Skip to main content

Advertisement

Log in

TRP channels and traffic-related environmental pollution-induced pulmonary disease

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Environmental pollutant exposures are major risk factors for adverse health outcomes, with increased morbidity and mortality in humans. Diesel exhaust (DE) is one of the major harmful components of traffic-related air pollution. Exposure to DE affects several physiological systems, including the airways, and pulmonary diseases are increased in highly populated urban areas. Hence, there are urgent needs to (1) create newer and lesser polluting fuels, (2) improve exhaust aftertreatments and reduce emissions, and (3) understand mechanisms of actions for toxic effects of both conventional and cleaner diesel fuels on the lungs. These steps could aid the development of diagnostics and interventions to prevent the negative impact of traffic-related air pollution on the pulmonary system. Exhaust from conventional, and to a lesser extent, clean fuels, contains particulate matter (PM) and more than 400 additional chemical constituents. The major toxic constituents are nitrogen oxides (NOx) and polycyclic aromatic hydrocarbons (PAHs). PM and PAHs could potentially act via transient receptor potential (TRP) channels. In this review, we will first discuss the associations between DE from conventional as well as clean fuel technologies and acute and chronic airway inflammation. We will then review possible activation and/or potentiation of TRP vanilloid type 1 (TRPV1) and ankyrin 1 (TRPA1) channels by PM and PAHs. Finally, we will discuss and summarize recent findings on the mechanisms whereby TRPs could control the link between DE and airway inflammation, which is a primary determinant leading to pulmonary disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mar TF, Koenig JQ, Primomo J (2010) Associations between asthma emergency visits and particulate matter sources, including diesel emissions from stationary generators in Tacoma, Washington. Inhal Toxicol 22:445–448

    Article  CAS  PubMed  Google Scholar 

  2. Ostro B, Roth L, Malig B, Marty M (2009) The effects of fine particle components on respiratory hospital admissions in children. Environ Health Perspect 117:475–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Patel MM, Chillrud SN, Correa JC, Hazi Y, Feinberg M, Deepti KC, Prakash S, Ross JM, Levy D, Kinney PL (2010) Traffic-related particulate matter and acute respiratory symptoms among New York City area adolescents. Environ Health Perspect 118:1338–1343

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ghio AJ, Kim C, Devlin RB (2000) Concentrated ambient air particles induce mild pulmonary inflammation in healthy human volunteers. Am J Respir Crit Care Med 162:981–988

    Article  CAS  PubMed  Google Scholar 

  5. Devouassoux G, Saxon A, Metcalfe DD, Prussin C, Colomb MG, Brambilla C, Diaz-Sanchez D (2002) Chemical constituents of diesel exhaust particles induce IL-4 production and histamine release by human basophils. J Allergy Clin Immunol 109:847–853

    Article  CAS  PubMed  Google Scholar 

  6. Diaz-Sanchez D (1997) The role of diesel exhaust particles and their associated polyaromatic hydrocarbons in the induction of allergic airway disease. Allergy 52:52–56

    Article  CAS  PubMed  Google Scholar 

  7. Dunmore RE, Hopkins JR, Lidster RT, Lee JD, Evans MJ, Rickard AR, Lewis AC, Hamilton JF (2015) Diesel-related hydrocarbons can dominate gas phase reactive carbon in megacities. Atmos Chem Phys 15:9983–9996

    Article  CAS  Google Scholar 

  8. Nel AE, Diaz-Sanchez D, Li N (2001) The role of particulate pollutants in pulmonary inflammation and asthma: evidence for the involvement of organic chemicals and oxidative stress. Curr Opin Pulm Med 7:20–26

    Article  CAS  PubMed  Google Scholar 

  9. Takano H, Ichinose T, Miyabara Y, Shibuya T, Lim HB, Yoshikawa T, Sagai M (1998) Inhalation of diesel exhaust enhances allergen-related eosinophil recruitment and airway hyperresponsiveness in mice. Toxicol Appl Pharmacol 150:328–337

    Article  CAS  PubMed  Google Scholar 

  10. Stevens T, Cho SH, Linak WP, Gilmour MI (2009) Differential potentiation of allergic lung disease in mice exposed to chemically distinct diesel samples. Toxicol Sci 107:522–534

    Article  CAS  PubMed  Google Scholar 

  11. Behndig AF, Larsson N, Brown JL, Stenfors N, Helleday R, Duggan ST, Dove RE, Wilson SJ, Sandstrom T, Kelly FJ, Mudway IS, Blomberg A (2011) Proinflammatory doses of diesel exhaust in healthy subjects fail to elicit equivalent or augmented airway inflammation in subjects with asthma. Thorax 66:12–19

    Article  PubMed  Google Scholar 

  12. Ghio AJ, Smith CB, Madden MC (2012) Diesel exhaust particles and airway inflammation. Curr Opin Pulm Med 18:144–150

    Article  CAS  PubMed  Google Scholar 

  13. Nightingale JA, Maggs R, Cullinan P, Donnelly LE, Rogers DF, Kinnersley R, Chung KF, Barnes PJ, Ashmore M, Newman-Taylor A (2000) Airway inflammation after controlled exposure to diesel exhaust particulates. Am J Respir Crit Care Med 162:161–166

    Article  CAS  PubMed  Google Scholar 

  14. Bayram H, Devalia JL, Khair OA, Abdelaziz MM, Sapsford RJ, Sagai M, Davies RJ (1998) Comparison of ciliary activity and inflammatory mediator release from bronchial epithelial cells of nonatopic nonasthmatic subjects and atopic asthmatic patients and the effect of diesel exhaust particles in vitro. J Allergy Clin Immunol 102:771–782

    Article  CAS  PubMed  Google Scholar 

  15. Diaz-Sanchez D, Jyrala M, Ng D, Nel A, Saxon A (2000) In vivo nasal challenge with diesel exhaust particles enhances expression of the CC chemokines rantes, MIP-1alpha, and MCP-3 in humans. Clin Immunol 97:140–145

    Article  CAS  PubMed  Google Scholar 

  16. Diaz-Sanchez D, Proietti L, Polosa R (2003) Diesel fumes and the rising prevalence of atopy: an urban legend? Curr Allergy Asthma Rep 3:146–152

    Article  PubMed  Google Scholar 

  17. Diaz-Sanchez D, Tsien A, Casillas A, Dotson AR, Saxon A (1996) Enhanced nasal cytokine production in human beings after in vivo challenge with diesel exhaust particles. J Allergy Clin Immunol 98:114–123

    Article  CAS  PubMed  Google Scholar 

  18. Kobayashi T (2000) Exposure to diesel exhaust aggravates nasal allergic reaction in guinea pigs. Am J Respir Crit Care Med 162:352–356

    Article  CAS  PubMed  Google Scholar 

  19. Pourazar J, Frew AJ, Blomberg A, Helleday R, Kelly FJ, Wilson S, Sandstrom T (2004) Diesel exhaust exposure enhances the expression of IL-13 in the bronchial epithelium of healthy subjects. Respir Med 98:821–825

    Article  PubMed  Google Scholar 

  20. Agopyan N, Head J, Yu S, Simon SA (2004) TRPV1 receptors mediate particulate matter-induced apoptosis. Am J Physiol Lung Cell Mol Physiol 286:L563–L572

    Article  CAS  PubMed  Google Scholar 

  21. Agopyan N, Bhatti T, Yu S, Simon SA (2003) Vanilloid receptor activation by 2- and 10-microm particles induces responses leading to apoptosis in human airway epithelial cells. Toxicol Appl Pharmacol 192:21–35

    Article  CAS  PubMed  Google Scholar 

  22. Veronesi B, Oortgiesen M, Roy J, Carter JD, Simon SA, Gavett SH (2000) Vanilloid (capsaicin) receptors influence inflammatory sensitivity in response to particulate matter. Toxicol Appl Pharmacol 169:66–76

    Article  CAS  PubMed  Google Scholar 

  23. Deering-Rice CE, Romero EG, Shapiro D, Hughen RW, Light AR, Yost GS, Veranth JM, Reilly CA (2011) Electrophilic components of diesel exhaust particles (DEP) activate transient receptor potential ankyrin-1 (TRPA1): a probable mechanism of acute pulmonary toxicity for DEP. Chem Res Toxicol 24:950–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ibarra Y, Blair NT (2012) Benzoquinone reveals a cysteine-dependent desensitization mechanism of TRPA1. Mol Pharmacol 83:1120–1132

    Article  Google Scholar 

  25. Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2:596–607

    Article  CAS  PubMed  Google Scholar 

  26. Hadley SH, Bahia PK, Taylor-Clark TE (2014) Sensory nerve terminal mitochondrial dysfunction induces hyperexcitability in airway nociceptors via protein kinase C. Mol Pharmacol 85:839–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tominaga M (2007) The role of TRP channels in thermosensation. In: Liedtke WB, Heller S (eds) TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades. CRC Press/Taylor & Francis, Boca Raton, Florida; Chapter 20, Frontiers in Neuroscience

  28. Gregus AM, Doolen S, Dumlao DS, Buczynski MW, Takasusuki T, Fitzsimmons BL, Hua XY, Taylor BK, Dennis EA, Yaksh TL (2012) Spinal 12-lipoxygenase-derived hepoxilin A3 contributes to inflammatory hyperalgesia via activation of TRPV1 and TRPA1 receptors. Proc Natl Acad Sci U S A 109:6721–6726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Patwardhan AM, Scotland PE, Akopian AN, Hargreaves KM (2009) Activation of TRPV1 in the spinal cord by oxidized linoleic acid metabolites contributes to inflammatory hyperalgesia. Proc Natl Acad Sci U S A 106:18820–18824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V, Julius D, Hogestatt ED (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:452–457

    Article  CAS  PubMed  Google Scholar 

  31. Patwardhan AM, Jeske NA, Price TJ, Gamper N, Akopian AN, Hargreaves KM (2006) The cannabinoid WIN 55,212-2 inhibits transient receptor potential vanilloid 1 (TRPV1) and evokes peripheral antihyperalgesia via calcineurin. Proc Natl Acad Sci U S A 103:11393–11398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Patwardhan AM, Akopian AN, Ruparel NB, Diogenes A, Weintraub ST, Uhlson C, Murphy RC, Hargreaves KM (2010) Heat generates oxidized linoleic acid metabolites that activate TRPV1 and produce pain in rodents. J Clin Invest 120:1617–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ruparel S, Green D, Chen P, Hargreaves KM (2012) The cytochrome P450 inhibitor, ketoconazole, inhibits oxidized linoleic acid metabolite-mediated peripheral inflammatory pain. Mol Pain 8:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gallo EM, Cante-Barrett K, Crabtree GR (2006) Lymphocyte calcium signaling from membrane to nucleus. Nat Immunol 7:25–32

    Article  CAS  PubMed  Google Scholar 

  35. Hogan PG, Chen L, Nardone J, Rao A (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17:2205–2232

    Article  CAS  PubMed  Google Scholar 

  36. Uchida S, Yamamoto H, Iio S, Matsumoto N, Wang XB, Yonehara N, Imai Y, Inoki R, Yoshida H (1990) Release of calcitonin gene-related peptide-like immunoreactive substance from neuromuscular junction by nerve excitation and its action on striated muscle. J Neurochem 54:1000–1003

    Article  CAS  PubMed  Google Scholar 

  37. Belai A, Burnstock G (1988) Release of calcitonin gene-related peptide from rat enteric nerves is Ca2+−dependent but is not induced by K+ depolarization. Regul Pept 23:227–235

    Article  CAS  PubMed  Google Scholar 

  38. Caceres AI, Brackmann M, Elia MD, Bessac BF, del Camino D, D’Amours M, Witek JS, Fanger CM, Chong JA, Hayward NJ, Homer RJ, Cohn L, Huang X, Moran MM, Jordt SE (2009) A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc Natl Acad Sci U S A 106:9099–9104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rehman R, Bhat YA, Panda L, Mabalirajan U (2013) TRPV1 inhibition attenuates IL-13 mediated asthma features in mice by reducing airway epithelial injury. Int Immunopharmacol 15:597–605

    Article  CAS  PubMed  Google Scholar 

  40. Trankner D, Hahne N, Sugino K, Hoon MA, Zuker C (2014) Population of sensory neurons essential for asthmatic hyperreactivity of inflamed airways. Proc Natl Acad Sci U S A 111:11515–11520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maricq MM (2007) Chemical characterization of particulate emissions from diesel engines: a review. J Aero Sci 38:1079–1118

    Article  CAS  Google Scholar 

  42. Hammerle R, Schuetzle D, Adams W (1994) A perspective on the potential development of environmentally acceptable light-duty diesel vehicles. Environ Health Perspect 102:25–30

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hussain S, Laumbach R, Coleman J, Youssef H, Kelly-McNeil K, Ohman-Strickland P, Zhang J, Kipen H (2012) Controlled exposure to diesel exhaust causes increased nitrite in exhaled breath condensate among subjects with asthma. J Occup Environ Med 54:1186–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Karthikeyan S, Thomson EM, Kumarathasan P, Guenette J, Rosenblatt D, Chan T, Rideout G, Vincent R (2013) Nitrogen dioxide and ultrafine particles dominate the biological effects of inhaled diesel exhaust treated by a catalyzed diesel particulate filter. Toxicol Sci 135:437–450

    Article  CAS  PubMed  Google Scholar 

  45. Shvedova AA, Yanamala N, Murray AR, Kisin ER, Khaliullin T, Hatfield MK, Tkach AV, Krantz QT, Nash D, King C, Ian Gilmour M, Gavett SH (2013) Oxidative stress, inflammatory biomarkers, and toxicity in mouse lung and liver after inhalation exposure to 100% biodiesel or petroleum diesel emissions. J Toxicol Environ Health A 76:907–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tsukue N, Kato A, Ito T, Sugiyama G, Nakajima T (2010) Acute effects of diesel emission from the urea selective catalytic reduction engine system on male rats. Inhal Toxicol 22:309–320

    Article  CAS  PubMed  Google Scholar 

  47. Deering-Rice CE, Johansen ME, Roberts JK, Thomas KC, Romero EG, Lee J, Yost GS, Veranth JM, Reilly CA (2012) Transient receptor potential vanilloid-1 (TRPV1) is a mediator of lung toxicity for coal fly ash particulate material. Mol Pharmacol 81:411–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sekimoto K, Inomata S, Tanimoto H, Fushimi A, Fujitani Y, Sato K, Yamada H (2013) Characterization of nitromethane emission from automotive exhaust. Atmos Environ 81:523–531

    Article  CAS  Google Scholar 

  49. Inomata S, Tanimoto H, Fujitani Y, Sekimoto K, Sato K, Fushimi A, Yamada H, Hori S, Kumazawa Y, Shimono A, Hikida T (2013) On-line measurements of gaseous nitro-organic compounds in diesel vehicle exhaust by proton-transfer-reaction mass spectrometry. Atmos Environ 73:195–203

    Article  CAS  Google Scholar 

  50. Inomata S, Fushimi A, Sato K, Fujitani Y, Yamada H (2015) 4-Nitrophenol, 1-nitropyrene, and 9-nitroanthracene emissions in exhaust particles from diesel vehicles with different exhaust gas treatments. Atmos Environ 110:93–102

    Article  CAS  Google Scholar 

  51. Reilly CA, Johansen ME, Lanza DL, Lee J, Lim JO, Yost GS (2005) Calcium-dependent and independent mechanisms of capsaicin receptor (TRPV1)-mediated cytokine production and cell death in human bronchial epithelial cells. J Biochem Mol Toxicol 19:266–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kunert-Keil C, Bisping F, Kruger J, Brinkmeier H (2006) Tissue-specific expression of TRP channel genes in the mouse and its variation in three different mouse strains. BMC Genomics 7:159

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jang Y, Lee Y, Kim SM, Yang YD, Jung J, Oh U (2012) Quantitative analysis of TRP channel genes in mouse organs. Arch Pharm Res 35:1823–1830

    Article  CAS  PubMed  Google Scholar 

  54. Daller JR, Wong J, Brooks BD, McKee JS (2012) An inexpensive system for evaluating the tussive and anti-tussive properties of chemicals in conscious, unrestrained guinea pigs. J Pharmacol Toxicol Methods 66:232–237

    Article  CAS  PubMed  Google Scholar 

  55. McGarvey LP, Butler CA, Stokesberry S, Polley L, McQuaid S, Abdullah H, Ashraf S, McGahon MK, Curtis TM, Arron J, Choy D, Warke TJ, Bradding P, Ennis M, Zholos A, Costello RW, Heaney LG (2014) Increased expression of bronchial epithelial transient receptor potential vanilloid 1 channels in patients with severe asthma. J Allergy Clin Immunol 133:704–12.e4

  56. Nassini R, Pedretti P, Moretto N, Fusi C, Carnini C, Facchinetti F, Viscomi AR, Pisano AR, Stokesberry S, Brunmark C, Svitacheva N, McGarvey L, Patacchini R, Damholt AB, Geppetti P, Materazzi S (2012) Transient receptor potential ankyrin 1 channel localized to non-neuronal airway cells promotes non-neurogenic inflammation. PLoS One 7:e42454

  57. Barnes PJ (1986) Asthma as an axon reflex. Lancet 1:242–245

    Article  CAS  PubMed  Google Scholar 

  58. Lundberg JM, Alving K, Karlsson JA, Matran R, Nilsson G (1991) Sensory neuropeptide involvement in animal models of airway irritation and of allergen-evoked asthma. Am Rev Respir Dis 143:1429–1430

    Article  CAS  PubMed  Google Scholar 

  59. Adriaensen D, Timmermans JP, Brouns I, Berthoud HR, Neuhuber WL, Scheuermann DW (1998) Pulmonary intraepithelial vagal nodose afferent nerve terminals are confined to neuroepithelial bodies: an anterograde tracing and confocal microscopy study in adult rats. Cell Tissue Res 293:395–405

    Article  CAS  PubMed  Google Scholar 

  60. Baluk P, Nadel JA, McDonald DM (1992) Substance P-immunoreactive sensory axons in the rat respiratory tract: a quantitative study of their distribution and role in neurogenic inflammation. J Comp Neurol 319:586–598

    Article  CAS  PubMed  Google Scholar 

  61. Dinh QT, Mingomataj E, Quarcoo D, Groneberg DA, Witt C, Klapp BF, Braun A, Fischer A (2005) Allergic airway inflammation induces tachykinin peptides expression in vagal sensory neurons innervating mouse airways. Clin Exp Allergy 35:820–825

    Article  CAS  PubMed  Google Scholar 

  62. Mauser PJ, Skeans S, Ritacco G, Fernandez X, House A, Chapman RW (2001) Effect of tachykinins on airway function in cynomolgus monkeys. Pulm Pharmacol Ther 14:121–127

    Article  CAS  PubMed  Google Scholar 

  63. Maghni K, Taha R, Afif W, Hamid Q, Martin JG (2000) Dichotomy between neurokinin receptor actions in modulating allergic airway responses in an animal model of helper T cell type 2 cytokine-associated inflammation. Am J Respir Crit Care Med 162:1068–1074

    Article  CAS  PubMed  Google Scholar 

  64. Joos GF, Germonpre PR, Pauwels RA (2000) Role of tachykinins in asthma. Allergy 55:321–337

    Article  CAS  PubMed  Google Scholar 

  65. Dakhama A, Kanehiro A, Makela MJ, Loader JE, Larsen GL, Gelfand EW (2002) Regulation of airway hyperresponsiveness by calcitonin gene-related peptide in allergen sensitized and challenged mice. Am J Respir Crit Care Med 165:1137–1144

    Article  PubMed  Google Scholar 

  66. Spina D, Matera GM, Riccio MM, Page CP (1998) A comparison of sensory nerve function in human, guinea-pig, rabbit and marmoset airways. Life Sci 63:1629–1642

    Article  CAS  PubMed  Google Scholar 

  67. Van Schoor J, Joos GF, Chasson BL, Brouard RJ, Pauwels RA (1998) The effect of the NK2 tachykinin receptor antagonist SR 48968 (saredutant) on neurokinin A-induced bronchoconstriction in asthmatics. Eur Respir J 12:17–23

    Article  PubMed  Google Scholar 

  68. Andre E, Campi B, Materazzi S, Trevisani M, Amadesi S, Massi D, Creminon C, Vaksman N, Nassini R, Civelli M, Baraldi PG, Poole DP, Bunnett NW, Geppetti P, Patacchini R (2008) Cigarette smoke-induced neurogenic inflammation is mediated by alpha, beta-unsaturated aldehydes and the TRPA1 receptor in rodents. J Clin Invest 118:2574–2582

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Weng WH, Hsu CC, Chiang LL, Lin YJ, Lin YS, Su CL (2013) Role of TRPV1 and P2X receptors in the activation of lung vagal C-fiber afferents by inhaled cigarette smoke in rats. Mol Med Rep 7:1300–1304

    CAS  PubMed  Google Scholar 

  70. Lieu TM, Myers AC, Meeker S, Undem BJ (2012) TRPV1 induction in airway vagal low-threshold mechanosensory neurons by allergen challenge and neurotrophic factors. Am J Physiol Lung Cell Mol Physiol 302:L941-8

  71. Zhang G, Lin RL, Wiggers M, Snow DM, Lee LY (2008) Altered expression of TRPV1 and sensitivity to capsaicin in pulmonary myelinated afferents following chronic airway inflammation in the rat. J Physiol 586:5771–5786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tang G, Wu L, Wang R (2010) Interaction of hydrogen sulfide with ion channels. Clin Exp Pharmacol Physiol 37:753–763

    Article  CAS  PubMed  Google Scholar 

  73. Helyes Z, Elekes K, Nemeth J, Pozsgai G, Sandor K, Kereskai L, Borzsei R, Pinter E, Szabo A, Szolcsanyi J (2007) Role of transient receptor potential vanilloid 1 receptors in endotoxin-induced airway inflammation in the mouse. Am J Physiol Lung Cell Mol Physiol 292:L1173-81

  74. Raemdonck K, de Alba J, Birrell MA, Grace M, Maher SA, Irvin CG, Fozard JR, O’Byrne PM, Belvisi MG (2012) A role for sensory nerves in the late asthmatic response. Thorax 67:19–25

    Article  PubMed  Google Scholar 

  75. Delescluse I, Mace H, Adcock JJ (2012) Inhibition of airway hyper-responsiveness by TRPV1 antagonists (SB-705498 and PF-04065463) in the unanaesthetized, ovalbumin-sensitized guinea pig. Br J Pharmacol 166:1822–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Akopian AN (2011) Regulation of nociceptive transmission at the periphery via TRPA1-TRPV1 interactions. Curr Pharm Biotechnol 12:89–94

    Article  CAS  PubMed  Google Scholar 

  77. Akopian AN, Ruparel NB, Jeske NA, Hargreaves KM (2007) Transient receptor potential TRPA1 channel desensitization in sensory neurons is agonist dependent and regulated by TRPV1-directed internalization. J Physiol 583:175–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lee LY, Hsu CC, Lin YJ, Lin RL, Khosravi M (2015) Interaction between TRPA1 and TRPV1: synergy on pulmonary sensory nerves. Pulm Pharmacol Ther 35:87–93

  79. Weng HJ, Patel KN, Jeske NA, Bierbower SM, Zou W, Tiwari V, Zheng Q, Tang Z, Mo GC, Wang Y, Geng Y, Zhang J, Guan Y, Akopian AN, Dong X (2015) Tmem100 is a regulator of TRPA1-TRPV1 complex and contributes to persistent pain. Neuron 85:833–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Salas MM, Hargreaves KM, Akopian AN (2009) TRPA1-mediated responses in trigeminal sensory neurons: interaction between TRPA1 and TRPV1. Eur J Neurosci 29:1568–1578

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Funding for this research was supported by grants AI101325 from NIH/NIAID (A.N.A.), The Advisory Committee for Research, Southwest Research Institute (E.R.F.), and grant no. 3T42OH008421 from the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), to the Southwest Center for Occupational and Environmental Health (SWCOEH), a NIOSH Education and Research Center (E.G.B.). We gratefully acknowledge Dr. Satoshi Inomata and Dr. Akihiro Fushimi for providing data on the compositional analysis of diesel exhaust particles (Table 1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward G. Brooks.

Additional information

This article is a contribution to the Special Issue on the Role of TRP Ion Channels in Physiology and Pathology—Guest Editor: Armen Akopian

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akopian, A.N., Fanick, E.R. & Brooks, E.G. TRP channels and traffic-related environmental pollution-induced pulmonary disease. Semin Immunopathol 38, 331–338 (2016). https://doi.org/10.1007/s00281-016-0554-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-016-0554-4

Keywords

Navigation