Seminars in Immunopathology

, Volume 39, Issue 6, pp 653–667 | Cite as

Early life origin of type 1 diabetes

  • Mikael KnipEmail author
  • Kristiina Luopajärvi
  • Taina Härkönen


Type 1 diabetes (T1D) is perceived as a chronic immune-mediated disease with a subclinical prodromal period characterized by selective loss of insulin-producing beta cells in the pancreatic islets in genetically susceptible subjects. The incidence of T1D has increased manifold in most developed countries after World War II in parallel with a series of other immune-mediated diseases. T1D results from gene-environmental interactions. The appearance of disease-associated autoantibodies into the peripheral circulation is the first detectable sign of the initiation of the disease process leading to clinical T1D. The first autoantibodies may appear already before the age of 6 months and the seroconversion rate peaks during the second year of life. This implies that exogenous factors involved in the pathogenesis of T1D must be operative in early life, some of them most likely already during pregnancy. Here, we discuss putative endogenous factors that may contribute to the development of T1D during fetal and early postnatal life. Many environmental factors operative in early life have been implicated in the pathogenesis of T1D, but relatively few have been firmly confirmed.


Type 1 diabetes Environmental determinants Conception Fetal life Postnatal life Omics 


Funding information

Research that is relevant for this review is and has been supported by the following grants: Juvenile Diabetes Research Foundation International (grants 4-1998-274, 4-1999-731, 4-2001-435), European Union (grant BMH4-CT98-3314), Novo Nordisk Foundation, Academy of Finland (Centre of Excellence in Molecular Systems Immunology and Physiology Research 2012-2017, Decision No. 250114), Special Research Funds for University Hospitals in Finland, Sigrid Juselius Foundation, Finska Läkaresällskapet, and Medicinska understödsföreningen Liv och Hälsa.

Compliance with ethical standards

Conflict of interest

Mikael Knip is an advisor to Vactech Oyj and Provention Bio, Inc. The other authors declare that they have no conflict of interest.


  1. 1.
    Knip M (2002) Natural course of preclinical type 1 diabetes. Horm Res 57(Suppl. 1):6–11PubMedGoogle Scholar
  2. 2.
    Knip M, Korhonen S, Kulmala P et al (2010) Prediction of type 1 diabetes in the general population. Diabetes Care 33:1206–1212PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Knip M, Siljander H, Ilonen J, Simell O, Veijola R (2016) Role of humoral beta-cell autoimmunity in type 1 diabetes. Pediatr Diabetes 17(Suppl. S22):17–24 **This paper is a major source document for the current article PubMedCrossRefGoogle Scholar
  4. 4.
    Ziegler AG, Rewers M, Simell O et al (2013) Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 309:2473–2479PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Kimpimäki T, Kulmala P, Savola K et al (2002) Natural history of beta-cell autoimmunity in young children with increased genetic susceptibility to type 1 diabetes recruited from the general population. J Clin Endocrinol Metab 87:4572–4579PubMedCrossRefGoogle Scholar
  6. 6.
    Kukko M, Kimpimäki T, Korhonen S et al (2005) Dynamics of diabetes-associated autoantibodies in young children with human leukocyte antigen-conferred risk for type 1 diabetes recruited from the general population. J Clin Endocrinol Metab 9:2712–2717CrossRefGoogle Scholar
  7. 7.
    Siljander H, Simell S, Hekkala A et al (2009) Predictive characteristics of diabetes-associated autoantibodies among children with HLA-conferred disease susceptibility in the general population. Diabetes 58:2835–2842PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Ilonen J, Hammais A, Laine A-P et al (2013) Patterns of β-cell autoantibody appearance and genetic associations during the first years of life. Diabetes 62:3636–3640PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Krischer JP, Lynch KF, Schatz DA et al (2015) The 6 year incidence of diabetes-associated autoantibodies in genetically at-risk children: the TEDDY study. Diabetologia 58:980–987PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Barnett AH, Eff C, Leslie RDG, Pyke DA (1981) Diabetes in identical twins: a study of 200 pairs. Diabetologia 20:87–93PubMedCrossRefGoogle Scholar
  11. 11.
    Kaprio J, Tuomilehto J, Koskenvuo M et al (1992) Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia 35:1060–1067PubMedCrossRefGoogle Scholar
  12. 12.
    Patterson CC, Gyürüs C, Rosenbauer J et al (2012) Trends in childhood type 1 diabetes incidence in Europe during 1989–2008: evidence of non-uniformity over time in rates of increase. Diabetologia 55:2142–2147PubMedCrossRefGoogle Scholar
  13. 13.
    Harjutsalo V, Sund R, Knip M, Groop PH (2013) Incidence of type 1 diabetes in Finland. JAMA 310:427–428PubMedCrossRefGoogle Scholar
  14. 14.
    Knip M, Simell O (2012) Environmental triggers of type 1 diabetes. Cold Spring Harb Perspect Med 7:a007690 **This paper is a major source document for the current article Google Scholar
  15. 15.
    Oilinki T, Otonkoski T, Ilonen J, Knip M, Miettinen PJ (2012) Prevalence and characteristics of type 1 diabetes among Somali children and adolescents living in Helsinki, Finland. Pediatr Diabetes 13:176–180PubMedCrossRefGoogle Scholar
  16. 16.
    Hermann R, Knip M, Veijola R et al (2003) Temporal changes in the frequencies of HLA genotypes in patients with type 1 diabetes: indication of an increased environmental pressure? Diabetologia 46:420–425PubMedCrossRefGoogle Scholar
  17. 17.
    Gillespie KM, Bain SC, Barnett AH (2004) The rising incidence of childhood type 1 diabetes and reduced contribution of high-risk HLA haplotypes. Lancet 364:1645–1647CrossRefGoogle Scholar
  18. 18.
    Pociot F, Akolkar B, Concannon P et al (2010) Genetics of type 1 diabetes: what’s next? Diabetes 59:1561–1571PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Pociot F, Lernmark Å (2016) Genetic risk factors for type 1 diabetes. Lancet 387:2331–2339PubMedCrossRefGoogle Scholar
  20. 20.
    Pugliese A (2013) The multiple origins of type 1 diabetes. Diabet Med 30:135–146PubMedCrossRefGoogle Scholar
  21. 21.
    Herold KC, Usmani-Brown S, Ghazi T et al (2015) β cell death and dysfunction during type 1 diabetes development in at-risk individuals. J Clin Invest 125:1163–1174PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Warram JH, Krolewski AS, Gottlieb MS, Kahn CR (1984) Differences in risk of insulin-dependent diabetes in offspring of diabetic mothers and diabetic fathers. N Engl J Med 311:149–152PubMedCrossRefGoogle Scholar
  23. 23.
    Harjutsalo V, Reunanen A, Tuomilehto J (2006) Differential transmission of type 1 diabetes from diabetic fathers and mothers to their offspring. Diabetes 55:1517–1524PubMedCrossRefGoogle Scholar
  24. 24.
    Luopajärvi K, Nieminen J, Ilonen J et al (2012) Expansion of CD4+CD25+FoxP3+ regulatory T cells in infants of mothers with type 1 diabetes. Pediatr Diabetes 13:400–407PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Forrest JM, Menser MA, Burgess JA (1971) High frequency of diabetes mellitus in young adults with congenital rubella. Lancet 2:332–334PubMedCrossRefGoogle Scholar
  26. 26.
    Forrest JM, Turnbull FM, Sholler GF et al (2002) Gregg’s congenital rubella patients 60 years later. Med J Aust 177:664–667PubMedGoogle Scholar
  27. 27.
    Viskari H, Paronen J, Keskinen P et al (2003) Humoral beta-cell autoimmunity is rare in patients with the congenital rubella syndrome. Clin Exp Immunol 133:378–383PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Dahlquist GG, Ivarsson S, Lindberg B, Forsgren M (1995) Maternal enteroviral infection during pregnancy as a risk factor for childhood IDDM. A population-based case-control study. Diabetes 44:408–413PubMedCrossRefGoogle Scholar
  29. 29.
    Viskari H, Knip M, Tauriainen S et al (2012) Maternal enterovirus infection as a risk factor for type 1 diabetes in the exposed offspring. Diabetes Care 35:1328–1332PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Mustonen N, Siljander H, Peet A et al (2017) Early childhood infections precede development of beta-cell autoimmunity and type 1 diabetes in children with HLA-conferred disease risk. Pediatr Diabetes.
  31. 31.
    Kallionpää H, Laajala E, Öling V et al (2014) The standard of hygiene and immune adaptation in newborn infants. Clin Immunol 155:136–147PubMedCrossRefGoogle Scholar
  32. 32.
    Lamb MM, Myers MA, Barriga K, Zimmet PZ, Rewers M, Norris JM (2008) Maternal diet during pregnancy and islet autoimmunity in offspring. Pediatr Diabetes 9:135–141PubMedCrossRefGoogle Scholar
  33. 33.
    Virtanen SM, Uusitalo L, Kenward MG et al (2011) Maternal food consumption during pregnancy and risk of advanced beta cell autoimmunity in the offspring. Pediatr Diabetes 12:95–99PubMedCrossRefGoogle Scholar
  34. 34.
    Stene LC, Ulriksen J, Magnus P, Joner G (2000) Use of cod liver oil during pregnancy associated with lower risk of type 1 diabetes in the offspring. Diabetologia 43:1083–1092CrossRefGoogle Scholar
  35. 35.
    Sørensen IM, Joner G, Jenum PA, Eskild A, Stene LC (2012) Serum long chain n-3 fatty acids (EPA and DHA) in the pregnant mother are independent of risk of type 1 diabetes in the offspring. Diabetes Metab Res Rev 28:431–438PubMedCrossRefGoogle Scholar
  36. 36.
    Marjamäki L, Niinistö S, Kenward MG et al (2010) Maternal intake of vitamin D during pregnancy and risk of advanced beta cell autoimmunity and type 1 diabetes in offspring. Diabetologia 53:1599–1607PubMedCrossRefGoogle Scholar
  37. 37.
    Sørensen IM, Joner G, Jenum PA, Eskild A, Torjesen PA, Stene LC (2012) Maternal serum levels of 25-hydroxy-vitamin D during pregnancy and risk of type 1 diabetes in the offspring. Diabetes 61:175–178PubMedCrossRefGoogle Scholar
  38. 38.
    Miettinen ME, Reinert L, Kinnunen L et al (2012) Serum 25-hydroxyvitamin D level during early pregnancy and type 1 diabetes risk in the offspring. Diabetologia 55:1291–1294PubMedCrossRefGoogle Scholar
  39. 39.
    Cardwell CR, Stene LC, Joner G et al (2010) Birth weight and the risk of childhood-onset type 1 diabetes: a meta-analysis of observational studies using individual patient data. Diabetologia 53:641–651PubMedCrossRefGoogle Scholar
  40. 40.
    Rasmussen T, Stene LC, Samuelsen SO et al (2009) Maternal BMI before pregnancy, maternal weight gain during pregnancy, and risk of persistent positivity for multiple diabetes-associated autoantibodies in children with the high-risk HLA genotype: the MIDIA study. Diabetes Care 32:1904–1906PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Arkkola T, Kautiainen S, Takkinen HM et al (2011) Relationship of maternal weight status and weight gain during pregnancy to the development of advanced beta cell autoimmunity in the offspring: a prospective birth cohort study. Pediatr Diabetes 12:478–484PubMedCrossRefGoogle Scholar
  42. 42.
    Stene LV, Gale EAM (2013) The prenatal environment and type 1 diabetes. Diabetologia 56:1888–1897PubMedCrossRefGoogle Scholar
  43. 43.
    Cardwell CR, Stene LC, Joner G et al (2010) Maternal age at birth and childhood type 1 diabetes: a pooled analysis of 30 observational studies. Diabetes 59:486–494PubMedCrossRefGoogle Scholar
  44. 44.
    Virtanen SM, Kenward MG, Erkkola M et al (2006) Age at introduction of new foods and advanced beta-cell autoimmunity in young children with HLA-conferred susceptibility to type 1 diabetes. Diabetologia 49:1512–1521PubMedCrossRefGoogle Scholar
  45. 45.
    Cardwell CR, Stene LC, Joner G et al (2011) Birth order and childhood type 1 diabetes risk: a pooled analysis of 31 observational studies. Int J Epidemiol 40:363–374PubMedCrossRefGoogle Scholar
  46. 46.
    Cardwell CR, Stene LC, Joner G et al (2008) Caesarean section is associated with an increased risk of childhood onset type 1 diabetes: a meta-analysis of observational studies. Diabetologia 51:726–735PubMedCrossRefGoogle Scholar
  47. 47.
    Bonifacio E, Warncke K, Winkler C, Wallner M, Ziegler AG (2011) Cesarean section and interferon-induced helicase gene polymorphisms combine to increase childhood type 1 diabetesrisk. Diabetes 60:3300–3306PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Yatsunenko T, Rey FE, Manary MJ et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227PubMedPubMedCentralGoogle Scholar
  49. 49.
    Yassour M, Vatanen T, Siljander H et al (2016) Natural history of the infant gut microbiome and impact of antibiotic treatments on bacterial strain diversity and stability. Sci Transl Med 8:343RA81PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Knip M, Virtanen SM, Åkerblom HK (2010) Infant feeding and risk of type 1 diabetes. Am J Clin Nutr 91(Suppl):1506S–1513SPubMedCrossRefGoogle Scholar
  51. 51.
    Virtanen SM, Knip M (2003) Nutritional risk predictors of β cell autoimmunity and type 1 diabetes at a young age. Am J Clin Nutr 78:1053–1067PubMedGoogle Scholar
  52. 52.
    Norris JM, Barriga K, Klingensmith G et al (2003) Timing of initial cereal exposure in infancy and risk of islet autoimmunity. JAMA 290:1713–1720PubMedCrossRefGoogle Scholar
  53. 53.
    Ziegler A-G, Schmid S, Huber D, Hummel M, Bonifacio E (2003) Early infant feeding and risk of developing type 1 diabetes-associated autoantibodies. JAMA 290:1721–1728PubMedCrossRefGoogle Scholar
  54. 54.
    Kimpimäki T, Erkkola M, Korhonen S et al (2001) Short exclusive breast-feeding predisposes young children with increased genetic risk of type 1 diabetes to progressive beta-cell autoimmunity. Diabetologia 44:63–69PubMedCrossRefGoogle Scholar
  55. 55.
    Holmberg H, Wahlberg J, Vaarala O, Ludvigsson J, the ABIS studygroup (2007) Short duration of breast-feeding as a risk factor for b-cell autoantibodies in 5-year-old children from the general population. Br J Nutr 97:111–116PubMedCrossRefGoogle Scholar
  56. 56.
    Virtanen SM, Räsänne L, Aro A et al (1991) Infant feeding in Finnish children ,7 yr of age with newly diagnosed IDDM. Diabetes Care 14:415–417PubMedCrossRefGoogle Scholar
  57. 57.
    Virtanen SM, Räsänen L, Ylönen K et al (1993) Early introduction of dairy products associated with increased risk of IDDM in Finnish children. Diabetes 42:1786–1790PubMedCrossRefGoogle Scholar
  58. 58.
    Kostraba JN, Cruickshanks KJ, Lawler-Heavner J et al (1993) Early exposure to cow’s milk and solid foods in infancy, genetic predisposition, and risk of IDDM. Diabetes 42:288–295PubMedCrossRefGoogle Scholar
  59. 59.
    Wadsworth EJK, Shield JPH, Hunt LP, Baum J (1997) A case-control study of environmental factors associated with diabetes in the under 5s. Diabet Med 14:390–396PubMedCrossRefGoogle Scholar
  60. 60.
    The EURODIAB Substudy 2 Study Group (2002) Rapid early growth is associated with increased risk of childhood type 1 diabetes in various European populations. Diabetes Care 25:1755–1760CrossRefGoogle Scholar
  61. 61.
    Virtanen SM, Nevalainen J, Kronberg-Kippilä C et al (2012) Food consumption during childhood and advanced β-cell autoimmunity in young children with HLA-conferred susceptibility to type 1 diabetes: a nested case-control study. Am J Clin Nutr 95:471–478PubMedCrossRefGoogle Scholar
  62. 62.
    Stene LC, Joner G, Norwegian Childhood Diabetes Study Group (2003) Use of cod liver oil during the first year of life is associated with lower risk of childhood-onset type 1 diabetes: a large, population-based, case-control study. Am J Clin Nutr 78:1128–1134PubMedGoogle Scholar
  63. 63.
    Norris JM, Yin X, Lamb MM et al (2007) Omega-3 polyunsaturated fatty acid intake and islet autoimmunity in children at increased risk for type 1 diabetes. JAMA 298:1420–1428PubMedCrossRefGoogle Scholar
  64. 64.
    Niinistö S, Takkinen H-M, Erlund I et al (2017) Fatty acid status in infancy is associated with the risk of type 1 diabetes associated autoimmunity. Diabetologia 60:1233–1233CrossRefGoogle Scholar
  65. 65.
    Knip M, Virtanen SM, Seppä K et al (2010) Dietary intervention in infancy and later signs of beta-cell autoimmunity. N Engl J Med 363:1900–1908PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Knip M, Akerblom HK, Becker D et al (2014) Hydrolyzed infant formula and early β-cell autoimmunity—a randomized clinical trial. JAMA 311:2279–2287PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Hummel S, Pflüger M, Hummel M, Bonifacio E, Ziegler AG (2011) Primary dietary intervention study to reduce the risk of islet autoimmunity in children at increased risk for type 1 diabetes: the BABYDIETstudy. Diabetes Care 34:1301–1305PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Chase HP, Lescheck R, Rafkin-Mervis L et al (2009) Nutritional intervention to prevent (NIP) type 1 diabetes: a pilot trial. Infant Child Adolesc Nutr 1:99–107CrossRefGoogle Scholar
  69. 69.
    Ziegler A-G, Hummel M, Schenker M, Bonifacio E (1999) Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2-year analysis of the German BABYDIAB study. Diabetes 48:460–468PubMedCrossRefGoogle Scholar
  70. 70.
    Sabbah E, Savola K, Ebeling T et al (2000) Genetic, autoimmune, and clinical characteristics of childhood- and adult-onset type 1 diabetes mellitus. Diabetes Care 23:1326–1332PubMedCrossRefGoogle Scholar
  71. 71.
    Vaarala O, Knip M, Paronen J et al (1999) Cow milk formula feeding induces primary immunization to insulin in infants at genetic risk for type 1 diabetes. Diabetes 48:1389–1394PubMedCrossRefGoogle Scholar
  72. 72.
    Vaarala O, Ilonen J, Ruohtula T et al (2012) Removal of bovine insulin from cow’s milk formula and early initiation of beta-cell autoimmunity. Arch Pediatr Adolesc Med 166:608–614PubMedCrossRefGoogle Scholar
  73. 73.
    Hummel M, Bonifacio E, Naserke HE, Ziegler AG (2002) Elimination of dietary gluten does not reduce titers of type 1 diabetes-associated autoantibodies in high-risk subjects. Diabetes Care 25:1111–1116PubMedCrossRefGoogle Scholar
  74. 74.
    Pastore MR, Bazzigaluppi E, Belloni C, Arcovio C, Bonifacio E, Bosi E (2003) Six months of gluten-free diet do not influence autoantibody titers, but improve insulin secretion in subjects at high risk for type 1 diabetes. J Clin Endocrinol Metab 88:162–165PubMedCrossRefGoogle Scholar
  75. 75.
    The EURODIAB Substudy 2 Study Group (1999) Vitamin D supplement in early childhood and risk of type I (insulindependent) diabetes mellitus. Diabetologia 42:51–54CrossRefGoogle Scholar
  76. 76.
    Hyppönen E, Läärä E, Järvelin MR, Virtanen SM (2001) Intake of vitamin D and risk of type 1 diabetes: a birth cohort study. Lancet 358:1500–1504PubMedCrossRefGoogle Scholar
  77. 77.
    Mäkinen M, Mykkänen JP, Koskinen MK et al (2016) Serum 25-hydroxyvitamin D concentrations in children with genetic type 1 diabetes susceptibility progressing to autoimmunity and clinical disease. J Clin Endocrinol Metab 101:723–729PubMedCrossRefGoogle Scholar
  78. 78.
    Uusitalo U, Liu X, Yang J et al (2016) Association of early exposure of probiotics and islet autoimmunity in the TEDDY study. JAMA Pediatr 170:20–28PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Eizirik DL, Miani M, Cardozo AK (2013) Signalling danger: endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation. Diabetologia 56:234–241PubMedCrossRefGoogle Scholar
  80. 80.
    Hyppönen E, Kenward MG, Virtanen SM et al (1999) Infant feeding, early weight gain and risk of type 1 diabetes. Diabetes Care 22:1961–1965PubMedCrossRefGoogle Scholar
  81. 81.
    Hyppönen E, Virtanen SM, Kenward MG, Knip M, Åkerblom HK, the Childhood Diabetes in Finland Study Group (2000) Obesity, increased linear growth and risk of type 1 diabetes mellitus in children. Diabetes Care 23:1755–1760PubMedCrossRefGoogle Scholar
  82. 82.
    Lamb MM, Yin X, Zerbe GO et al (2009) Height growth velocity, islet autoimmunity and type 1 diabetes development: the diabetes autoimmunity study in the young. Diabetologia 52:2064–2071PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Rasmussen T, Witso E, Tapia G, Stene LC, Ronningen KS (2011) Selfreported lower respiratory tract infections and development of islet autoimmunity in children with the type 1 diabetes high-risk HLA genotype: the MIDIA study. Diabetes Metab Res Rev 27:834–837PubMedCrossRefGoogle Scholar
  84. 84.
    Beyerlein A, Wehweck F, Ziegler AG, Pflueger M (2013) Respiratory infections in early life and the development of islet autoimmunity in children at increased type 1 diabetes risk: evidence from the BABYDIET study. JAMA Pediatr 167:800–807PubMedCrossRefGoogle Scholar
  85. 85.
    Beyerlein A, Donnachie E, Jergens S, Ziegler AG (2016) Infections in early life and development of type 1 diabetes. JAMA 315:1899–1901PubMedCrossRefGoogle Scholar
  86. 86.
    Lönnrot M, Korpela K, Knip M et al (2000) Enterovirus infection as a risk factor for ß-cell autoimmunity in a prospectively observed birth cohort—the Finnish Diabetes Prediction and Prevention (DIPP) Study. Diabetes 49:1314–1318PubMedCrossRefGoogle Scholar
  87. 87.
    Oikarinen S, Martiskainen M, Tauriainen S et al (2011) EnterovirusRNA in blood is linked to the development of type 1 diabetes. Diabetes 60:276–279PubMedCrossRefGoogle Scholar
  88. 88.
    Kimpimäki T, Kupila A, Hämäläinen A-M et al (2001) The first signs of ß-cell autoimmunity appear in infancy in genetically susceptible children from the general population: the Finnish type 1 diabetes prediction and prevention study. J Clin Endocrinol Metab 86:4782–4788PubMedGoogle Scholar
  89. 89.
    Laitinen OH, Honkanen H, Tolonen O et al (2014) Coxsackievirus B1 induces beta-cell autoimmunity that portends type 1 diabetes. Diabetes 63:446–455PubMedCrossRefGoogle Scholar
  90. 90.
    Fuchtenbusch M, Irnstetter A, Jager G, Ziegler AG (2001) No evidence for an association of coxsackie virus infections during pregnancy and early childhood with development of islet autoantibodies in offspring of mothers or fathers with type 1 diabetes. J Autoimmun 17:333–340PubMedCrossRefGoogle Scholar
  91. 91.
    Graves PM, Rotbart HA, Nix WA et al (2003) Prospective study of enteroviral infections and development of β-cell autoimmunity. Diabetes autoimmunity study in the young (DAISY). Diabetes Res Clin Pract 59:51–61PubMedCrossRefGoogle Scholar
  92. 92.
    Stene LC, Oikarinen S, Hyöty H et al (2010) Enterovirus infection and progression from islet autoimmunity to type 1 diabetes: the diabetes and autoimmunity study in the young (DAISY). Diabetes 59:3174–3180PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Simonen-Tikka ML, Pflueger M, Klemola P et al (2011) Human enterovirus infections in children at increased risk for type 1 diabetes: the Babydiet study. Diabetologia 54:2995–3002PubMedCrossRefGoogle Scholar
  94. 94.
    Honkanen H, Oikarinen S, Nurminen N et al (2017) Detection of enteroviruses in stools precedes the appearance of islet autoimmunity with a delay of several months—possible evidence for slowly operating mechanisms in virus-induced autoimmunity. Diabetologia 60:424–431PubMedCrossRefGoogle Scholar
  95. 95.
    Hyöty H, Knip M (2014) Developing a vaccine for type 1 diabetes through targeting enteroviral infections. Expert Rev Vaccines 13:989–999PubMedCrossRefGoogle Scholar
  96. 96.
    Knip M, Hyöty H (2008) Environmental determinants: the role of viruses and standard of hygiene. In: Dabelea D, Klingensmith GJ (eds) Epidemiology of pediatric and adolescent diabetes. Informa Healthcare, New York, pp 63–74CrossRefGoogle Scholar
  97. 97.
    Honeyman MC, Stone NL, Harrison LC (1998) T-cell epitopes in type 1 diabetes autoantigen tyrosine phosphatase IA-2: potential for mimicry with rotavirus and other environmental agents. Mol Med 4:231–239PubMedPubMedCentralGoogle Scholar
  98. 98.
    Honeyman MC, Stone NL, Falk BA, Nepom G, Harrison LC (2010) Evidence for molecular mimicry between human T cell epitopes in rotavirus and pancreatic islet autoantigens. J Immunol 184:2204–2210PubMedCrossRefGoogle Scholar
  99. 99.
    Honeyman MC, Coulson BS, Stone NL et al (1999) Association between rotavirus infection and pancreatic islet autoimmunity in children at risk of developing type 1 diabetes. Diabetes 49:1319–1324CrossRefGoogle Scholar
  100. 100.
    Blomquist M, Juhela S, Erkkilä S et al (2002) Rotavirus infections and development of diabetes-associated autoantibodies during the first 2 years of life. Clin Exp Immunol 128:511–515CrossRefGoogle Scholar
  101. 101.
    Aagaard K, Ma J, Antony KM et al (2014) The placenta harbors a unique microbiome. Sci Transl Med 6:237ra65PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Knip M, Siljander H (2016) The role of the intestinal microbiota in type 1 diabetes mellitus. Nat Rev Endocrinol 12:154–167PubMedCrossRefGoogle Scholar
  103. 103.
    Matamoro S, Gras-Leguen C, Le Vacon F, Potel G, de La Cochetiere MF (2013) Development of intestinal microbiota in infants and its impact on health. Trends Microbiol 21:167–173CrossRefGoogle Scholar
  104. 104.
    Mackie RI, Sghir A, Gaskins HR (1999) Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 69:S1035–S1045Google Scholar
  105. 105.
    Dominguez-Bello MG, Blaser MJ, Ley RE, Knight R (2011) Development of the human gastrointestinal microbiota and insights from high-throughput sequencing. Gastroenterology 140:1713–1719PubMedCrossRefGoogle Scholar
  106. 106.
    Dominguez-Bello MG, Costello EK, Contreras M et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107:11971–11975PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Biasucci G, Benenati B, Morelli L, Bessi E, Boehm G (2008) Cesarean delivery may affect the early biodiversity of intestinal bacteria. J Nutr 138:1796S–1800SPubMedGoogle Scholar
  108. 108.
    Jakobsson HE, Abrahamsson TR, Jenmalm MC et al (2014) Decreased gut microbiota diversity, delayed Bacteroidetes colonization and reduced Th1 responses in infants delivered by caesarean section. Gut 63:559–566PubMedCrossRefGoogle Scholar
  109. 109.
    Giongo A, Mukherjee N, Gano KA et al (2011) Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 5:82–91PubMedCrossRefGoogle Scholar
  110. 110.
    Brown CT, Davis-Richardson AG, Giongo A et al (2011) Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One 6:e25792PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Kostic AD, Gevers D, Siljander H et al (2015) The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe 17:260–273PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Vatanen T, Kostic AD, d’Hennezel E et al (2016) Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165:842–853PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Kondrashova A, Reunanen A, Romanov A et al (2005) A sixfold gradient in the incidence of type 1 diabetes at the eastern border of Finland. Ann Med 37:67–72PubMedCrossRefGoogle Scholar
  114. 114.
    Kondrashova A, Seiskari T, Ilonen J, Knip M, Hyöty H (2013) The “hygiene hypothesis” and the sharp gradient in the incidence of autoimmune and allergic diseases between Russian Karelia and Finland. APMIS 121:478–493PubMedCrossRefGoogle Scholar
  115. 115.
    Davis-Richardson A, Ardissone A, Dias R et al (2014) Bacteroides dorei dominates gut microbiome prior to autoimmunity in Finnish children at high risk for type 1 diabetes. Front Microbiol 5:678PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Mikkelsen KH, Knop FK, Vilsbøll T, Frost M, Hallas J, Pottegård A (2017) Use of antibiotics in childhood and risk of Type 1 diabetes: a population-based case-control study. Diabet Med 34:272–277PubMedCrossRefGoogle Scholar
  117. 117.
    Clausen TD, Bergholt T, Bouaziz O (2016) Broad-spectrum antibiotic treatment and subsequent childhood type 1 diabetes: a nationwide Danish cohort study. PLoS One 11:e0161654PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Moulder R, Lahesmaa R (2016) Early signs of disease in type 1 diabetes. Pediatr Diabetes 17(Suppl S22):43–48PubMedCrossRefGoogle Scholar
  119. 119.
    Roadmap Epigenomics Consortium, Kundaje A, Meuleman W et al (2015) Integrative analysis of 111 reference human epigenomes. Nature 518:317–330PubMedCentralCrossRefGoogle Scholar
  120. 120.
    Orban T, Kis J, Szereday L et al (2007) Reduced CD4+ T-cell-specific gene expression in human type 1 diabetes mellitus. J Autoimmun 28:177–187PubMedCrossRefGoogle Scholar
  121. 121.
    Figueroa-Colon R, Arani RB, Goran MI, Weinsier RL (2000) Paternal body fat is a longitudinal predictor of changes in body fat in premenarcheal girls. Am J Clin Nutr 71:829–834PubMedGoogle Scholar
  122. 122.
    Penesova A, Bunt JC, Bogardus C, Krakoff J (2010) Effect of paternal diabetes on pre-diabetic phenotypes in adult offspring. Diabetes Care 33:1823–1828PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Wei Y-PPY, Yang C-RR, Zhao Z-A et al (2014) Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc Natl Acad Sci U S A 111:1873–1878PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Zhang Y, Collier F, Naselli G et al (2016) Cord blood monocyte-derived inflammatory cytokines suppress IL-2 and induce nonclassic “TH 2-type” immunity associated with development of food allergy. Sci Transl Med 8:321ra8PubMedCrossRefGoogle Scholar
  125. 125.
    Jin Y, Sharma A, Bai S et al (2014) Risk of type 1 diabetes progression in islet autoantibody-positive children can be further stratified using expression patterns of multiple genes implicated in peripheral blood lymphocyte activation and function. Diabetes 63:2506–2515PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Elo LL, Mykkanen J, Nikula T et al (2010) Early suppression of immune response pathways characterizes children with prediabetes in genome-wide gene expression profiling. J Autoimmun 35:70–76Google Scholar
  127. 127.
    Kallionpää H, Elo LL, Laajala E et al (2014) Innate immune activity is detected prior to seroconversion in children with HLA-conferred T1D susceptibility. Diabetes 63:2402–2414PubMedCrossRefGoogle Scholar
  128. 128.
    Ferreira RC, Guo H, Coulson RM et al (2014) A type I interferon transcriptional signature precedes autoimmunity in children genetically at risk for type 1 diabetes. Diabetes 63:2538–2550PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Oresic M, Simell S, Sysi-Aho M et al (2008) Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type1 diabetes. J Exp Med 205:2975–2984PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Oresic M, Gopalacharyulu P, Mykkanen J et al (2013) Cord serum lipidome in prediction of islet autoimmunity and type 1 diabetes. Diabetes 62:3268–3274PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    La Torre D, Seppanen-Laakso T, Larsson HE et al (2013) Decreased cord-blood phospholipids in young age-at onset type 1 diabetes. Diabetes 62:3951–3956PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Metz TO, Qian WJ, Jacobs JM et al (2008) Application of proteomics in the discovery of candidate protein biomarkers in a diabetes autoantibody standardization program sample subset. J Proteome Res 7:698–707PubMedCrossRefGoogle Scholar
  133. 133.
    Zhi W, Sharma A, Purohit S et al (2011) Discovery and validation of serum protein changes in type 1 diabetes patients using high throughput two dimensional liquid chromatography-mass spectrometry and immunoassays. Mol Cell Proteomics 10:M111.012203PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Zhang Q, Fillmore TL, Schepmoes AA et al (2013) Serum proteomics reveals systemic dysregulation of innate immunity in type 1 diabetes. J Exp Med 210:191–203PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Moulder R, Bhosale SD, Erkkila T et al (2015) Serum proteomes distinguish children developing type 1diabetes in a cohort with HLA-conferred susceptibility. Diabetes 64:2265–2278PubMedCrossRefGoogle Scholar
  136. 136.
    Parikka V, Näntö-Salonen K, Saarinen M et al (2012) Early seroconversion and rapidly increasing autoantibody concentrations predict prepubertal manifestation of type 1 diabetes in children at genetic risk. Diabetologia 55:1926–1936PubMedCrossRefGoogle Scholar
  137. 137.
    Phillips JE, Couper JJ, Penno MA, Harrison LC, ENDIA Study Group (2016) Type 1 diabetes: a disease of developmental origins. Pediatr Diabetes 18:417–421PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Children’s HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
  2. 2.Research Programs Unit, Diabetes and ObesityUniversity of HelsinkiHelsinkiFinland
  3. 3.Folkhälsan Research CenterHelsinkiFinland
  4. 4.Tampere Center for Child Health ResearchTampere University HospitalTampereFinland

Personalised recommendations