Seminars in Immunopathology

, Volume 39, Issue 6, pp 615–625 | Cite as

Newborn susceptibility to infection vs. disease depends on complex in vivo interactions of host and pathogen

  • Byron Brook
  • Danny Harbeson
  • Rym Ben-Othman
  • Dorothee Viemann
  • Tobias R. KollmannEmail author


The burden of newborn infectious disease has long been recognized as the highest across the entire human life span. The precise underlying cause is unfortunately still far from clear. A substantial body of data derived mostly from in vitro experimentation indicates “lower” host immune responses in early vs. adult life and is briefly summarized within this review. However, emerging data derived mostly from in vivo experimentation reveal that the newborn host also exhibits an exuberant immune and inflammatory response following infection when compared to the adult. In this context, it is important to emphasize that “infection” does not equate “infectious disease,” as for many infections it is the host response to the infection that causes disease. This simple insight readily arranges existing evidence into cause-effect relationships that explain much of the increase in clinical suffering from infection in early life. We here briefly summarize the evidence in support of this paradigm and highlight the important implications it has for efforts to ameliorate the suffering and dying from infection in early life.


Funding information

This research was supported by a Michael Smith Foundation for Health Research Career Investigator Award to T.R.K. This work was supported by grants from the Appenrodt Foundation, the German Research Foundation (VI 538/6-1), and the Volkswagen Foundation (Az 90005) to DV.


  1. 1.
    Scully JL (2004) What is a disease? EMBO Rep 5:650–653CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Soares MP, Teixeira L, Moita LF (2017) Disease tolerance and immunity in host protection against infection. Nature reviews 17:83–96PubMedGoogle Scholar
  3. 3.
    Liu L et al (2012) Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 379:2151–2161CrossRefPubMedGoogle Scholar
  4. 4.
    Shane AL, Sanchez PJ, Stoll BJ (2017) Neonatal sepsis. LancetGoogle Scholar
  5. 5.
    Wynn JL (2016) Defining neonatal sepsis. Curr Opin Pediatr 28:135–140CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cantey JB, Wozniak PS, Sanchez PJ (2015) Prospective surveillance of antibiotic use in the neonatal intensive care unit: results from the SCOUT study. Pediatr Infect Dis J 34:267–272CrossRefPubMedGoogle Scholar
  7. 7.
    Hornik CP et al (2012) Use of the complete blood cell count in early-onset neonatal sepsis. Pediatr Infect Dis J 31:799–802. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kollmann TR, Kampmann B, Mazmanian SK, Marchant A, Levy O (2017) Protecting the newborn and young infant from infectious diseases: lessons from immune ontogeny. Immunity 46:350–363CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang X, Zhivaki D, Lo-Man R (2017) Unique aspects of the perinatal immune system. Nature reviewsGoogle Scholar
  10. 10.
    Ulas T et al (2017) S100-alarmin-induced innate immune programming protects newborn infants from sepsis. Nat Immunol 18:622–632CrossRefPubMedGoogle Scholar
  11. 11.
    Wynn JL, Neu J, Moldawer LL, Levy O (2009) Potential of immunomodulatory agents for prevention and treatment of neonatal sepsis. J Perinatol: official journal of the California Perinatal Association 29:79–88CrossRefGoogle Scholar
  12. 12.
    Marshall JC (2014) Why have clinical trials in sepsis failed? Trends Mol Med 20:195–203CrossRefPubMedGoogle Scholar
  13. 13.
    Dictionary, Vol. 2017 (2017)Google Scholar
  14. 14.
    Lewis DB et al (2006) Newborn immunology: relevance to the clinician. Current Problems in Pediatric and Adolescent Health Care 36:189–204CrossRefPubMedGoogle Scholar
  15. 15.
    Basha S, Surendran N, Pichichero M (2014) Immune responses in neonates. Expert Rev Clin Immunol 10:1171–1184CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang G et al (2010) “Default” generation of neonatal regulatory T cells. J Immunol 185:71–78CrossRefPubMedGoogle Scholar
  17. 17.
    Rueda CM et al (2015) Neonatal regulatory T cells have reduced capacity to suppress dendritic cell function. Eur J Immunol 45:2582–2592CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Echeverry A, Saijo S, Schesser K, Adkins B (2010) Yersinia enterocolitica promotes robust mucosal inflammatory T cell immunity in murine neonates. Infect Immun 78:3595–3608CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Evans IA, Jones CA (2005) HSV induces an early primary Th1 CD4 T cell response in neonatal mice, but reduced CTL activity at the time of the peak adult response. Eur J Immunol 35:1454–1462CrossRefPubMedGoogle Scholar
  20. 20.
    Adkins B, Jones M, Bu Y, Levy RB (2004) Neonatal tolerance revisited again: specific CTL priming in mouse neonates exposed to small numbers of semi- or fully allogeneic spleen cells. Eur J Immunol 34:1901–1909CrossRefPubMedGoogle Scholar
  21. 21.
    Huygens A et al (2015) Functional exhaustion limits CD4+ and CD8+ T cell responses to congenital cytomegalovirus infection. J Infect Dis 212:484–494. CrossRefPubMedGoogle Scholar
  22. 22.
    Mascart F et al (2003) Bordetella pertussis infection in 2-month-old infants promotes type 1 T cell responses. J Immunol 170:1504–1509CrossRefPubMedGoogle Scholar
  23. 23.
    Marchant A et al (2003) Mature CD8(+) T lymphocyte response to viral infection during fetal life. J Clin Invest 111:1747–1755CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ota MO et al (2004) Hepatitis B immunisation induces higher antibody and memory Th2 responses in new-borns than in adults. Vaccine 22:511–519CrossRefPubMedGoogle Scholar
  25. 25.
    Siegrist CA, Aspinall R (2009) B cell responses to vaccination at the extremes of age. Nature reviews 9:185–194PubMedGoogle Scholar
  26. 26.
    Halsey N, Galazka A (1985) The efficacy of DPT and oral poliomyelitis immunization schedules initiated from birth to 12 weeks of age. Bull World Health Organ 63:1151–1169PubMedPubMedCentralGoogle Scholar
  27. 27.
    Rodwell RL, Taylor KM, Tudehope DI, Gray PH (1993) Hematologic scoring system in early diagnosis of sepsis in neutropenic newborns. Pediatr Infect Dis J 12:372–376CrossRefPubMedGoogle Scholar
  28. 28.
    Engle WA, McGuire WA, Schreiner RL, Yu PL (1988) Neutrophil storage pool depletion in neonates with sepsis and neutropenia. J Pediatr 113:747–749CrossRefPubMedGoogle Scholar
  29. 29.
    Cuenca AG et al (2015) Delayed emergency myelopoiesis following polymicrobial sepsis in neonates. Innate Immun 21:386–391. CrossRefPubMedGoogle Scholar
  30. 30.
    Gentile LF et al (2015) Improved emergency myelopoiesis and survival in neonatal sepsis by caspase-1/11 ablation. Immunology 145:300–311. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Schelonka RL, Yoder BA, desJardins SE, Hall RB, Butler J (1994) Peripheral leukocyte count and leukocyte indexes in healthy newborn term infants. J Pediatr 125:603–606CrossRefPubMedGoogle Scholar
  32. 32.
    Carr R (2000) Neutrophil production and function in newborn infants. Br J Haematol 110:18–28CrossRefPubMedGoogle Scholar
  33. 33.
    Levy O et al (1999) Impaired innate immunity in the newborn: newborn neutrophils are deficient in bactericidal/permeability-increasing protein. Pediatrics 104:1327–1333CrossRefPubMedGoogle Scholar
  34. 34.
    Prosser A et al (2013) Phagocytosis of neonatal pathogens by peripheral blood neutrophils and monocytes from newborn preterm and term infants. Pediatr Res 74:503–510CrossRefPubMedGoogle Scholar
  35. 35.
    Yost CC et al (2009) Impaired neutrophil extracellular trap (NET) formation: a novel innate immune deficiency of human neonates. Blood 113:6419–6427CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Byrd AS et al (2016) NETosis in neonates: evidence of a reactive oxygen species-independent pathway in response to fungal challenge. J Infect Dis 213:634–639CrossRefPubMedGoogle Scholar
  37. 37.
    Hallwirth U, Pomberger G, Pollak A, Roth E, Spittler A (2004) Monocyte switch in neonates: high phagocytic capacity and low HLA-DR expression in VLBWI are inverted during gestational aging. Pediatr Allergy Immunol 15:513–516CrossRefPubMedGoogle Scholar
  38. 38.
    Filias A et al (2011) Phagocytic ability of neutrophils and monocytes in neonates. BMC Pediatr 11:29CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Marodi L et al (1994) Candidacidal mechanisms in the human neonate. Impaired IFN-gamma activation of macrophages in newborn infants. J Immunol 153:5643–5649PubMedGoogle Scholar
  40. 40.
    Gille C, Spring B, Tewes L, Poets CF, Orlikowsky T (2006) A new method to quantify phagocytosis and intracellular degradation using green fluorescent protein-labeled Escherichia coli: comparison of cord blood macrophages and peripheral blood macrophages of healthy adults. Cytometry A 69:152–154CrossRefPubMedGoogle Scholar
  41. 41.
    Velilla PA, Rugeles MT, Chougnet CA (2006) Defective antigen-presenting cell function in human neonates. Clin Immunol 121:251–259CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Klein RB et al (1977) Decreased mononuclear and polymorphonuclear chemotaxis in human newborns, infants, and young children. Pediatrics 60:467–472PubMedGoogle Scholar
  43. 43.
    Canaday DH et al (2006) Class II MHC antigen presentation defect in neonatal monocytes is not correlated with decreased MHC-II expression. Cell Immunol 243:96–106CrossRefPubMedGoogle Scholar
  44. 44.
    Chheda S, Palkowetz KH, Garofalo R, Rassin DK, Goldman AS (1996) Decreased interleukin-10 production by neonatal monocytes and T cells: relationship to decreased production and expression of tumor necrosis factor-alpha and its receptors. Pediatr Res 40:475–483CrossRefPubMedGoogle Scholar
  45. 45.
    Kollmann TR et al (2009) Neonatal innate TLR-mediated responses are distinct from those of adults. J Immunol 183:7150–7160CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Mathias B et al (2017) LPS stimulation of cord blood reveals a newborn-specific neutrophil transcriptomic response and cytokine production. Shock 47:606–614CrossRefPubMedGoogle Scholar
  47. 47.
    Wynn JL et al (2008) Defective innate immunity predisposes murine neonates to poor sepsis outcome but is reversed by TLR agonists. Blood 112:1750–1758CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kollmann TR, Levy O, Montgomery RR, Goriely S (2012) Innate immune function by Toll-like receptors: distinct responses in newborns and the elderly. Immunity 37:771–783CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Corbett NP et al (2010) Ontogeny of Toll-like receptor mediated cytokine responses of human blood mononuclear cells. PLoS One 5:e15041CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Angelone DF et al (2006) Innate immunity of the human newborn is polarized toward a high ratio of IL-6/TNF-α production in vitro and in vivo. Pediatr Res 60:205–209CrossRefPubMedGoogle Scholar
  51. 51.
    Wong OH, Huang F-P, Chiang AKS (2005) Differential responses of cord and adult blood-derived dendritic cells to dying cells. Immunology 116:13–20CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Della Chiesa M et al (2014) Human NK cell response to pathogens. Semin Immunol 26:152–160CrossRefPubMedGoogle Scholar
  53. 53.
    Lee YC, Lin SJ (2013) Neonatal natural killer cell function: relevance to antiviral immune defense. Clinical & Developmental Immunology 2013:427696CrossRefGoogle Scholar
  54. 54.
    Guilmot A, Hermann E, Braud VM, Carlier Y, Truyens C (2011) Natural killer cell responses to infections in early life. Journal of Innate Immunity 3:280–288CrossRefPubMedGoogle Scholar
  55. 55.
    D'Andrea A et al (2000) Neonatal invariant Valpha24+ NKT lymphocytes are activated memory cells. Eur J Immunol 30:1544–1550CrossRefPubMedGoogle Scholar
  56. 56.
    Yagupsky P, Nolte FS (1990) Quantitative aspects of septicemia. Clin Microbiol Rev 3:269–279CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Iwasaki A, Medzhitov R (2015) Control of adaptive immunity by the innate immune system. Nat Immunol 16:343–353. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Medzhitov R, Schneider DS, Soares MP (2012) Disease tolerance as a defense strategy. Science 335:936–941CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Zhao J et al (2008) Hyper innate responses in neonates lead to increased morbidity and mortality after infection. Proc Natl Acad Sci U S A 105:7528–7533CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Cuenca AG et al (2015) TRIF-dependent innate immune activation is critical for survival to neonatal gram-negative sepsis. J Immunol 194:1169–1177. CrossRefPubMedGoogle Scholar
  61. 61.
    Sugitharini V, Prema A, Berla Thangam E (2013) Inflammatory mediators of systemic inflammation in neonatal sepsis. Inflammation Research: Official Journal of the European Histamine Research Society 62:1025–1034CrossRefGoogle Scholar
  62. 62.
    Lines JL, Hoskins S, Hollifield M, Cauley LS, Garvy BA (2010) The migration of T cells in response to influenza virus is altered in neonatal mice. J Immunol 185:2980–2988CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Dupont A et al (2016) Age-dependent susceptibility to enteropathogenic Escherichia coli (EPEC) infection in mice. PLoS Pathog 12:e1005616CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Byun H-J et al (2007) An evaluation of the neonatal immune system using a Listeria infection model. Neonatology 92:83–90CrossRefPubMedGoogle Scholar
  65. 65.
    Kronforst KD et al (2012) A neonatal model of intravenous Staphylococcus epidermidis infection in mice < 24 h old enables characterization of early innate immune responses. PLoS One 7:e43897CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Black A, Bhaumik S, Kirkman RL, Weaver CT, Randolph DA (2012) Developmental regulation of Th17-cell capacity in human neonates. Eur J Immunol 42:311–319CrossRefPubMedGoogle Scholar
  67. 67.
    Seok J et al (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S AGoogle Scholar
  68. 68.
    Rittirsch D, Flierl MA, Ward PA (2008) Harmful molecular mechanisms in sepsis. Nature reviews 8:776–787PubMedPubMedCentralGoogle Scholar
  69. 69.
    Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81:1–5CrossRefPubMedGoogle Scholar
  70. 70.
    Vogl T et al (2007) Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13:1042–1049CrossRefPubMedGoogle Scholar
  71. 71.
    Vogl T, Gharibyan AL, Morozova-Roche LA (2012) Pro-inflammatory S100A8 and S100A9 proteins: self-assembly into multifunctional native and amyloid complexes. Int J Mol Sci 13:2893–2917CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Foell D, Frosch M, Sorg C, Roth J (2004) Phagocyte-specific calcium-binding S100 proteins as clinical laboratory markers of inflammation. Clinica chimica acta; international journal of clinical chemistry 344:37–51CrossRefPubMedGoogle Scholar
  73. 73.
    Viemann D et al (2005) Myeloid-related proteins 8 and 14 induce a specific inflammatory response in human microvascular endothelial cells. Blood 105:2955–2962CrossRefPubMedGoogle Scholar
  74. 74.
    Foell D, Wittkowski H, Vogl T, Roth J (2007) S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J Leukoc Biol 81:28–37CrossRefPubMedGoogle Scholar
  75. 75.
    Foell D, Wittkowski H, Roth J (2009) Monitoring disease activity by stool analyses: from occult blood to molecular markers of intestinal inflammation and damage. Gut 58:859–868CrossRefPubMedGoogle Scholar
  76. 76.
    Austermann J et al (2014) Alarmins MRP8 and MRP14 induce stress tolerance in phagocytes under sterile inflammatory conditions. Cell Rep 9:2112–2123CrossRefPubMedGoogle Scholar
  77. 77.
    West MA, Heagy W (2002) Endotoxin tolerance: a review. Crit Care Med 30:S64–S73CrossRefGoogle Scholar
  78. 78.
    Biswas SK, Lopez-Collazo E (2009) Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol 30:475–487CrossRefPubMedGoogle Scholar
  79. 79.
    Gomez-Lopez N, StLouis D, Lehr MA, Sanchez-Rodriguez EN, Arenas-Hernandez M (2014) Immune cells in term and preterm labor. Cellular & Molecular Immunology 11:571–581CrossRefGoogle Scholar
  80. 80.
    Sharma AA, Jen R, Butler A, Lavoie PM (2012) The developing human preterm neonatal immune system: a case for more research in this area. Clin Immunol 145:61–68. CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Heinemann AS et al (2017) In neonates S100A8/S100A9 alarmins prevent the expansion of a specific inflammatory monocyte population promoting septic shock. FASEB J 31:1153–1164CrossRefPubMedGoogle Scholar
  82. 82.
    Yamamoto M et al (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301:640–643CrossRefPubMedGoogle Scholar
  83. 83.
    Weighardt H et al (2006) Type I IFN modulates host defense and late hyperinflammation in septic peritonitis. J Immunol 177:5623–5630CrossRefPubMedGoogle Scholar
  84. 84.
    Kanagavelu S et al (2015) TIR domain-containing adapter-inducing beta interferon (TRIF) mediates immunological memory against bacterial pathogens. Infect Immun 83:4404–4415CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Kolb JP, Casella CR, SenGupta S, Chilton PM, Mitchell TC (2014) Type I interferon signaling contributes to the bias that toll-like receptor 4 exhibits for signaling mediated by the adaptor protein TRIF. Sci Signal 7:ra108CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Wynn JL et al (2015) Postnatal age is a critical determinant of the neonatal host response to sepsis. Molecular Medicine (Cambridge, Mass) 21:496–504Google Scholar
  87. 87.
    Vogl T, Leukert N, Barczyk K, Strupat K, Roth J (2006) Biophysical characterization of S100A8 and S100A9 in the absence and presence of bivalent cations. Biochim Biophys Acta 1763:1298–1306CrossRefPubMedGoogle Scholar
  88. 88.
    Austermann J, Zenker S, Roth J (2017) S100-alarmins: potential therapeutic targets for arthritis. Expert Opin Ther Targets 21:739–751CrossRefPubMedGoogle Scholar
  89. 89.
    Tanimura N et al (2014) The attenuated inflammation of MPL is due to the lack of CD14-dependent tight dimerization of the TLR4/MD2 complex at the plasma membrane. Int Immunol 26:307–314CrossRefPubMedGoogle Scholar
  90. 90.
    Cuenca, A.G. et al. Critical role for CXC ligand 10/CXC receptor 3 signaling in the murine neonatal response to sepsis. Infect Immun. 79, 2746–2754. doi: (2011)
  91. 91.
    Amenyogbe N, Kollmann TR, Ben-Othman R (2017) Early-life host-microbiome interphase: the key frontier for immune development. Frontiers in pediatrics 5:111CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Gensollen T, Iyer SS, Kasper DL, Blumberg RS (2016) How colonization by microbiota in early life shapes the immune system. Science 352:539–544CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Belkaid Y, Harrison OJ (2017) Homeostatic immunity and the microbiota. Immunity 46:562–576CrossRefPubMedGoogle Scholar
  94. 94.
    Strunk T, Kollmann T, Patole S (2015) Probiotics to prevent early-life infection. Lancet Infect Dis 15:378–379. CrossRefPubMedGoogle Scholar
  95. 95.
    Underwood MA (2017) Impact of probiotics on necrotizing enterocolitis. Semin Perinatol 41:41–51CrossRefPubMedGoogle Scholar
  96. 96.
    Panigrahi P et al (2017) A randomized synbiotic trial to prevent sepsis among infants in rural India. NatureGoogle Scholar
  97. 97.
    Neu J, Walker WA (2011) Necrotizing enterocolitis. N Engl J Med 364:255–264CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Nino DF, Sodhi CP, Hackam DJ (2016) Necrotizing enterocolitis: new insights into pathogenesis and mechanisms. Nat Rev Gastroenterol Hepatol 13:590–600CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Adkins B, Leclerc C, Marshall-Clarke S (2004) Neonatal adaptive immunity comes of age. Nature Reviews 4:553–564PubMedGoogle Scholar
  100. 100.
    Gentile LF et al (2014) Protective immunity and defects in the neonatal and elderly immune response to sepsis. J Immunol 192:3156-3165. CrossRefPubMedCentralGoogle Scholar
  101. 101.
    Levy O et al (2006) The adenosine system selectively inhibits TLR-mediated TNF-alpha production in the human newborn. J Immunol 177:1956–1966CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Lee S et al (2013) Genetic determinants for cadmium and arsenic resistance among Listeria monocytogenes serotype 4b isolates from sporadic human listeriosis patients. Appl Environ Microbiol 79:2471–2476CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Byron Brook
    • 1
  • Danny Harbeson
    • 1
  • Rym Ben-Othman
    • 3
  • Dorothee Viemann
    • 2
  • Tobias R. Kollmann
    • 1
    • 3
    Email author
  1. 1.Department of Experimental MedicineUniversity of British ColumbiaVancouverCanada
  2. 2.Department of Pediatric Pneumology, Allergology and NeonatologyHannover Medical SchoolHannoverGermany
  3. 3.Department of Pediatrics, Division of Infectious DiseasesUniversity of British ColumbiaVancouverCanada

Personalised recommendations