman WA, Diefenbach A, Blom B, Spits H (2015) Interleukin-12 and -23 control plasticity of CD127(+) group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity 43:146–160.  https://doi.org/10.1016/j.immuni.2015.06.019 CrossRefPubMedGoogle Scholar
  51. 51.
    Geremia A, Arancibia-Carcamo CV, Fleming MP, Rust N, Singh B, Mortensen NJ, Travis SP, Powrie F (2011) IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med 208:1127–1133.  https://doi.org/10.1084/jem.20101712 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Longman RS, Diehl GE, Victorio DA, Huh JR, Galan C, Miraldi ER, Swaminath A, Bonneau R, Scherl EJ, Littman DR (2014) CX(3)CR1(+) mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J Exp Med 211:1571–1583.  https://doi.org/10.1084/jem.20140678 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Powell N, Lo JW, Biancheri P, Vossenkamper A, Pantazi E, Walker AW, Stolarczyk E, Ammoscato F, Goldberg R, Scott P, Canavan JB, Perucha E, Garrido-Mesa N, Irving PM, Sanderson JD, Hayee B, Howard JK, Parkhill J, MacDonald TT, Lord GM (2015) Interleukin 6 increases production of cytokines by colonic innate lymphoid cells in mice and patients with chronic intestinal inflammation. Gastroenterology 149:456–467e415.  https://doi.org/10.1053/j.gastro.2015.04.017 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ohne Y, Silver JS, Thompson-Snipes L, Collet MA, Blanck JP, Cantarel BL, Copenhaver AM, Humbles AA, Liu YJ (2016) IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity. Nat Immunol 17:646–655.  https://doi.org/10.1038/ni.3447 CrossRefPubMedGoogle Scholar
  55. 55.
    Lim AI, Menegatti S, Bustamante J, Le Bourhis L, Allez M, Rogge L, Casanova JL, Yssel H, Di Santo JP (2016) IL-12 drives functional plasticity of human group 2 innate lymphoid cells. J Exp Med 213:569–583.  https://doi.org/10.1084/jem.20151750 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Silver JS, Kearley J, Copenhaver AM, Sanden C, Mori M, Yu L, Pritchard GH, Berlin AA, Hunter CA, Bowler R, Erjefalt JS, Kolbeck R, Humbles AA (2016) Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs. Nat Immunol 17:626–635.  https://doi.org/10.1038/ni.3443 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Alwan W, Nestle FO (2015) Pathogenesis and treatment of psoriasis: exploiting pathophysiological pathways for precision medicine. Clin Exp Rheumatol 33:S2–S6PubMedGoogle Scholar
  58. 58.
    Hawkes JE, Chan TC, Krueger JG (2017) Psoriasis pathogenesis and the development of novel targeted immune therapies. J Allergy Clin Immunol 140:645–653.  https://doi.org/10.1016/j.jaci.2017.07.004 CrossRefPubMedGoogle Scholar
  59. 59.
    Pantelyushin S, Haak S, Ingold B, Kulig P, Heppner FL, Navarini AA, Becher B (2012) Rorgammat+ innate lymphocytes and gammadelta T cells initiate psoriasiform plaque formation in mice. J Clin Invest 122:2252–2256.  https://doi.org/10.1172/JCI61862 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Villanova F, Flutter B, Tosi I, Grys K, Sreeneebus H, Perera GK, Chapman A, Smith CH, Di Meglio P, Nestle FO (2014) Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis. J Invest Dermatol 134:984–991.  https://doi.org/10.1038/jid.2013.477 CrossRefPubMedGoogle Scholar
  61. 61.
    Teunissen MBM, Munneke JM, Bernink JH, Spuls PI, Res PCM, Te Velde A, Cheuk S, Brouwer MWD, Menting SP, Eidsmo L, Spits H, Hazenberg MD, Mjosberg J (2014) Composition of innate lymphoid cell subsets in the human skin: enrichment of NCR(+) ILC3 in lesional skin and blood of psoriasis patients. J Invest Dermatol 134:2351–2360.  https://doi.org/10.1038/jid.2014.146 CrossRefPubMedGoogle Scholar
  62. 62.
    Bruggen MC, Bauer WM, Reininger B, Clim E, Captarencu C, Steiner GE, Brunner PM, Meier B, French LE, Stingl G (2016) In situ mapping of innate lymphoid cells in human skin: evidence for remarkable differences between normal and inflamed skin. J Invest Dermatol 136:2396–2405.  https://doi.org/10.1016/j.jid.2016.07.017 CrossRefPubMedGoogle Scholar
  63. 63.
    Dyring-Andersen B, Geisler C, Agerbeck C, Lauritsen JP, Gudjonsdottir SD, Skov L, Bonefeld CM (2014) Increased number and frequency of group 3 innate lymphoid cells in nonlesional psoriatic skin. Br J Dermatol 170:609–616.  https://doi.org/10.1111/bjd.12658 CrossRefPubMedGoogle Scholar
  64. 64.
    Mora-Velandia LM, Castro-Escamilla O, Mendez AG, Aguilar-Flores C, Velazquez-Avila M, Tussie-Luna MI, Tellez-Sosa J, Maldonado-Garcia C, Jurado-Santacruz F, Ferat-Osorio E, Martinez-Barnetche J, Pelayo R, Bonifaz LC (2017) A human Lin− CD123+ CD127low population endowed with ILC features and migratory capabilities contributes to immunopathological hallmarks of psoriasis. Front Immunol 8:176.  https://doi.org/10.3389/fimmu.2017.00176 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Rak GD, Osborne LC, Siracusa MC, Kim BS, Wang K, Bayat A, Artis D, Volk SW (2016) IL-33-dependent group 2 innate lymphoid cells promote cutaneous wound healing. J Invest Dermatol 136:487–496.  https://doi.org/10.1038/JID.2015.406 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Sieper J, Poddubnyy D (2017) Axial spondyloarthritis. Lancet 390:73–84.  https://doi.org/10.1016/S0140-6736(16)31591-4 CrossRefPubMedGoogle Scholar
  67. 67.
    Cuthbert RJ, Fragkakis EM, Dunsmuir R, Li Z, Coles M, Marzo-Ortega H, Giannoudis PV, Jones E, El-Sherbiny YM, McGonagle D (2017) Brief report: group 3 innate lymphoid cells in human enthesis. Arthritis Rheumatol 69:1816–1822.  https://doi.org/10.1002/art.40150 CrossRefPubMedGoogle Scholar
  68. 68.
    Ciccia F, Guggino G, Rizzo A, Saieva L, Peralta S, Giardina A, Cannizzaro A, Sireci G, De Leo G, Alessandro R, Triolo G (2015) Type 3 innate lymphoid cells producing IL-17 and IL-22 are expanded in the gut, in the peripheral blood, synovial fluid and bone marrow of patients with ankylosing spondylitis. Ann Rheum Dis 74:1739–1747.  https://doi.org/10.1136/annrheumdis-2014-206323 CrossRefPubMedGoogle Scholar
  69. 69.
    Leijten EF, van Kempen TS, Boes M, Michels-van Amelsfort JM, Hijnen D, Hartgring SA, van Roon JA, Wenink MH, Radstake TR (2015) Brief report: enrichment of activated group 3 innate lymphoid cells in psoriatic arthritis synovial fluid. Arthritis Rheumatol 67:2673–2678.  https://doi.org/10.1002/art.39261 CrossRefPubMedGoogle Scholar
  70. 70.
    Triggianese P, Conigliaro P, Chimenti MS, Biancone L, Monteleone G, Perricone R, Monteleone I (2016) Evidence of IL-17 producing innate lymphoid cells in peripheral blood from patients with enteropathic spondyloarthritis. Clin Exp Rheumatol 34:1085–1093PubMedGoogle Scholar
  71. 71.
    Malmstrom V, Catrina AI, Klareskog L (2017) The immunopathogenesis of seropositive rheumatoid arthritis: from triggering to targeting. Nat Rev Immunol 17:60–75.  https://doi.org/10.1038/nri.2016.124 CrossRefPubMedGoogle Scholar
  72. 72.
    Rodriguez-Carrio J, Hahnlein JS, Ramwadhdoebe TH, Semmelink JF, Choi IY, van Lienden KP, Maas M, Gerlag DM, Tak PP, Geijtenbeek TB, van Baarsen LG (2017) Brief report: altered innate lymphoid cell subsets in human lymph node biopsy specimens obtained during the at-risk and earliest phases of rheumatoid arthritis. Arthritis Rheumatol 69:70–76.  https://doi.org/10.1002/art.39811 CrossRefPubMedGoogle Scholar
  73. 73.
    Ren J, Feng Z, Lv Z, Chen X, Li J (2011) Natural killer-22 cells in the synovial fluid of patients with rheumatoid arthritis are an innate source of interleukin 22 and tumor necrosis factor-alpha. J Rheumatol 38:2112–2118.  https://doi.org/10.3899/jrheum.101377 CrossRefPubMedGoogle Scholar
  74. 74.
    Koo J, Kim S, Jung WJ, Lee YE, Song GG, Kim KS, Kim MY (2013) Increased lymphocyte infiltration in rheumatoid arthritis is correlated with an increase in LTi-like cells in synovial fluid. Immune Netw 13:240–248.  https://doi.org/10.4110/in.2013.13.6.240 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Pineda MA, Rodgers DT, Al-Riyami L, Harnett W, Harnett MM (2014) ES-62 protects against collagen-induced arthritis by resetting interleukin-22 toward resolution of inflammation in the joints. Arthritis Rheumatol 66:1492–1503.  https://doi.org/10.1002/art.38392 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Rauber S, Luber M, Weber S, Maul L, Soare A, Wohlfahrt T, Lin NY, Dietel K, Bozec A, Herrmann M, Kaplan MH, Weigmann B, Zaiss MM, Fearon U, Veale DJ, Canete JD, Distler O, Rivellese F, Pitzalis C, Neurath MF, McKenzie ANJ, Wirtz S, Schett G, Distler JHW, Ramming A (2017) Resolution of inflammation by interleukin-9-producing type 2 innate lymphoid cells. Nat Med 23:938–944.  https://doi.org/10.1038/nm.4373 PubMedPubMedCentralGoogle Scholar
  77. 77.
    Turner JE, Morrison PJ, Wilhelm C, Wilson M, Ahlfors H, Renauld JC, Panzer U, Helmby H, Stockinger B (2013) IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. J Exp Med 210:2951–2965.  https://doi.org/10.1084/jem.20130071 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Biton J, Khaleghparast Athari S, Thiolat A, Santinon F, Lemeiter D, Herve R, Delavallee L, Levescot A, Roga S, Decker P, Girard JP, Herbelin A, Boissier MC, Bessis N (2016) In vivo expansion of activated Foxp3+ regulatory T cells and establishment of a type 2 immune response upon IL-33 treatment protect against experimental arthritis. J Immunol 197:1708–1719.  https://doi.org/10.4049/jimmunol.1502124 CrossRefPubMedGoogle Scholar
  79. 79.
    Braudeau C, Amouriaux K, Neel A, Herbreteau G, Salabert N, Rimbert M, Martin JC, Hemont C, Hamidou M, Josien R (2016) Persistent deficiency of circulating mucosal-associated invariant T (MAIT) cells in ANCA-associated vasculitis. J Autoimmun 70:73–79.  https://doi.org/10.1016/j.jaut.2016.03.015 CrossRefPubMedGoogle Scholar
  80. 80.
    Fazekas B, Moreno-Olivera A, Kelly Y, O'Hara P, Murray S, Kennedy A, Conlon N, Scott J, Melo AM, Hickey FB, Dooley D, O'Brien EC, Moran S, Doherty DG, Little MA (2017) Alterations in circulating lymphoid cell populations in systemic small vessel vasculitis are non-specific manifestations of renal injury. Clin Exp Immunol 191:180–188.  https://doi.org/10.1111/cei.13058 CrossRefPubMedGoogle Scholar
  81. 81.
    Asano Y (2017) Systemic sclerosis. J Dermatol 45:128–138.  https://doi.org/10.1111/1346-8138.14153 CrossRefPubMedGoogle Scholar
  82. 82.
    Roan F, Stoklasek TA, Whalen E, Molitor JA, Bluestone JA, Buckner JH, Ziegler SF (2016) CD4+ group 1 innate lymphoid cells (ILC) form a functionally distinct ILC subset that is increased in systemic sclerosis. J Immunol 196:2051–2062.  https://doi.org/10.4049/jimmunol.1501491 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Wohlfahrt T, Usherenko S, Englbrecht M, Dees C, Weber S, Beyer C, Gelse K, Distler O, Schett G, Distler JH, Ramming A (2016) Type 2 innate lymphoid cell counts are increased in patients with systemic sclerosis and correlate with the extent of fibrosis. Ann Rheum Dis 75:623–626.  https://doi.org/10.1136/annrheumdis-2015-207388 CrossRefPubMedGoogle Scholar
  84. 84.
    McHedlidze T, Waldner M, Zopf S, Walker J, Rankin AL, Schuchmann M, Voehringer D, McKenzie AN, Neurath MF, Pflanz S, Wirtz S (2013) Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 39:357–371.  https://doi.org/10.1016/j.immuni.2013.07.018 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Hams E, Armstrong ME, Barlow JL, Saunders SP, Schwartz C, Cooke G, Fahy RJ, Crotty TB, Hirani N, Flynn RJ, Voehringer D, McKenzie AN, Donnelly SC, Fallon PG (2014) IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis. Proc Natl Acad Sci U S A 111:367–372.  https://doi.org/10.1073/pnas.1315854111 CrossRefPubMedGoogle Scholar
  86. 86.
    Gaffen SL, Jain R, Garg AV, Cua DJ (2014) The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol 14:585–600.  https://doi.org/10.1038/nri3707 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Riedel JH, Becker M, Kopp K, Duster M, Brix SR, Meyer-Schwesinger C, Kluth LA, Gnirck AC, Attar M, Krohn S, Fehse B, Stahl RAK, Panzer U, Turner JE (2017) IL-33-mediated expansion of type 2 innate lymphoid cells protects from progressive glomerulosclerosis. J Am Soc Nephrol 28:2068–2080.  https://doi.org/10.1681/ASN.2016080877 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Kiss EA, Diefenbach A (2012) Role of the aryl hydrocarbon receptor in controlling maintenance and functional programs of RORgammat(+) innate lymphoid cells and intraepithelial lymphocytes. Front Immunol 3:124.  https://doi.org/10.3389/fimmu.2012.00124 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Spencer SP, Wilhelm C, Yang Q, Hall JA, Bouladoux N, Boyd A, Nutman TB, Urban JF Jr, Wang J, Ramalingam TR, Bhandoola A, Wynn TA, Belkaid Y (2014) Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science 343:432–437.  https://doi.org/10.1126/science.1247606 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.III. Medizinische KlinikUniversitätsklinikum Hamburg-EppendorfHamburgGermany

Personalised recommendations