Skip to main content

Advertisement

Log in

Trp channels and itch

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Itch is a unique sensation associated with the scratch reflex. Although the scratch reflex plays a protective role in daily life by removing irritants, chronic itch remains a clinical challenge. Despite urgent clinical need, itch has received relatively little research attention and its mechanisms have remained poorly understood until recently. The goal of the present review is to summarize our current understanding of the mechanisms of acute as well as chronic itch and classifications of the primary itch populations in relationship to transient receptor potential (Trp) channels, which play pivotal roles in multiple somatosensations. The convergent involvement of Trp channels in diverse itch signaling pathways suggests that Trp channels may serve as promising targets for chronic itch treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ikoma A, Steinhoff M, Ständer S et al (2006) The neurobiology of itch. Nat Rev Neurosci 7:535–547

    Article  CAS  PubMed  Google Scholar 

  2. Ständer S, Weisshaar E, Mettang T et al (2007) Clinical classification of itch: a position paper of the International Forum for the Study of Itch. Acta Derm Venereol 87:291–294

    Article  PubMed  Google Scholar 

  3. Akiyama T, Carstens E (2013) Neural processing of itch. Neuroscience 250:697–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Von Frey M (1922) Zur Physiologie der Juckempfindung. Arch Neerl Physiol 142–145

  5. Lewis T, Grant RT, Marvin HM (1927) Vascular reactions of the skin to injury. Part X The intervention of a chemical stimulus illustrated especially by the flare. The response to faradism - Google Search. Heart 139–160

  6. Patel KN, Dong X (2010) An itch to be scratched. Neuron 68:334–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Norrsell U, Finger S, Lajonchere C (1999) Cutaneous sensory spots and the “law of specific nerve energies”: history and development of ideas. Brain Res Bull 48:457–465

    Article  CAS  PubMed  Google Scholar 

  8. Sun Y-G, Zhao Z-Q, Meng X-L et al (2009) Cellular basis of itch sensation. Science 325:1531–1534

    Article  CAS  PubMed  Google Scholar 

  9. Liu Q, Tang Z, Surdenikova L et al (2009) Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell 139:1353–1365

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wilson SR, Gerhold KA, Bifolck-Fisher A et al (2011) TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch. Nat Neurosci 14:595–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schmelz M, Schmidt R, Weidner C et al (2003) Chemical response pattern of different classes of C-nociceptors to pruritogens and algogens. J Neurophysiol 89:2441–2448

    Article  CAS  PubMed  Google Scholar 

  12. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647

    Article  CAS  PubMed  Google Scholar 

  14. Julius D (2013) TRP channels and pain. Annu Rev Cell Dev Biol 29:355–384

    Article  CAS  PubMed  Google Scholar 

  15. Wettschureck N, Offermanns S (2005) Mammalian G proteins and their cell type specific functions. Physiol Rev 85:1159–1204

    Article  CAS  PubMed  Google Scholar 

  16. MacDermot HE (1927) The blood vessels of the human skin and their responses. Can Med Assoc J 17:1574

    PubMed Central  Google Scholar 

  17. Greaves MW, Davies MG (1982) Histamine receptors in human skin: indirect evidence. Br J Dermatol 107(Suppl):101–105

    Article  CAS  PubMed  Google Scholar 

  18. Inagaki N, Nakamura N, Nagao M et al (1999) Participation of histamine H1 and H2 receptors in passive cutaneous anaphylaxis-induced scratching behavior in ICR mice. Eur J Pharmacol 367:361–371

    Article  CAS  PubMed  Google Scholar 

  19. Imamachi N, Park GH, Lee H et al (2009) TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms. Proc Natl Acad Sci U S A 106:11330–11335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roberson DP, Gudes S, Sprague JM et al (2013) Activity-dependent silencing reveals functionally distinct itch-generating sensory neurons. Nat Neurosci 16:910–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim BM, Lee SH, Shim WS, Oh U (2004) Histamine-induced Ca(2+) influx via the PLA(2)/lipoxygenase/TRPV1 pathway in rat sensory neurons. Neurosci Lett 361:159–162

    Article  CAS  PubMed  Google Scholar 

  22. Shim W-S, Tak M-H, Lee M-H et al (2007) TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. J Neurosci 27:2331–2337

    Article  CAS  PubMed  Google Scholar 

  23. Han S-K, Mancino V, Simon MI (2006) Phospholipase Cbeta 3 mediates the scratching response activated by the histamine H1 receptor on C-fiber nociceptive neurons. Neuron 52:691–703

    Article  CAS  PubMed  Google Scholar 

  24. Nicolson TA, Bevan S, Richards CD (2002) Characterisation of the calcium responses to histamine in capsaicin-sensitive and capsaicin-insensitive sensory neurones. Neuroscience 110:329–338

    Article  CAS  PubMed  Google Scholar 

  25. Bell JK, McQueen DS, Rees JL (2004) Involvement of histamine H4 and H1 receptors in scratching induced by histamine receptor agonists in Balb C mice. Br J Pharmacol 142:374–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dunford PJ, Williams KN, Desai PJ et al (2007) Histamine H4 receptor antagonists are superior to traditional antihistamines in the attenuation of experimental pruritus. J Allergy Clin Immunol 119:176–183

    Article  CAS  PubMed  Google Scholar 

  27. Andoh T, Nagasawa T, Satoh M, Kuraishi Y (1998) Substance P induction of itch-associated response mediated by cutaneous NK1 tachykinin receptors in mice. J Pharmacol Exp Ther 286:1140–1145

    CAS  PubMed  Google Scholar 

  28. Hägermark O, Hökfelt T, Pernow B (1978) Flare and itch induced by substance P in human skin. J Invest Dermatol 71:233–235

    Article  PubMed  Google Scholar 

  29. CORMIA FE, DOUGHERTY JW (1960) Proteolytic activity in development of pain and itching. Cutaneous reactions to bradykinin and kallikrein. J Invest Dermatol 35:21–26

    Article  CAS  PubMed  Google Scholar 

  30. Hägermark O (1974) Studies on experimental itch induced by kallikrein and bradykinin. Acta Derm Venereol 54:397–400

    PubMed  Google Scholar 

  31. Hosogi M, Schmelz M, Miyachi Y, Ikoma A (2006) Bradykinin is a potent pruritogen in atopic dermatitis: a switch from pain to itch. Pain 126:16–23

    Article  CAS  PubMed  Google Scholar 

  32. Bandell M, Story GM, Hwang SW et al (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857

    Article  CAS  PubMed  Google Scholar 

  33. Wang S, Dai Y, Fukuoka T et al (2008) Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain. Brain 131:1241–1251

    Article  PubMed  Google Scholar 

  34. Bautista DM, Jordt S-E, Nikai T et al (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124:1269–1282

    Article  CAS  PubMed  Google Scholar 

  35. Andoh T, Katsube N, Maruyama M, Kuraishi Y (2001) Involvement of leukotriene B(4) in substance P-induced itch-associated response in mice. J Invest Dermatol 117:1621–1626

    Article  CAS  PubMed  Google Scholar 

  36. Andoh T, Kuraishi Y (2003) Nitric oxide enhances substance P-induced itch-associated responses in mice. Br J Pharmacol 138:202–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eglezos A, Lecci A, Santicioli P et al (1992) Activation of capsaicin-sensitive primary afferents in the rat urinary bladder by compound 48/80: a direct action on sensory nerves? Arch Int Pharmacodyn Thér 315:96–109

    CAS  PubMed  Google Scholar 

  38. Dong X, Han S, Zylka MJ et al (2001) A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 106:619–632

    Article  CAS  PubMed  Google Scholar 

  39. Liu Q, Dong X (2015) The role of the Mrgpr receptor family in itch. Handb Exp Pharmacol 226:71–88

    Article  PubMed  Google Scholar 

  40. Sikand P, Dong X, LaMotte RH (2011) BAM8-22 peptide produces itch and nociceptive sensations in humans independent of histamine release. J Neurosci 31:7563–7567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Han L, Ma C, Liu Q et al (2013) A subpopulation of nociceptors specifically linked to itch. Nat Neurosci 16:174–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu Q, Sikand P, Ma C et al (2012) Mechanisms of itch evoked by β-alanine. J Neurosci 32:14532–14537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weisshaar E, Ziethen B, Gollnick H (1997) Can a serotonin type 3 (5-HT3) receptor antagonist reduce experimentally-induced itch? Inflamm Res 46:412–416

    Article  CAS  PubMed  Google Scholar 

  44. Bockaert J, Claeysen S, Bécamel C et al (2006) Neuronal 5-HT metabotropic receptors: fine-tuning of their structure, signaling, and roles in synaptic modulation. Cell Tissue Res 326:553–572

    Article  CAS  PubMed  Google Scholar 

  45. Yamaguchi T, Nagasawa T, Satoh M, Kuraishi Y (1999) Itch-associated response induced by intradermal serotonin through 5-HT2 receptors in mice. Neurosci Res 35:77–83

    Article  CAS  PubMed  Google Scholar 

  46. Morita T, McClain SP, Batia LM et al (2015) HTR7 mediates serotonergic acute and chronic itch. Neuron 87:124–138

    Article  CAS  PubMed  Google Scholar 

  47. Fernandes ES, Vong CT, Quek S et al (2013) Superoxide generation and leukocyte accumulation: key elements in the mediation of leukotriene B4-induced itch by transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1. FASEB J 27:1664–1673

    Article  CAS  PubMed  Google Scholar 

  48. Ruzicka T, Simmet T, Peskar BA, Ring J (1986) Skin levels of arachidonic acid-derived inflammatory mediators and histamine in atopic dermatitis and psoriasis. J Invest Dermatol 86:105–108

    Article  CAS  PubMed  Google Scholar 

  49. Willemsen MA, Lutt MA, Steijlen PM et al (2001) Clinical and biochemical effects of zileuton in patients with the Sjögren-Larsson syndrome. Eur J Pediatr 160:711–717

    Article  CAS  PubMed  Google Scholar 

  50. Brain S, Camp R, Dowd P et al (1984) The release of leukotriene B4-like material in biologically active amounts from the lesional skin of patients with psoriasis. J Invest Dermatol 83:70–73

    Article  CAS  PubMed  Google Scholar 

  51. Andoh T, Saito A, Kuraishi Y (2009) Leukotriene B(4) mediates sphingosylphosphorylcholine-induced itch-associated responses in mouse skin. J Invest Dermatol 129:2854–2860

    Article  CAS  PubMed  Google Scholar 

  52. Bunchorntavakul C, Reddy KR (2012) Pruritus in chronic cholestatic liver disease. Clin Liver Dis 16:331–346

    Article  PubMed  Google Scholar 

  53. Ghent CN, Bloomer JR, Klatskin G (1977) Elevations in skin tissue levels of bile acids in human cholestasis: relation to serum levels and topruritus. Gastroenterology 73:1125–1130

    CAS  PubMed  Google Scholar 

  54. Varadi DP (1974) Pruritus induced by crude bile and purified bile acids. Experimental production of pruritus in human skin. Arch Dermatol 109:678–681

    Article  CAS  PubMed  Google Scholar 

  55. Mela M, Mancuso A, Burroughs AK (2003) Review article: pruritus in cholestatic and other liver diseases. Aliment Pharmacol Ther 17:857–870

    Article  CAS  PubMed  Google Scholar 

  56. Alemi F, Kwon E, Poole DP et al (2013) The TGR5 receptor mediates bile acid-induced itch and analgesia. J Clin Invest 123:1513–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lieu T, Jayaweera G, Zhao P et al (2014) The bile acid receptor TGR5 activates the TRPA1 channel to induce itch in mice. Gastroenterology 147:1417–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hashimoto T, Ohata H, Momose K (2004) Itch-scratch responses induced by lysophosphatidic acid in mice. Pharmacology 72:51–56

    Article  CAS  PubMed  Google Scholar 

  59. Kremer AE, Martens JJ, Kulik W et al (2010) Lysophosphatidic acid is a potential mediator of cholestatic pruritus. Gastroenterology 139:1008–1018, 1018.e1

    Article  CAS  PubMed  Google Scholar 

  60. Shimizu Y, Morikawa Y, Okudaira S et al (2014) Potentials of the circulating pruritogenic mediator lysophosphatidic acid in development of allergic skin inflammation in mice: role of blood cell-associated lysophospholipase D activity of autotaxin. Am J Pathol 184:1593–1603

    Article  CAS  PubMed  Google Scholar 

  61. Nieto-Posadas A, Picazo-Juárez G, Llorente I et al (2012) Lysophosphatidic acid directly activates TRPV1 through a C-terminal binding site. Nat Chem Biol 8:78–85

    Article  CAS  Google Scholar 

  62. Katugampola R, Church MK, Clough GF (2000) The neurogenic vasodilator response to endothelin-1: a study in human skin in vivo. Exp Physiol 85:839–846

    Article  CAS  PubMed  Google Scholar 

  63. Kido-Nakahara M, Buddenkotte J, Kempkes C et al (2014) Neural peptidase endothelin-converting enzyme 1 regulates endothelin 1-induced pruritus. J Clin Invest 124:2683–2695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Trentin PG, Fernandes MB, D’Orléans-Juste P, Rae GA (2006) Endothelin-1 causes pruritus in mice. Exp Biol Med (Maywood) 231:1146–1151

    CAS  Google Scholar 

  65. Liang J, Kawamata T, Ji W (2010) Molecular signaling of pruritus induced by endothelin-1 in mice. Exp Biol Med (Maywood) 235:1300–1305

    Article  CAS  Google Scholar 

  66. Vellani V, Prandini M, Giacomoni C et al (2011) Functional endothelin receptors are selectively expressed in isolectin B4-negative sensory neurons and are upregulated in isolectin B4-positive neurons by neurturin and glia-derived neurotropic factor. Brain Res 1381:31–37

    Article  CAS  PubMed  Google Scholar 

  67. Andoh T, Yoshida T, Lee J-B, Kuraishi Y (2012) Cathepsin E induces itch-related response through the production of endothelin-1 in mice. Eur J Pharmacol 686:16–21

    Article  CAS  PubMed  Google Scholar 

  68. Macfarlane SR, Seatter MJ, Kanke T et al (2001) Proteinase-activated receptors. Pharmacol Rev 53:245–282

    CAS  PubMed  Google Scholar 

  69. Reddy VB, Iuga AO, Shimada SG et al (2008) Cowhage-evoked itch is mediated by a novel cysteine protease: a ligand of protease-activated receptors. J Neurosci 28:4331–4335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Steinhoff M, Vergnolle N, Young SH et al (2000) Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat Med 6:151–158

    Article  CAS  PubMed  Google Scholar 

  71. Reddy VB, Shimada SG, Sikand P et al (2010) Cathepsin S elicits itch and signals via protease-activated receptors. J Invest Dermatol 130:1468–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Steinhoff M, Corvera CU, Thoma MS et al (1999) Proteinase-activated receptor-2 in human skin: tissue distribution and activation of keratinocytes by mast cell tryptase. Exp Dermatol 8:282–294

    Article  CAS  PubMed  Google Scholar 

  73. Steinhoff M, Neisius U, Ikoma A et al (2003) Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J Neurosci 23:6176–6180

    CAS  PubMed  Google Scholar 

  74. Tsujii K, Andoh T, Ui H et al (2009) Involvement of tryptase and proteinase-activated receptor-2 in spontaneous itch-associated response in mice with atopy-like dermatitis. J Pharmacol Sci 109:388–395

    Article  CAS  PubMed  Google Scholar 

  75. Kim N, Bae KB, Kim MO et al (2012) Overexpression of cathepsin S induces chronic atopic dermatitis in mice. J Invest Dermatol 132:1169–1176

    Article  CAS  PubMed  Google Scholar 

  76. Shimada SG, Shimada KA, Collins JG (2006) Scratching behavior in mice induced by the proteinase-activated receptor-2 agonist, SLIGRL-NH2. Eur J Pharmacol 530:281–283

    Article  CAS  PubMed  Google Scholar 

  77. Liu Q, Weng H-J, Patel KN et al (2011) The distinct roles of two GPCRs, MrgprC11 and PAR2, in itch and hyperalgesia. Sci Signal 4:ra45

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Reddy VB, Sun S, Azimi E et al (2015) Redefining the concept of protease-activated receptors: cathepsin S evokes itch via activation of Mrgprs. Nat Commun 6:7864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wilson SR, Thé L, Batia LM et al (2013) The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 155:285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Amadesi S, Nie J, Vergnolle N et al (2004) Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia. J Neurosci 24:4300–4312

    Article  CAS  PubMed  Google Scholar 

  81. Dai Y, Wang S, Tominaga M et al (2007) Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest 117:3140–3140

    Article  CAS  PubMed Central  Google Scholar 

  82. O’Sullivan LA, Liongue C, Lewis RS et al (2007) Cytokine receptor signaling through the Jak-Stat-Socs pathway in disease. Mol Immunol 44:2497–2506

    Article  PubMed  CAS  Google Scholar 

  83. Ziegler SF, Roan F, Bell BD et al (2013) The biology of thymic stromal lymphopoietin (TSLP). Adv Pharmacol 66:129–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yoo J, Omori M, Gyarmati D et al (2005) Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin. J Exp Med 202:541–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. He R, Geha RS (2010) Thymic stromal lymphopoietin. Ann N Y Acad Sci 1183:13–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Singer EM, Shin DB, Nattkemper LA et al (2013) IL-31 is produced by the malignant T-cell population in cutaneous T-cell lymphoma and correlates with CTCL pruritus. J Invest Dermatol 133:2783–2785

    Article  CAS  PubMed  Google Scholar 

  87. Boguniewicz M, Leung DYM (2011) Atopic dermatitis: a disease of altered skin barrier and immune dysregulation. Immunol Rev 242:233–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Grimstad O, Sawanobori Y, Vestergaard C et al (2009) Anti-interleukin-31-antibodies ameliorate scratching behaviour in NC/Nga mice: a model of atopic dermatitis. Exp Dermatol 18:35–43

    Article  CAS  PubMed  Google Scholar 

  89. Dillon SR, Sprecher C, Hammond A et al (2004) Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol 5:752–760

    Article  CAS  PubMed  Google Scholar 

  90. Cevikbas F, Wang X, Akiyama T et al (2014) A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: involvement of TRPV1 and TRPA1. J Allergy Clin Immunol 133:448–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Oh M-H, Oh SY, Lu J et al (2013) TRPA1-dependent pruritus in IL-13-induced chronic atopic dermatitis. J Immunol 191:5371–5382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14

    Article  CAS  PubMed  Google Scholar 

  93. Barajon I, Serrao G, Arnaboldi F et al (2009) Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J Histochem Cytochem 57:1013–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hemmi H, Kaisho T, Takeuchi O et al (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3:196–200

    Article  CAS  PubMed  Google Scholar 

  95. Stern PL, van der Burg SH, Hampson IN et al (2012) Therapy of human papillomavirus-related disease. Vaccine 30(Suppl 5):F71–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Liu T, Xu Z-Z, Park C-K et al (2010) Toll-like receptor 7 mediates pruritus. Nat Neurosci 13:1460–1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kim S-J, Park GH, Kim D et al (2011) Analysis of cellular and behavioral responses to imiquimod reveals a unique itch pathway in transient receptor potential vanilloid 1 (TRPV1)-expressing neurons. Proc Natl Acad Sci U S A 108:3371–3376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Schön MP, Schön M, Klotz K-N (2006) The small antitumoral immune response modifier imiquimod interacts with adenosine receptor signaling in a TLR7- and TLR8-independent fashion. J Invest Dermatol 126:1338–1347

    Article  PubMed  CAS  Google Scholar 

  99. Lee J, Kim T, Hong J et al (2012) Imiquimod enhances excitability of dorsal root ganglion neurons by inhibiting background (K(2P)) and voltage-gated (K(v)1.1 and K(v)1.2) potassium channels. Mol Pain 8:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Park C-K, Xu Z-Z, Berta T et al (2014) Extracellular microRNAs activate nociceptor neurons to elicit pain via TLR7 and TRPA1. Neuron 82:47–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Min H, Lee H, Lim H et al (2014) TLR4 enhances histamine-mediated pruritus by potentiating TRPV1 activity. Mol Brain 7:59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Liu T, Berta T, Xu Z-Z et al (2012) TLR3 deficiency impairs spinal cord synaptic transmission, central sensitization, and pruritus in mice. J Clin Invest 122:2195–2207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Diogenes A, Ferraz CCR, Akopian AN et al (2011) LPS sensitizes TRPV1 via activation of TLR4 in trigeminal sensory neurons. J Dent Res 90:759–764

    Article  CAS  PubMed  Google Scholar 

  104. Ferraz CCR, Henry MA, Hargreaves KM, Diogenes A (2011) Lipopolysaccharide from Porphyromonas gingivalis sensitizes capsaicin-sensitive nociceptors. J Endod 37:45–48

    Article  PubMed  PubMed Central  Google Scholar 

  105. Bickers DR, Athar M (2006) Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol 126:2565–2575

    Article  CAS  PubMed  Google Scholar 

  106. Bautista DM, Pellegrino M, Tsunozaki M (2013) TRPA1: a gatekeeper for inflammation. Annu Rev Physiol 75:181–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Andersson DA, Gentry C, Moss S, Bevan S (2008) Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci 28:2485–2494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Liu T, Ji R-R (2012) Oxidative stress induces itch via activation of transient receptor potential subtype ankyrin 1 in mice. Neurosci Bull 28:145–154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Lagerström MC, Rogoz K, Abrahamsen B et al (2010) VGLUT2-dependent sensory neurons in the TRPV1 population regulate pain and itch. Neuron 68:529–542

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Liu Y, Abdel Samad O, Zhang L et al (2010) VGLUT2-dependent glutamate release from nociceptors is required to sense pain and suppress itch. Neuron 68:543–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Fruhstorfer H, Hermanns M, Latzke L (1986) The effects of thermal stimulation on clinical and experimental itch. Pain 24:259–269

    Article  CAS  PubMed  Google Scholar 

  112. Bromm B, Scharein E, Darsow U, Ring J (1995) Effects of menthol and cold on histamine-induced itch and skin reactions in man. Neurosci Lett 187:157–160

    Article  CAS  PubMed  Google Scholar 

  113. Han JH, Choi H-K, Kim SJ (2012) Topical TRPM8 agonist (icilin) relieved vulva pruritus originating from lichen sclerosus et atrophicus. Acta Derm Venereol 92:561–562

    Article  PubMed  Google Scholar 

  114. Patel T, Yosipovitch G (2010) Therapy of pruritus. Expert Opin Pharmacother 11:1673–1682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Davidson S, Zhang X, Khasabov SG et al (2009) Relief of itch by scratching: state-dependent inhibition of primate spinothalamic tract neurons. Nat Neurosci 12:544–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Akiyama T, Iodi Carstens M, Carstens E (2011) Transmitters and pathways mediating inhibition of spinal itch-signaling neurons by scratching and other counterstimuli. PLoS ONE 6, e22665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ross SE, Mardinly AR, McCord AE et al (2010) Loss of inhibitory interneurons in the dorsal spinal cord and elevated itch in Bhlhb5 mutant mice. Neuron 65:886–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kamei J, Nagase H (2001) Norbinaltorphimine, a selective kappa-opioid receptor antagonist, induces an itch-associated response in mice. Eur J Pharmacol 418:141–145

    Article  CAS  PubMed  Google Scholar 

  119. Kardon AP, Polgár E, Hachisuka J et al (2014) Dynorphin acts as a neuromodulator to inhibit itch in the dorsal horn of the spinal cord. Neuron 82:573–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ständer S, Moormann C, Schumacher M et al (2004) Expression of vanilloid receptor subtype 1 in cutaneous sensory nerve fibers, mast cells, and epithelial cells of appendage structures. Exp Dermatol 13:129–139

    Article  PubMed  Google Scholar 

  121. Seike M, Ikeda M, Kodama H et al (2005) Inhibition of scratching behaviour caused by contact dermatitis in histidine decarboxylase gene knockout mice. Exp Dermatol 14:169–175

    Article  CAS  PubMed  Google Scholar 

  122. Yun J-W, Seo JA, Jang W-H et al (2011) Antipruritic effects of TRPV1 antagonist in murine atopic dermatitis and itching models. J Invest Dermatol 131:1576–1579

    Article  CAS  PubMed  Google Scholar 

  123. Alenmyr L, Högestätt ED, Zygmunt PM, Greiff L (2009) TRPV1-mediated itch in seasonal allergic rhinitis. Allergy 64:807–810

    Article  CAS  PubMed  Google Scholar 

  124. Sulk M, Seeliger S, Aubert J et al (2012) Distribution and expression of non-neuronal transient receptor potential (TRPV) ion channels in rosacea. J Invest Dermatol 132:1253–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yamamoto-Kasai E, Yasui K, Shichijo M et al (2013) Impact of TRPV3 on the development of allergic dermatitis as a dendritic cell modulator. Exp Dermatol 22:820–824

    Article  CAS  PubMed  Google Scholar 

  126. Yang YS, Cho SI, Choi MG et al (2015) Increased expression of three types of transient receptor potential channels (TRPA1, TRPV4 and TRPV3) in burn scars with post-burn pruritus. Acta Derm Venereol 95:20–24

    Article  PubMed  CAS  Google Scholar 

  127. Peier AM, Reeve AJ, Andersson DA et al (2002) A heat-sensitive TRP channel expressed in keratinocytes. Science 296:2046–2049

    Article  CAS  PubMed  Google Scholar 

  128. Denda M, Sokabe T, Fukumi-Tominaga T, Tominaga M (2007) Effects of skin surface temperature on epidermal permeability barrier homeostasis. J Invest Dermatol 127:654–659

    Article  CAS  PubMed  Google Scholar 

  129. Huang SM, Lee H, Chung M-K et al (2008) Overexpressed transient receptor potential vanilloid 3 ion channels in skin keratinocytes modulate pain sensitivity via prostaglandin E2. J Neurosci 28:13727–13737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mandadi S, Sokabe T, Shibasaki K et al (2009) TRPV3 in keratinocytes transmits temperature information to sensory neurons via ATP. Pflugers Arch 458:1093–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Miyamoto T, Petrus MJ, Dubin AE, Patapoutian A (2011) TRPV3 regulates nitric oxide synthase-independent nitric oxide synthesis in the skin. Nat Commun 2:369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Yoshioka T, Imura K, Asakawa M et al (2009) Impact of the Gly573Ser substitution in TRPV3 on the development of allergic and pruritic dermatitis in mice. J Invest Dermatol 129:714–722

    Article  CAS  PubMed  Google Scholar 

  133. Asakawa M, Yoshioka T, Matsutani T et al (2006) Association of a mutation in TRPV3 with defective hair growth in rodents. J Invest Dermatol 126:2664–2672

    Article  CAS  PubMed  Google Scholar 

  134. Lin Z, Chen Q, Lee M et al (2012) Exome sequencing reveals mutations in TRPV3 as a cause of Olmsted syndrome. Am J Hum Genet 90:558–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lai-Cheong JE, Sethuraman G, Ramam M et al (2012) Recurrent heterozygous missense mutation, p.Gly573Ser, in the TRPV3 gene in an Indian boy with sporadic Olmsted syndrome. Br J Dermatol 167:440–442

    Article  CAS  PubMed  Google Scholar 

  136. Strotmann R, Harteneck C, Nunnenmacher K et al (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2:695–702

    Article  CAS  PubMed  Google Scholar 

  137. Liedtke W, Choe Y, Martí-Renom MA et al (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103:525–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chung M-K, Lee H, Caterina MJ (2003) Warm temperatures activate TRPV4 in mouse 308 keratinocytes. J Biol Chem 278:32037–32046

    Article  CAS  PubMed  Google Scholar 

  139. Güler AD, Lee H, Iida T et al (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22:6408–6414

    PubMed  Google Scholar 

  140. Sokabe T, Fukumi-Tominaga T, Yonemura S et al (2010) The TRPV4 channel contributes to intercellular junction formation in keratinocytes. J Biol Chem 285:18749–18758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Beck B, Lehen’kyi V, Roudbaraki M et al (2008) TRPC channels determine human keratinocyte differentiation: new insight into basal cell carcinoma. Cell Calcium 43:492–505

    Article  CAS  PubMed  Google Scholar 

  142. Müller M, Essin K, Hill K et al (2008) Specific TRPC6 channel activation, a novel approach to stimulate keratinocyte differentiation. J Biol Chem 283:33942–33954

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Leuner K, Kraus M, Woelfle U et al (2011) Reduced TRPC channel expression in psoriatic keratinocytes is associated with impaired differentiation and enhanced proliferation. PLoS ONE 6, e14716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Barfield RL, Barrett KR, Moon CM, David-Bajar K (2002) Pruritic linear papules on a 75-year-old woman: a case of localized Darier-White disease. Cutis 70:225–228

    PubMed  Google Scholar 

  145. Pani B, Cornatzer E, Cornatzer W et al (2006) Up-regulation of transient receptor potential canonical 1 (TRPC1) following sarco(endo)plasmic reticulum Ca2+ ATPase 2 gene silencing promotes cell survival: a potential role for TRPC1 in Darier’s disease. Mol Biol Cell 17:4446–4458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ohmura T, Hayashi T, Satoh Y et al (2004) Involvement of substance P in scratching behaviour in an atopic dermatitis model. Eur J Pharmacol 491:191–194

    Article  CAS  PubMed  Google Scholar 

  147. Liu B, Escalera J, Balakrishna S et al (2013) TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis. FASEB J 27:3549–3563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Cowden JM, Zhang M, Dunford PJ, Thurmond RL (2010) The histamine H4 receptor mediates inflammation and pruritus in Th2-dependent dermal inflammation. J Invest Dermatol 130:1023–1033

    Article  CAS  PubMed  Google Scholar 

  149. Miyamoto T, Nojima H, Shinkado T et al (2002) Itch-associated response induced by experimental dry skin in mice. Jpn J Pharmacol 88:285–292

    Article  CAS  PubMed  Google Scholar 

  150. Akiyama T, Carstens MI, Carstens E (2010) Spontaneous itch in the absence of hyperalgesia in a mouse hindpaw dry skin model. Neurosci Lett 484:62–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wilson SR, Nelson AM, Batia L et al (2013) The ion channel TRPA1 is required for chronic itch. J Neurosci 33:9283–9294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yamamoto-Kasai E, Imura K, Yasui K et al (2012) TRPV3 as a therapeutic target for itch. J Invest Dermatol 132:2109–2112

    Article  CAS  PubMed  Google Scholar 

  153. Cheng X, Jin J, Hu L et al (2010) TRP channel regulates EGFR signaling in hair morphogenesis and skin barrier formation. Cell 141:331–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Jeffry J, Kim S, Chen Z-F (2011) Itch signaling in the nervous system. Physiology (Bethesda) 26:286–292

    Article  CAS  Google Scholar 

  155. Akiyama T, Carstens MI, Carstens E (2010) Enhanced scratching evoked by PAR-2 agonist and 5-HT but not histamine in a mouse model of chronic dry skin itch. Pain 151:378–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hanifin JM (2009) Evolving concepts of pathogenesis in atopic dermatitis and other eczemas. J Invest Dermatol 129:320–322

    Article  CAS  PubMed  Google Scholar 

  157. Denda M, Tsutsumi M, Goto M et al (2010) Topical application of TRPA1 agonists and brief cold exposure accelerate skin permeability barrier recovery. J Invest Dermatol 130:1942–1945

    Article  CAS  PubMed  Google Scholar 

  158. Moran MM, McAlexander MA, Bíró T, Szallasi A (2011) Transient receptor potential channels as therapeutic targets. Nat Rev Drug Discov 10:601–620

    Article  CAS  PubMed  Google Scholar 

  159. Lim K-M, Park Y-H (2012) Development of PAC-14028, a novel transient receptor potential vanilloid type 1 (TRPV1) channel antagonist as a new drug for refractory skin diseases. Arch Pharm Res 35:393–396

    Article  CAS  PubMed  Google Scholar 

  160. Holland C, van Drunen C, Denyer J et al (2014) Inhibition of capsaicin-driven nasal hyper-reactivity by SB-705498, a TRPV1 antagonist. Br J Clin Pharmacol 77:777–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bareille P, Murdoch RD, Denyer J et al (2013) The effects of a TRPV1 antagonist, SB-705498, in the treatment of seasonal allergic rhinitis. Int J Clin Pharmacol Ther 51:576–584

    Article  CAS  PubMed  Google Scholar 

  162. Gibson RA, Robertson J, Mistry H et al (2014) A randomised trial evaluating the effects of the TRPV1 antagonist SB705498 on pruritus induced by histamine, and cowhage challenge in healthy volunteers. PLoS ONE 9, e100610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Knotkova H, Pappagallo M, Szallasi A (2008) Capsaicin (TRPV1 Agonist) therapy for pain relief: farewell or revival? Clin J Pain 24:142–154

    Article  PubMed  Google Scholar 

  164. Ständer S, Luger T, Metze D (2001) Treatment of prurigo nodularis with topical capsaicin. J Am Acad Dermatol 44:471–478

    Article  PubMed  Google Scholar 

  165. Ellis CN, Berberian B, Sulica VI et al (1993) A double-blind evaluation of topical capsaicin in pruritic psoriasis. J Am Acad Dermatol 29:438–442

    Article  CAS  PubMed  Google Scholar 

  166. Lysy J, Sistiery-Ittah M, Israelit Y et al (2003) Topical capsaicin—a novel and effective treatment for idiopathic intractable pruritus ani: a randomised, placebo controlled, crossover study. Gut 52:1323–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Makhlough A, Ala S, Haj-Heydari Z et al (2010) Topical capsaicin therapy for uremic pruritus in patients on hemodialysis. Iran J Kidney Dis 4:137–140

    PubMed  Google Scholar 

  168. Gooding SMD, Canter PH, Coelho HF et al (2010) Systematic review of topical capsaicin in the treatment of pruritus. Int J Dermatol 49:858–865

    Article  PubMed  Google Scholar 

  169. Panahi Y, Davoodi SM, Khalili H et al (2007) Phenol and menthol in the treatment of chronic skin lesions following mustard gas exposure. Singap Med J 48:392–395

    CAS  Google Scholar 

  170. Frölich M, Enk A, Diepgen TL, Weisshaar E (2009) Successful treatment of therapy-resistant pruritus in lichen amyloidosis with menthol. Acta Derm Venereol 89:524–526

    Article  PubMed  Google Scholar 

  171. Haught JM, Jukic DM, English JC (2008) Hydroxyethyl starch-induced pruritus relieved by a combination of menthol and camphor. J Am Acad Dermatol 59:151–153

    Article  PubMed  Google Scholar 

  172. Davidson S, Zhang X, Yoon CH et al (2007) The itch-producing agents histamine and cowhage activate separate populations of primate spinothalamic tract neurons. J Neurosci 27:10007–10014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Davidson S, Zhang X, Khasabov SG et al (2012) Pruriceptive spinothalamic tract neurons: physiological properties and projection targets in the primate. J Neurophysiol 108:1711–1723

    Article  PubMed  PubMed Central  Google Scholar 

  174. Usoskin D, Furlan A, Islam S et al (2014) Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci 18:145–153

    Article  PubMed  CAS  Google Scholar 

  175. Peters-Golden M, Gleason MM, Togias A (2006) Cysteinyl leukotrienes: multi-functional mediators in allergic rhinitis. Clin Exp Allergy 36:689–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Nettis E, D’Erasmo M, Di Leo E, et al. (2010) The employment of leukotriene antagonists in cutaneous diseases belonging to allergological field. Mediat Inflamm. doi:10.1155/2010/628171

  177. Angelova-Fischer I, Tsankov N (2005) Successful treatment of severe atopic dermatitis with cysteinyl leukotriene receptor antagonist montelukast. Acta Dermatovenerol Alpina, Pannonica, Adriat 14:115–119

    Google Scholar 

  178. Mishra SK, Hoon MA (2013) The cells and circuitry for itch responses in mice. Science 340:968–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Thurmond RL, Gelfand EW, Dunford PJ (2008) The role of histamine H1 and H4 receptors in allergic inflammation: the search for new antihistamines. Nat Rev Drug Discov 7:41–53

    Article  CAS  PubMed  Google Scholar 

  180. Kim HJ, Kim DK, Kim H et al (2008) Involvement of the BLT2 receptor in the itch-associated scratching induced by 12-(S)-lipoxygenase products in ICR mice. Br J Pharmacol 154:1073–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Kim D-K, Kim H-J, Kim H et al (2008) Involvement of serotonin receptors 5-HT1 and 5-HT2 in 12(S)-HPETE-induced scratching in mice. Eur J Pharmacol 579:390–394

    Article  CAS  PubMed  Google Scholar 

  182. Gomes LO, Hara DB, Rae GA (2012) Endothelin-1 induces itch and pain in the mouse cheek model. Life Sci 91:628–633

    Article  CAS  PubMed  Google Scholar 

  183. Andoh T, Nishikawa Y, Yamaguchi-Miyamoto T et al (2007) Thromboxane A2 induces itch-associated responses through TP receptors in the skin in mice. J Invest Dermatol 127:2042–2047

    Article  CAS  PubMed  Google Scholar 

  184. Kasraie S, Niebuhr M, Baumert K, Werfel T (2011) Functional effects of interleukin 31 in human primary keratinocytes. Allergy 66:845–852

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants (DE022750 and NS054791) from the National Institutes of Health to X.D. X.D. is an investigator of the Howard Hughes Medical Institute. We thank Sarah L. Poynton for editing.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinzhong Dong.

Additional information

This article is a contribution to the Special Issue on the Role of TRP Ion Channels in Physiology and Pathology - Guest Editor: Armen Akopian

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Dong, X. Trp channels and itch. Semin Immunopathol 38, 293–307 (2016). https://doi.org/10.1007/s00281-015-0530-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-015-0530-4

Keywords

Navigation