Seminars in Immunopathology

, Volume 39, Issue 6, pp 605–613 | Cite as

Transfer of maternal immunity and programming of the newborn immune system

  • Madeleine F. Jennewein
  • Bahaa Abu-Raya
  • Yiwei Jiang
  • Galit Alter
  • Arnaud MarchantEmail author


As placental mammals, the pregnant women and the fetus have intense and prolonged interactions during gestation. There is increasing evidence that multiple molecular as well as cellular components originating in pregnant women are transferred to the fetus. The transfer of maternal antibodies has long been recognized as a central component of newborn immunity against pathogens. More recent studies indicate that inflammatory mediators, micronutrients, microbial products and maternal cells are transferred in utero and influence the fetal immune system. Together, these multiple signals are likely to form a complex network of interactions that program the neonatal immune system and tune its homeostatic regulation. Maternal disorders, in particular infectious diseases, modify these signals and may thereby alter immunity in early life. Understanding maternal programming of the newborn immune system could provide a basis for interventions promoting child health.


Fetal immune system Pregnancy Maternal antibodies Inflammation Infectious diseases Microchimerism 



A.M. is research director at the Fund for Scientific Research, F.R.S.-FNRS, Belgium.


  1. 1.
    Simister NE (2003) Placental transport of immunoglobulin G. Vaccine 21(24):3365–3369CrossRefPubMedGoogle Scholar
  2. 2.
    Ghazal P, Dickinson P, Smith CL (2013) Early life response to infection. Curr Opin Infect Dis 26(3):213–218CrossRefPubMedGoogle Scholar
  3. 3.
    Marchant A, Sadarangani M, Garand M, Dauby N, Verhasselt V, Pereira L et al (2017) Maternal immunisation: collaborating with mother nature. Lancet Infect Dis 17(7):e197–e208CrossRefPubMedGoogle Scholar
  4. 4.
    Abu-Raya B, Edwards KM, Scheifele DW, Halperin SA (2017) Pertussis and influenza immunisation during pregnancy: a landscape review. Lancet Infect Dis 17(7):e209–e222CrossRefPubMedGoogle Scholar
  5. 5.
    Heath PT, Culley FJ, Jones CE, Kampmann B, Le Doare K, Nunes MC et al (2017) Group B streptococcus and respiratory syncytial virus immunisation during pregnancy: a landscape analysis. Lancet Infect Dis 17(7):e223–e234CrossRefPubMedGoogle Scholar
  6. 6.
    DeSesso JM, Williams AL, Ahuja A, Bowman CJ, Hurtt ME (2012) The placenta, transfer of immunoglobulins, and safety assessment of biopharmaceuticals in pregnancy. Crit Rev Toxicol 42(3):185–210CrossRefPubMedGoogle Scholar
  7. 7.
    Silverstein AM (1996) Paul Ehrlich: the founding of pediatric immunology. Cell Immunol 174(1):1–6CrossRefPubMedGoogle Scholar
  8. 8.
    Bundhoo A, Paveglio S, Rafti E, Dhongade A, Blumberg RS, Matson AP (2015 Jun) Evidence that FcRn mediates the transplacental passage of maternal IgE in the form of IgG anti-IgE/IgE immune complexes. Clin Exp Allergy J Br Soc Allergy Clin Immunol 45(6):1085–1098CrossRefGoogle Scholar
  9. 9.
    Palmeira P, Quinello C, Silveira-Lessa AL, Zago CA, Carneiro-Sampaio M (2012) IgG placental transfer in healthy and pathological pregnancies. Clin Dev Immunol 2012:985646CrossRefPubMedGoogle Scholar
  10. 10.
    van den Berg JP, Westerbeek E (2011) A. M, van der Klis FRM, Berbers G a. M, van Elburg RM. Transplacental transport of IgG antibodies to preterm infants: a review of the literature. Early Hum Dev 87(2):67–72CrossRefPubMedGoogle Scholar
  11. 11.
    Roopenian DC, Akilesh S (2007) FcRn: the neonatal fc receptor comes of age. Nat Rev Immunol 7(9):715–725CrossRefPubMedGoogle Scholar
  12. 12.
    Einarsdottir HK, Stapleton NM, Scherjon S, Andersen JT, Rispens T, van der Schoot CE et al (2014) On the perplexingly low rate of transport of IgG2 across the human placenta. PLoS One 9(9):e108319CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    van den Berg JP, Westerbeek EAM, Berbers GAM, van Gageldonk PGM, van der Klis FRM, van Elburg RM (2010) Transplacental transport of IgG antibodies specific for pertussis, diphtheria, tetanus, haemophilus influenzae type b, and Neisseria meningitidis serogroup C is lower in preterm compared with term infants. Pediatr Infect Dis J 29(9):801–805CrossRefPubMedGoogle Scholar
  14. 14.
    Jennewein MF, Alter G (2017) The Immunoregulatory roles of antibody glycosylation. Trends Immunol 38(5):358–372CrossRefPubMedGoogle Scholar
  15. 15.
    Bondt A, Rombouts Y, Selman MHJ, Hensbergen PJ, Reiding KR, Hazes JMW et al (2014) Immunoglobulin G (IgG) fab glycosylation analysis using a new mass spectrometric high-throughput profiling method reveals pregnancy-associated changes. Mol Cell Proteomics MCP 13(11):3029–3039CrossRefPubMedGoogle Scholar
  16. 16.
    Jansen BC, Bondt A, Reiding KR, Scherjon SA, Vidarsson G, Wuhrer M (2016) MALDI-TOF-MS reveals differential N-linked plasma- and IgG-glycosylation profiles between mothers and their newborns. Sci Rep 6:34001CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Einarsdottir HK, Selman MHJ, Kapur R, Scherjon S, Koeleman CAM, Deelder AM et al (2013) Comparison of the fc glycosylation of fetal and maternal immunoglobulin G. Glycoconj J 30(2):147–157CrossRefPubMedGoogle Scholar
  18. 18.
    Maltepe E, Fisher SJ (2015) Placenta: the forgotten organ. Annu Rev Cell Dev Biol 31:523–552CrossRefPubMedGoogle Scholar
  19. 19.
    Dashivets T, Thomann M, Rueger P, Knaupp A, Buchner J, Schlothauer T (2015) Multi-angle effector function analysis of human monoclonal IgG Glycovariants. PLoS One 10(12):e0143520CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Freiberger T, Ravcuková B, Grodecká L, Kurecová B, Jarkovský J, Bartonková D et al (2010) No association of FCRN promoter VNTR polymorphism with the rate of maternal-fetal IgG transfer. J Reprod Immunol 85(2):193–197CrossRefPubMedGoogle Scholar
  21. 21.
    Shields RL, Namenuk AK, Hong K, Meng YG, Rae J, Briggs J et al (2001) High resolution mapping of the binding site on human IgG1 for fc gamma RI, fc gamma RII, fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the fc gamma R. J Biol Chem 276(9):6591–6604CrossRefPubMedGoogle Scholar
  22. 22.
    Takizawa T, Anderson CL, Robinson JM (2005) A novel Fc gamma R-defined, IgG-containing organelle in placental endothelium. J Immunol 175(4):2331–2339CrossRefPubMedGoogle Scholar
  23. 23.
    Mishima T, Kurasawa G, Ishikawa G, Mori M, Kawahigashi Y, Ishikawa T et al (2007) Endothelial expression of fc gamma receptor IIb in the full-term human placenta. Placenta 28(2–3):170–174CrossRefPubMedGoogle Scholar
  24. 24.
    Van Den Herik-Oudijk IE, Westerdaal NA, Henriquez NV, Capel PJ, Van De Winkel JG (1994) Functional analysis of human Fc gamma RII (CD32) isoforms expressed in B lymphocytes. J Immunol 152(2):574–585Google Scholar
  25. 25.
    Ishikawa T, Takizawa T, Iwaki J, Mishima T, Ui-Tei K, Takeshita T et al (2015) Fc gamma receptor IIb participates in maternal IgG trafficking of human placental endothelial cells. Int J Mol Med 35(5):1273–1289CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N, Jorieux S et al (2009) Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood 113(16):3716–3725CrossRefPubMedGoogle Scholar
  27. 27.
    Mohanty S, Kim J, Ganesan LP, Phillips GS, Hua K, Jarjoura D et al (2010) IgG is transported across the mouse yolk sac independently of FcgammaRIIb. J Reprod Immunol 84(2):133–144CrossRefPubMedGoogle Scholar
  28. 28.
    Abu Raya B, Srugo I, Kessel A, Peterman M, Bader D, Peri R et al (2014) The induction of breast milk pertussis specific antibodies following gestational tetanus-diphtheria-acellular pertussis vaccination. Vaccine 32(43):5632–5637CrossRefPubMedGoogle Scholar
  29. 29.
    De Schutter S, Maertens K, Baerts L, De Meester I, Van Damme P, Leuridan E (2015) Quantification of vaccine-induced antipertussis toxin secretory IgA antibodies in breast milk: comparison of different vaccination strategies in women. Pediatr Infect Dis J 34(6):e149–e152CrossRefPubMedGoogle Scholar
  30. 30.
    Burton GJ, Hempstock J, Jauniaux E (2001) Nutrition of the human fetus during the first trimester--a review. Placenta 22(Suppl A):S70–S77CrossRefPubMedGoogle Scholar
  31. 31.
    Hurley WL, Theil PK (2011) Perspectives on immunoglobulins in colostrum and milk. Nutrients 3(4):442–474CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Pabst O, Cerovic V, Hornef M (2016) Secretory IgA in the coordination of establishment and maintenance of the microbiota. Trends Immunol 37(5):287–296CrossRefPubMedGoogle Scholar
  33. 33.
    Magri G, Comerma L, Pybus M, Sintes J, Lligé D, Segura-Garzón D et al (2017) Human Secretory IgM Emerges from Plasma Cells Clonally Related to Gut Memory B Cells and Targets Highly Diverse Commensals. Immunity 47(1):118–34.e8CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Abu-Raya B, Smolen KK, Willems F, Kollmann TR, Marchant A (2016) Transfer of maternal antimicrobial immunity to HIV-exposed uninfected newborns. Front Immunol 7:338PubMedPubMedCentralGoogle Scholar
  35. 35.
    Chau TNB, Hieu NT, Anders KL, Wolbers M, Lien LB, Hieu LTM et al (2009) Dengue virus infections and maternal antibody decay in a prospective birth cohort study of Vietnamese infants. J Infect Dis 200(12):1893–1900CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Okoko BJ, Wesumperuma LH, Ota MO, Pinder M, Banya W, Gomez SF et al (2001) The influence of placental malaria infection and maternal hypergammaglobulinemia on transplacental transfer of antibodies and IgG subclasses in a rural west African population. J Infect Dis 184(5):627–632CrossRefPubMedGoogle Scholar
  37. 37.
    Klase ZA, Khakhina S, Schneider ADB, Callahan MV, Glasspool-Malone J, Malone R (2016) Zika fetal Neuropathogenesis: etiology of a viral syndrome. PLoS Negl Trop Dis 10(8):e0004877CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sonneveld ME, Natunen S, Sainio S, Koeleman CAM, Holst S, Dekkers G et al (2016) Glycosylation pattern of anti-platelet IgG is stable during pregnancy and predicts clinical outcome in alloimmune thrombocytopenia. Br J Haematol 174(2):310–320CrossRefPubMedGoogle Scholar
  39. 39.
    Sonneveld ME, Koelewijn J, de Haas M, Admiraal J, Plomp R, Koeleman CAM et al (2017) Antigen specificity determines anti-red blood cell IgG-fc alloantibody glycosylation and thereby severity of haemolytic disease of the fetus and newborn. Br J Haematol 176(4):651–660CrossRefPubMedGoogle Scholar
  40. 40.
    Zinkernagel RM (2001) Maternal antibodies, childhood infections, and autoimmune diseases. N Engl J Med 345(18):1331–1335CrossRefPubMedGoogle Scholar
  41. 41.
    Siegrist CA (2003) Mechanisms by which maternal antibodies influence infant vaccine responses: review of hypotheses and definition of main determinants. Vaccine 21(24):3406–3412CrossRefPubMedGoogle Scholar
  42. 42.
    Niewiesk S (2014) Maternal antibodies: clinical significance, mechanism of interference with immune responses, and possible vaccination strategies. Front Immunol 5:446CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Gans HA, Arvin AM, Galinus J, Logan L, DeHovitz R, Maldonado Y (1998) Deficiency of the humoral immune response to measles vaccine in infants immunized at age 6 months. JAMA 280(6):527–532CrossRefPubMedGoogle Scholar
  44. 44.
    Nair N, Gans H, Lew-Yasukawa L, Long-Wagar AC, Arvin A, Griffin DE (2007) Age-dependent differences in IgG isotype and avidity induced by measles vaccine received during the first year of life. J Infect Dis 196(9):1339–1345CrossRefPubMedGoogle Scholar
  45. 45.
    Maertens K, Hoang TTH, Nguyen TD, Caboré RN, Duong TH, Huygen K et al (2016) The effect of maternal pertussis immunization on infant vaccine responses to a booster pertussis-containing vaccine in Vietnam. Clin Infect Dis Off Publ Infect Dis Soc Am 63(suppl 4):S197–S204CrossRefGoogle Scholar
  46. 46.
    Kim D, Huey D, Oglesbee M, Niewiesk S (2011) Insights into the regulatory mechanism controlling the inhibition of vaccine-induced seroconversion by maternal antibodies. Blood 117(23):6143–6151CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Feunou PF, Mielcarek N, Locht C (2016) Reciprocal interference of maternal and infant immunization in protection against pertussis. Vaccine 34(8):1062–1069CrossRefPubMedGoogle Scholar
  48. 48.
    Maertens K, Caboré RN, Huygen K, Vermeiren S, Hens N, Van Damme P et al (2016) Pertussis vaccination during pregnancy in Belgium: follow-up of infants until 1 month after the fourth infant pertussis vaccination at 15 months of age. Vaccine 34(31):3613–3619CrossRefPubMedGoogle Scholar
  49. 49.
    Winter K, Cherry JD, Harriman K (2017) Effectiveness of prenatal tetanus, diphtheria, and acellular pertussis vaccination on pertussis severity in infants. Clin Infect Dis 64(1):9–14CrossRefPubMedGoogle Scholar
  50. 50.
    Ross KM, Miller G, Culhane J, Grobman W, Simhan HN, Wadhwa PD et al (2016) Patterns of peripheral cytokine expression during pregnancy in two cohorts and associations with inflammatory markers in cord blood. Am J Reprod Immunol 76(5):406–414CrossRefPubMedGoogle Scholar
  51. 51.
    Burns C, Hall ST, Smith R, Blackwell C (2015) Cytokine levels in late pregnancy: are female infants better protected against inflammation? Front Immunol 6:318CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Duncombe G, Veldhuizen RAW, Gratton RJ, Han VKM, Richardson BS (2010) IL-6 and TNFalpha across the umbilical circulation in term pregnancies: relationship with labour events. Early Hum Dev 86(2):113–117CrossRefPubMedGoogle Scholar
  53. 53.
    Beloosesky R, Maravi N, Weiner Z, Khatib N, Awad N, Boles J et al (2010) Maternal lipopolysaccharide-induced inflammation during pregnancy programs impaired offspring innate immune responses. Am J Obstet Gynecol 203(2):185.e1–185.e4CrossRefGoogle Scholar
  54. 54.
    Aaltonen R, Heikkinen T, Hakala K, Laine K, Alanen A (2005) Transfer of proinflammatory cytokines across term placenta. Obstet Gynecol 106(4):802–807CrossRefPubMedGoogle Scholar
  55. 55.
    Zaretsky MV, Alexander JM, Byrd W, Bawdon RE (2004) Transfer of inflammatory cytokines across the placenta. Obstet Gynecol 103(3):546–550CrossRefPubMedGoogle Scholar
  56. 56.
    Dauby N, Goetghebuer T, Kollmann TR, Levy J, Marchant A (2012) Uninfected but not unaffected: chronic maternal infections during pregnancy, fetal immunity, and susceptibility to postnatal infections. Lancet Infect Dis 12(4):330–340CrossRefPubMedGoogle Scholar
  57. 57.
    Bunders MJ, van Hamme JL, Jansen MH, Boer K, Kootstra NA, Kuijpers TW (2014) Fetal exposure to HIV-1 alters chemokine receptor expression by CD4+T cells and increases susceptibility to HIV-1. Sci Rep 4:6690CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Ruck C, Reikie BA, Marchant A, Kollmann TR, Kakkar F (2016) Linking susceptibility to infectious diseases to immune system abnormalities among HIV-exposed uninfected infants. Front Immunol 7:310CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Hong M, Sandalova E, Low D, Gehring AJ, Fieni S, Amadei B et al (2015) Trained immunity in newborn infants of HBV-infected mothers. Nat Commun 6:6588CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Netea MG, Joosten LAB, Latz E, Mills KHG, Natoli G, Stunnenberg HG et al (2016) Trained immunity: A program of innate immune memory in health and disease. Science 352(6284):aaf1098CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Levy O, Wynn JL (2014) A prime time for trained immunity: innate immune memory in newborns and infants. Neonatology 105(2):136–141CrossRefPubMedGoogle Scholar
  62. 62.
    Marques AH, O’Connor TG, Roth C, Susser E, Bjørke-Monsen A-L (2013) The influence of maternal prenatal and early childhood nutrition and maternal prenatal stress on offspring immune system development and neurodevelopmental disorders. Front Neurosci 7:120CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    von Mutius E, Martinez FD (2016) Inconclusive results of randomized trials of prenatal vitamin D for asthma prevention in offspring: curbing the enthusiasm. JAMA 315(4):347–348CrossRefGoogle Scholar
  64. 64.
    Dunstan JA, Mori TA, Barden A, Beilin LJ, Taylor AL, Holt PG et al (2003) Maternal fish oil supplementation in pregnancy reduces interleukin-13 levels in cord blood of infants at high risk of atopy. Clin Exp Allergy J Br Soc Allergy Clin Immunol 33(4):442–448CrossRefGoogle Scholar
  65. 65.
    Prescott SL, Barden AE, Mori TA, Dunstan JA (2007) Maternal fish oil supplementation in pregnancy modifies neonatal leukotriene production by cord-blood-derived neutrophils. Clin Sci Lond Engl 1979 113(10):409–416Google Scholar
  66. 66.
    von Mutius E (2012) Maternal farm exposure/ingestion of unpasteurized cow’s milk and allergic disease. Curr Opin Gastroenterol 28(6):570–576CrossRefGoogle Scholar
  67. 67.
    Loss G, Depner M, Ulfman LH, van Neerven RJJ, Hose AJ, Genuneit J et al (2015) Consumption of unprocessed cow’s milk protects infants from common respiratory infections. J Allergy Clin Immunol 135(1):56–62CrossRefPubMedGoogle Scholar
  68. 68.
    Schaub B, Liu J, Höppler S, Schleich I, Huehn J, Olek S et al (2009) Maternal farm exposure modulates neonatal immune mechanisms through regulatory T cells. J Allergy Clin Immunol 123(4):774–82.e5CrossRefPubMedGoogle Scholar
  69. 69.
    Kinder JM, Stelzer IA, Arck PC, Way SS (2017) Immunological implications of pregnancy-induced microchimerism. Nat Rev Immunol 17(8):483–494Google Scholar
  70. 70.
    Mold JE, Michaëlsson J, Burt TD, Muench MO, Beckerman KP, Busch MP et al (2008) Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science 322(5907):1562–1565CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Kinder JM, Jiang TT, Ertelt JM, Xin L, Strong BS, Shaaban AF et al (2015) Cross-generational reproductive fitness enforced by microchimeric maternal cells. Cell 162(3):505–515CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Mold JE, Venkatasubrahmanyam S, Burt TD, Michaëlsson J, Rivera JM, Galkina SA et al (2010) Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans. Science 330(6011):1695–1699CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    McGovern N, Shin A, Low G, Low D, Duan K, Yao LJ et al (2017) Human fetal dendritic cells promote prenatal T-cell immune suppression through arginase-2. Nature 546(7660):662–666CrossRefPubMedGoogle Scholar
  74. 74.
    Malhotra I, Ouma J, Wamachi A, Kioko J, Mungai P, Omollo A et al (1997) In utero exposure to helminth and mycobacterial antigens generates cytokine responses similar to that observed in adults. J Clin Invest 99(7):1759–1766CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Guadalupe I, Mitre E, Benitez S, Chico ME, Nutman TB, Cooper PJ (2009) Evidence for in utero sensitization to Ascaris Lumbricoides in newborns of mothers with ascariasis. J Infect Dis 199(12):1846–1850CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Broen K, Brustoski K, Engelmann I, Luty AJF (2007) Placental plasmodium falciparum infection: causes and consequences of in utero sensitization to parasite antigens. Mol Biochem Parasitol 151(1):1–8CrossRefPubMedGoogle Scholar
  77. 77.
    Tena-Tomás C, Bouyou-Akotet MK, Kendjo E, Kombila M, Kremsner PG, Kun JFJ (2007) Prenatal immune responses to plasmodium falciparum erythrocyte membrane protein 1 DBL-alpha domain in Gabon. Parasitol Res 101(4):1045–1050CrossRefPubMedGoogle Scholar
  78. 78.
    Zhang X, Mozeleski B, Lemoine S, Dériaud E, Lim A, Zhivaki D et al (2014) CD4 T cells with effector memory phenotype and function develop in the sterile environment of the fetus. Sci Transl Med 6(238):238ra72CrossRefPubMedGoogle Scholar
  79. 79.
    May K, Grube M, Malhotra I, Long CA, Singh S, Mandaliya K et al (2009) Antibody-dependent transplacental transfer of malaria blood-stage antigen using a human ex vivo placental perfusion model. PLoS One 4(11):e7986CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Bal MS, Mandal NN, Das MK, Kar SK, Sarangi SS, Beuria MK (2010) Transplacental transfer of filarial antigens from Wuchereria bancrofti-infected mothers to their offspring. Parasitology 137(4):669–673CrossRefPubMedGoogle Scholar
  81. 81.
    Gill TJ, Repetti CF, Metlay LA, Rabin BS, Taylor FH, Thompson DS et al (1983) Transplacental immunization of the human fetus to tetanus by immunization of the mother. J Clin Invest 72(3):987–996CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Vanderbeeken Y, Sarfati M, Bose R, Delespesse G (1985) In utero immunization of the fetus to tetanus by maternal vaccination during pregnancy. Am J Reprod Immunol Microbiol AJRIM 8(2):39–42CrossRefPubMedGoogle Scholar
  83. 83.
    Englund JA, Mbawuike IN, Hammill H, Holleman MC, Baxter BD, Glezen WP (1993) Maternal immunization with influenza or tetanus toxoid vaccine for passive antibody protection in young infants. J Infect Dis 168(3):647–656CrossRefPubMedGoogle Scholar
  84. 84.
    Rastogi D, Wang C, Mao X, Lendor C, Rothman PB, Miller RL (2007) Antigen-specific immune responses to influenza vaccine in utero. J Clin Invest 117(6):1637–1646CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Holloway JA, Warner JO, Vance GH, Diaper ND, Warner JA, Jones CA (2000) Detection of house-dust-mite allergen in amniotic fluid and umbilical-cord blood. Lancet 356(9245):1900–1902CrossRefPubMedGoogle Scholar
  86. 86.
    Devereux G, Barker RN, Seaton A (2002) Antenatal determinants of neonatal immune responses to allergens. Clin Exp Allergy J Br Soc Allergy Clin Immunol 32(1):43–50CrossRefGoogle Scholar
  87. 87.
    Holt PG (2008) Prenatal versus postnatal priming of allergen specific immunologic memory: the debate continues. J Allergy Clin Immunol 122(4):717–718CrossRefPubMedGoogle Scholar
  88. 88.
    Mueller NT, Bakacs E, Combellick J, Grigoryan Z, Dominguez-Bello MG (2015) The infant microbiome development: mom matters. Trends Mol Med 21(2):109–117CrossRefPubMedGoogle Scholar
  89. 89.
    Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Bäckhed HK et al (2012) Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150(3):470–480CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Nuriel-Ohayon M, Neuman H, Koren O (2016) Microbial changes during pregnancy, birth, and infancy. Front Microbiol 7:1031CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Gomez-Arango LF, Barrett HL, McIntyre HD, Callaway LK, Morrison M, Nitert MD (2017) Contributions of the maternal oral and gut microbiome to placental microbial colonization in overweight and obese pregnant women. Sci Rep 7(1):2860CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Gomez de Agüero M, Ganal-Vonarburg SC, Fuhrer T, Rupp S, Uchimura Y, Li H et al (2016) The maternal microbiota drives early postnatal innate immune development. Science 351(6279):1296–1302CrossRefPubMedGoogle Scholar
  93. 93.
    Prescott SL, Wickens K, Westcott L, Jung W, Currie H, Black PN et al (2008) Supplementation with lactobacillus rhamnosus or Bifidobacterium lactis probiotics in pregnancy increases cord blood interferon-gamma and breast milk transforming growth factor-beta and immunoglobin a detection. Clin Exp Allergy J 38(10):1606–1614CrossRefGoogle Scholar
  94. 94.
    Shadid R, Haarman M, Knol J, Theis W, Beermann C, Rjosk-Dendorfer D et al (2007) Effects of galactooligosaccharide and long-chain fructooligosaccharide supplementation during pregnancy on maternal and neonatal microbiota and immunity--a randomized, double-blind, placebo-controlled study. Am J Clin Nutr 86(5):1426–1437PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Ragon Institute of MGH, MIT and HarvardCambridgeUSA
  2. 2.Vaccine Evaluation Center, BC Childrenʼs Hospital, Department of Pediatrics, Division of Infectious DiseasesUniversity of British ColumbiaVancouverCanada
  3. 3.Institute for Medical ImmunologyUniversité Libre de BruxellesCharleroiBelgium

Personalised recommendations