Skip to main content

Advertisement

Log in

Glial regulation of the blood-brain barrier in health and disease

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The brain is the organ with the highest metabolic demand in the body. Therefore, it needs specialized vasculature to provide it with the necessary oxygen and nutrients, while protecting it against pathogens and toxins. The blood-brain barrier (BBB) is very tightly regulated by specialized endothelial cells, two basement membranes, and astrocytic endfeet. The proximity of astrocytes to the vessel makes them perfect candidates to influence the function of the BBB. Moreover, other glial cells are also known to contribute to either BBB quiescence or breakdown. In this review, we summarize the knowledge on glial regulation of the BBB during development, in homeostatic conditions in the adult, and during neuroinflammatory responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Daneman R, Prat A (2015) The blood-brain barrier. Cold Spring Harbor Perspect Biol 7(1). doi:10.1101/cshperspect.a020412

  2. Alvarez JI, Katayama T, Prat A (2013) Glial influence on the blood brain barrier. Glia 61(12):1939–1958. doi:10.1002/glia.22575

    Article  PubMed Central  PubMed  Google Scholar 

  3. Oldendorf WH, Cornford ME, Brown WJ (1977) The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1(5):409–417. doi:10.1002/ana.410010502

    Article  CAS  PubMed  Google Scholar 

  4. Coomber BL, Stewart PA (1985) Morphometric analysis of CNS microvascular endothelium. Microvasc Res 30(1):99–115

    Article  CAS  PubMed  Google Scholar 

  5. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7(1):41–53. doi:10.1038/nrn1824

    Article  CAS  PubMed  Google Scholar 

  6. Alvarez JI, Cayrol R, Prat A (2011) Disruption of central nervous system barriers in multiple sclerosis. Biochim Biophys Acta 1812(2):252–264. doi:10.1016/j.bbadis.2010.06.017

    Article  CAS  PubMed  Google Scholar 

  7. Feeney JF Jr, Watterson RL (1946) The development of the vascular pattern within the walls of the central nervous system of the chick embryo. J Morphol 78:231–303

    Article  PubMed  Google Scholar 

  8. Bar T (1980) The vascular system of the cerebral cortex. Adv Anat Embryol Cell Biol 59:I-VI,1-62

  9. Risau W, Wolburg H (1990) Development of the blood-brain barrier. Trends Neurosci 13(5):174–178

    Article  CAS  PubMed  Google Scholar 

  10. Norman MG, O'Kusky JR (1986) The growth and development of microvasculature in human cerebral cortex. J Neuropathol Exp Neurol 45(3):222–232

    Article  CAS  PubMed  Google Scholar 

  11. Ballabh P, Hu F, Kumarasiri M, Braun A, Nedergaard M (2005) Development of tight junction molecules in blood vessels of germinal matrix, cerebral cortex, and white matter. Pediatr Res 58(4):791–798. doi:10.1203/01.PDR.0000180535.14093.FB

    Article  CAS  PubMed  Google Scholar 

  12. Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S, Fujisawa H, Betsholtz C, Shima DT (2002) Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16(20):2684–2698. doi:10.1101/gad.242002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hagedorn M, Balke M, Schmidt A, Bloch W, Kurz H, Javerzat S, Rousseau B, Wilting J, Bikfalvi A (2004) VEGF coordinates interaction of pericytes and endothelial cells during vasculogenesis and experimental angiogenesis. Dev Dyn Off Publ Am Assoc Anatomists 230(1):23–33. doi:10.1002/dvdy.20020

    CAS  Google Scholar 

  14. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87(7):1171–1180

    Article  CAS  PubMed  Google Scholar 

  15. Tam SJ, Richmond DL, Kaminker JS, Modrusan Z, Martin-McNulty B, Cao TC, Weimer RM, Carano RA, van Bruggen N, Watts RJ (2012) Death receptors DR6 and TROY regulate brain vascular development. Dev Cell 22(2):403–417. doi:10.1016/j.devcel.2011.11.018

    Article  CAS  PubMed  Google Scholar 

  16. Goldshmit Y, Galea MP, Bartlett PF, Turnley AM (2006) EphA4 regulates central nervous system vascular formation. J Comp Neurol 497(6):864–875. doi:10.1002/cne.21029

    Article  CAS  PubMed  Google Scholar 

  17. Tu T, Zhang C, Yan H, Luo Y, Kong R, Wen P, Ye Z, Chen J, Feng J, Liu F, Wu JY, Yan X (2015) CD146 acts as a novel receptor for netrin-1 in promoting angiogenesis and vascular development. Cell Res. doi:10.1038/cr.2015.15

    PubMed Central  PubMed  Google Scholar 

  18. Larochelle C, Cayrol R, Kebir H, Alvarez JI, Lecuyer MA, Ifergan I, Viel E, Bourbonniere L, Beauseigle D, Terouz S, Hachehouche L, Gendron S, Poirier J, Jobin C, Duquette P, Flanagan K, Yednock T, Arbour N, Prat A (2012) Melanoma cell adhesion molecule identifies encephalitogenic T lymphocytes and promotes their recruitment to the central nervous system. Brain J Neurol 135(Pt 10):2906–2924. doi:10.1093/brain/aws212

    Article  Google Scholar 

  19. Moore SW, Tessier-Lavigne M, Kennedy TE (2007) Netrins and their receptors. Adv Exp Med Biol 621:17–31. doi:10.1007/978-0-387-76715-4_2

    Article  PubMed  Google Scholar 

  20. Liebner S, Corada M, Bangsow T, Babbage J, Taddei A, Czupalla CJ, Reis M, Felici A, Wolburg H, Fruttiger M, Taketo MM, von Melchner H, Plate KH, Gerhardt H, Dejana E (2008) Wnt/beta-catenin signaling controls development of the blood-brain barrier. J Cell Biol 183(3):409–417. doi:10.1083/jcb.200806024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Daneman R, Agalliu D, Zhou L, Kuhnert F, Kuo CJ, Barres BA (2009) Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc Natl Acad Sci U S A 106(2):641–646. doi:10.1073/pnas.0805165106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Ye X, Wang Y, Cahill H, Yu M, Badea TC, Smallwood PM, Peachey NS, Nathans J (2009) Norrin, frizzled-4, and Lrp5 signaling in endothelial cells controls a genetic program for retinal vascularization. Cell 139(2):285–298. doi:10.1016/j.cell.2009.07.047

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Kuhnert F, Mancuso MR, Shamloo A, Wang HT, Choksi V, Florek M, Su H, Fruttiger M, Young WL, Heilshorn SC, Kuo CJ (2010) Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124. Science 330(6006):985–989. doi:10.1126/science.1196554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Zhou Y, Nathans J (2014) Gpr124 controls CNS angiogenesis and blood-brain barrier integrity by promoting ligand-specific canonical wnt signaling. Dev Cell 31(2):248–256. doi:10.1016/j.devcel.2014.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Engelhardt B, Liebner S (2014) Novel insights into the development and maintenance of the blood-brain barrier. Cell Tissue Res 355(3):687–699. doi:10.1007/s00441-014-1811-2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Stewart PA, Wiley MJ (1981) Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail--chick transplantation chimeras. Dev Biol 84(1):183–192

    Article  CAS  PubMed  Google Scholar 

  27. Hagan N, Ben-Zvi A (2014) The molecular, cellular, and morphological components of blood-brain barrier development during embryogenesis. Semin Cell Dev Biol. doi:10.1016/j.semcdb.2014.12.006

    PubMed  Google Scholar 

  28. Ben-Zvi A, Lacoste B, Kur E, Andreone BJ, Mayshar Y, Yan H, Gu C (2014) Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature 509(7501):507–511. doi:10.1038/nature13324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Wang Y, Rattner A, Zhou Y, Williams J, Smallwood PM, Nathans J (2012) Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity. Cell 151(6):1332–1344. doi:10.1016/j.cell.2012.10.042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Sohet F, Lin C, Munji RN, Lee SY, Ruderisch N, Soung A, Arnold TD, Derugin N, Vexler ZS, Yen FT, Daneman R (2015) LSR/angulin-1 is a tricellular tight junction protein involved in blood-brain barrier formation. J Cell Biol. doi:10.1083/jcb.201410131

    PubMed Central  PubMed  Google Scholar 

  31. Miller FN, Sims DE (1986) Contractile elements in the regulation of macromolecular permeability. Fed Proc 45(2):84–88

    CAS  PubMed  Google Scholar 

  32. Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277(5323):242–245

    Article  CAS  PubMed  Google Scholar 

  33. Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468(7323):562–566. doi:10.1038/nature09513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood-brain barrier. Nature 468(7323):557–561. doi:10.1038/nature09522

    Article  CAS  PubMed  Google Scholar 

  35. Janzer RC, Raff MC (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325(6101):253–257. doi:10.1038/325253a0

    Article  CAS  PubMed  Google Scholar 

  36. Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2(4):287–293. doi:10.1038/35067582

    Article  CAS  PubMed  Google Scholar 

  37. Carmeliet P, Tessier-Lavigne M (2005) Common mechanisms of nerve and blood vessel wiring. Nature 436(7048):193–200. doi:10.1038/nature03875

    Article  CAS  PubMed  Google Scholar 

  38. Kornyei Z, Gocza E, Ruhl R, Orsolits B, Voros E, Szabo B, Vagovits B, Madarasz E (2007) Astroglia-derived retinoic acid is a key factor in glia-induced neurogenesis. FASEB J Off Publ Fed Am Soc Exp Biol 21(10):2496–2509. doi:10.1096/fj.06-7756com

    CAS  Google Scholar 

  39. Mizee MR, Wooldrik D, Lakeman KA, van het Hof B, Drexhage JA, Geerts D, Bugiani M, Aronica E, Mebius RE, Prat A, de Vries HE, Reijerkerk A (2013) Retinoic acid induces blood-brain barrier development. J Neurosc Off J Soc Neurosci 33(4):1660–1671. doi:10.1523/JNEUROSCI.1338-12.2013

    Article  CAS  Google Scholar 

  40. Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S, Ferrara N, Nagy A, Roos KP, Iruela-Arispe ML (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130(4):691–703. doi:10.1016/j.cell.2007.06.054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Ma S, Kwon HJ, Johng H, Zang K, Huang Z (2013) Radial glial neural progenitors regulate nascent brain vascular network stabilization via inhibition of Wnt signaling. PLoS Biol 11(1):e1001469. doi:10.1371/journal.pbio.1001469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 117(2):145–152

    Article  CAS  PubMed  Google Scholar 

  43. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845. doi:10.1126/science.1194637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S, Peri F, Wilson SW, Ruhrberg C (2010) Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116(5):829–840. doi:10.1182/blood-2009-12-257832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Gloor SM, Wachtel M, Bolliger MF, Ishihara H, Landmann R, Frei K (2001) Molecular and cellular permeability control at the blood-brain barrier. Brain Res Brain Res Rev 36(2-3):258–264

    Article  CAS  PubMed  Google Scholar 

  46. Fournier AE, GrandPre T, Strittmatter SM (2001) Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409(6818):341–346. doi:10.1038/35053072

    Article  CAS  PubMed  Google Scholar 

  47. Nash M, Pribiag H, Fournier AE, Jacobson C (2009) Central nervous system regeneration inhibitors and their intracellular substrates. Mol Neurobiol 40(3):224–235. doi:10.1007/s12035-009-8083-y

    Article  CAS  PubMed  Google Scholar 

  48. Aird WC (2012) Endothelial cell heterogeneity. Cold Spring Harbor Perspect Med 2(1):a006429. doi:10.1101/cshperspect.a006429

    Article  Google Scholar 

  49. Daneman R (2012) The blood-brain barrier in health and disease. Ann Neurol 72(5):648–672. doi:10.1002/ana.23648

    Article  CAS  PubMed  Google Scholar 

  50. Girouard H, Iadecola C (2006) Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol 100(1):328–335. doi:10.1152/japplphysiol.00966.2005

    Article  CAS  PubMed  Google Scholar 

  51. Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57(2):178–201. doi:10.1016/j.neuron.2008.01.003

    Article  CAS  PubMed  Google Scholar 

  52. Rubin LL, Staddon JM (1999) The cell biology of the blood-brain barrier. Annu Rev Neurosci 22:11–28. doi:10.1146/annurev.neuro.22.1.11

    Article  CAS  PubMed  Google Scholar 

  53. Kortekaas R, Leenders KL, van Oostrom JC, Vaalburg W, Bart J, Willemsen AT, Hendrikse NH (2005) Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol 57(2):176–179. doi:10.1002/ana.20369

    Article  CAS  PubMed  Google Scholar 

  54. Bowman GL, Kaye JA, Moore M, Waichunas D, Carlson NE, Quinn JF (2007) Blood-brain barrier impairment in Alzheimer disease: stability and functional significance. Neurology 68(21):1809–1814. doi:10.1212/01.wnl.0000262031.18018.1a

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Sandoval KE, Witt KA (2008) Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis 32(2):200–219. doi:10.1016/j.nbd.2008.08.005

    Article  CAS  PubMed  Google Scholar 

  56. Jeynes B, Provias J (2011) The case for blood-brain barrier dysfunction in the pathogenesis of Alzheimer's disease. J Neurosci Res 89(1):22–28. doi:10.1002/jnr.22527

    Article  CAS  PubMed  Google Scholar 

  57. Cabezas R, Avila M, Gonzalez J, El-Bacha RS, Baez E, Garcia-Segura LM, Jurado Coronel JC, Capani F, Cardona-Gomez GP, Barreto GE (2014) Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease. Front Cell Neurosci 8:211. doi:10.3389/fncel.2014.00211

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Anderson JM, Van Itallie CM, Fanning AS (2004) Setting up a selective barrier at the apical junction complex. Curr Opin Cell Biol 16(2):140–145. doi:10.1016/j.ceb.2004.01.005

    Article  CAS  PubMed  Google Scholar 

  59. Anderson JM, Van Itallie CM (2009) Physiology and function of the tight junction. Cold Spring Harbor Perspect Biol 1(2):a002584. doi:10.1101/cshperspect.a002584

    Article  Google Scholar 

  60. Knipp GT, Ho NF, Barsuhn CL, Borchardt RT (1997) Paracellular diffusion in Caco-2 cell monolayers: effect of perturbation on the transport of hydrophilic compounds that vary in charge and size. J Pharm Sci 86(10):1105–1110. doi:10.1021/js9700309

    Article  CAS  PubMed  Google Scholar 

  61. Furuse M, Sasaki H, Tsukita S (1999) Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol 147(4):891–903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Colegio OR, Van Itallie C, Rahner C, Anderson JM (2003) Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture. Am J Physiol Cell Physiol 284(6):C1346–C1354. doi:10.1152/ajpcell.00547.2002

    Article  CAS  PubMed  Google Scholar 

  63. Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161(3):653–660. doi:10.1083/jcb.200302070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Daneman R, Zhou L, Agalliu D, Cahoy JD, Kaushal A, Barres BA (2010) The mouse blood-brain barrier transcriptome: a new resource for understanding the development and function of brain endothelial cells. PLoS One 5(10):e13741. doi:10.1371/journal.pone.0013741

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S (2000) Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 11(12):4131–4142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Bamforth SD, Kniesel U, Wolburg H, Engelhardt B, Risau W (1999) A dominant mutant of occludin disrupts tight junction structure and function. J Cell Sci 112(Pt 12):1879–1888

    CAS  PubMed  Google Scholar 

  67. Hirase T, Staddon JM, Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M, Fujimoto K, Tsukita S, Rubin LL (1997) Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci 110(Pt 14):1603–1613

    CAS  PubMed  Google Scholar 

  68. Yeung D, Manias JL, Stewart DJ, Nag S (2008) Decreased junctional adhesion molecule-A expression during blood-brain barrier breakdown. Acta Neuropathol 115(6):635–642. doi:10.1007/s00401-008-0364-4

    Article  CAS  PubMed  Google Scholar 

  69. Umeda K, Matsui T, Nakayama M, Furuse K, Sasaki H, Furuse M, Tsukita S (2004) Establishment and characterization of cultured epithelial cells lacking expression of ZO-1. J Biol Chem 279(43):44785–44794. doi:10.1074/jbc.M406563200

    Article  CAS  PubMed  Google Scholar 

  70. Lampugnani MG (2010) Endothelial adherens junctions and the actin cytoskeleton: an ‘infinity net’? J Biol 9(3):16. doi:10.1186/jbiol232

    Article  PubMed Central  PubMed  Google Scholar 

  71. Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S (2005) Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 171(6):939–945. doi:10.1083/jcb.200510043

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Masuda S, Oda Y, Sasaki H, Ikenouchi J, Higashi T, Akashi M, Nishi E, Furuse M (2011) LSR defines cell corners for tricellular tight junction formation in epithelial cells. J Cell Sci 124(Pt 4):548–555. doi:10.1242/jcs.072058

    Article  CAS  PubMed  Google Scholar 

  73. Loscher W, Potschka H (2005) Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx J Am Soc Exp NeuroTher 2(1):86–98. doi:10.1602/neurorx.2.1.86

    Google Scholar 

  74. Lee G, Bendayan R (2004) Functional expression and localization of P-glycoprotein in the central nervous system: relevance to the pathogenesis and treatment of neurological disorders. Pharm Res 21(8):1313–1330

    Article  CAS  PubMed  Google Scholar 

  75. Loscher W, Potschka H (2005) Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol 76(1):22–76. doi:10.1016/j.pneurobio.2005.04.006

    Article  PubMed  CAS  Google Scholar 

  76. Thuerauf N, Fromm MF (2006) The role of the transporter P-glycoprotein for disposition and effects of centrally acting drugs and for the pathogenesis of CNS diseases. Eur Arch Psychiatry Clin Neurosci 256(5):281–286. doi:10.1007/s00406-006-0662-6

    Article  PubMed  Google Scholar 

  77. Cornford EM, Hyman S, Swartz BE (1994) The human brain GLUT1 glucose transporter: ultrastructural localization to the blood-brain barrier endothelia. J Cereb Blood Flow Metabol Off J Int Soc Cereb Blood Flow Metab 14(1):106–112. doi:10.1038/jcbfm.1994.15

    Article  CAS  Google Scholar 

  78. Engelhardt B (2008) Immune cell entry into the central nervous system: involvement of adhesion molecules and chemokines. J Neurol Sci 274(1-2):23–26. doi:10.1016/j.jns.2008.05.019

    Article  CAS  PubMed  Google Scholar 

  79. Larochelle C, Alvarez JI, Prat A (2011) How do immune cells overcome the blood-brain barrier in multiple sclerosis? FEBS Lett 585(23):3770–3780. doi:10.1016/j.febslet.2011.04.066

    Article  CAS  PubMed  Google Scholar 

  80. Fries JW, Williams AJ, Atkins RC, Newman W, Lipscomb MF, Collins T (1993) Expression of VCAM-1 and E-selectin in an in vivo model of endothelial activation. Am J Pathol 143(3):725–737

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Henninger DD, Panes J, Eppihimer M, Russell J, Gerritsen M, Anderson DC, Granger DN (1997) Cytokine-induced VCAM-1 and ICAM-1 expression in different organs of the mouse. J Immunol 158(4):1825–1832

    CAS  PubMed  Google Scholar 

  82. Engelhardt B, Ransohoff RM (2012) Capture, crawl, cross: the T cell code to breach the blood-brain barriers. Trends Immunol 33(12):579–589. doi:10.1016/j.it.2012.07.004

    Article  CAS  PubMed  Google Scholar 

  83. Prat A, Biernacki K, Wosik K, Antel JP (2001) Glial cell influence on the human blood-brain barrier. Glia 36(2):145–155

    Article  CAS  PubMed  Google Scholar 

  84. Abbott NJ (2005) Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol 25(1):5–23

    Article  PubMed  Google Scholar 

  85. Pfaff D, Fiedler U, Augustin HG (2006) Emerging roles of the angiopoietin-Tie and the ephrin-Eph systems as regulators of cell trafficking. J Leukoc Biol 80(4):719–726. doi:10.1189/jlb.1105652

    Article  CAS  PubMed  Google Scholar 

  86. Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR (2009) VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown. Proc Natl Acad Sci U S A 106(6):1977–1982. doi:10.1073/pnas.0808698106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Shen F, Walker EJ, Jiang L, Degos V, Li J, Sun B, Heriyanto F, Young WL, Su H (2011) Coexpression of angiopoietin-1 with VEGF increases the structural integrity of the blood-brain barrier and reduces atrophy volume. J Cereb Blood Flow Metabol Off J Int Soc Cereb Blood Flow Metab 31(12):2343–2351. doi:10.1038/jcbfm.2011.97

    Article  CAS  Google Scholar 

  88. Lee SW, Kim WJ, Choi YK, Song HS, Son MJ, Gelman IH, Kim YJ, Kim KW (2003) SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat Med 9(7):900–906. doi:10.1038/nm889

    Article  CAS  PubMed  Google Scholar 

  89. Murakami M, Nguyen LT, Zhuang ZW, Moodie KL, Carmeliet P, Stan RV, Simons M (2008) The FGF system has a key role in regulating vascular integrity. J Clin Invest 118(10):3355–3366. doi:10.1172/JCI35298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Reuss B, Dono R, Unsicker K (2003) Functions of fibroblast growth factor (FGF)-2 and FGF-5 in astroglial differentiation and blood-brain barrier permeability: evidence from mouse mutants. J Neurosci Off J Soc Neurosci 23(16):6404–6412

    CAS  Google Scholar 

  91. Igarashi Y, Utsumi H, Chiba H, Yamada-Sasamori Y, Tobioka H, Kamimura Y, Furuuchi K, Kokai Y, Nakagawa T, Mori M, Sawada N (1999) Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood-brain barrier. Biochem Biophys Res Commun 261(1):108–112. doi:10.1006/bbrc.1999.0992

    Article  CAS  PubMed  Google Scholar 

  92. Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ, Terouz S, Sabbagh M, Wosik K, Bourbonniere L, Bernard M, van Horssen J, de Vries HE, Charron F, Prat A (2011) The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science 334(6063):1727–1731. doi:10.1126/science.1206936

    Article  CAS  PubMed  Google Scholar 

  93. Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor beta in human disease. N Engl J Med 342(18):1350–1358. doi:10.1056/NEJM200005043421807

    Article  CAS  PubMed  Google Scholar 

  94. Dohgu S, Yamauchi A, Takata F, Naito M, Tsuruo T, Higuchi S, Sawada Y, Kataoka Y (2004) Transforming growth factor-beta1 upregulates the tight junction and P-glycoprotein of brain microvascular endothelial cells. Cell Mol Neurobiol 24(3):491–497

    Article  CAS  PubMed  Google Scholar 

  95. Baello S, Iqbal M, Bloise E, Javam M, Gibb W, Matthews SG (2014) TGF-beta1 regulation of multidrug resistance P-glycoprotein in the developing male blood-brain barrier. Endocrinology 155(2):475–484. doi:10.1210/en.2013-1472

    Article  CAS  PubMed  Google Scholar 

  96. Fabry Z, Topham DJ, Fee D, Herlein J, Carlino JA, Hart MN, Sriram S (1995) TGF-beta 2 decreases migration of lymphocytes in vitro and homing of cells into the central nervous system in vivo. J Immunol 155(1):325–332

    CAS  PubMed  Google Scholar 

  97. Heinemann U, Kaufer D, Friedman A (2012) Blood-brain barrier dysfunction, TGFbeta signaling, and astrocyte dysfunction in epilepsy. Glia 60(8):1251–1257. doi:10.1002/glia.22311

    Article  PubMed Central  PubMed  Google Scholar 

  98. Wosik K, Cayrol R, Dodelet-Devillers A, Berthelet F, Bernard M, Moumdjian R, Bouthillier A, Reudelhuber TL, Prat A (2007) Angiotensin II controls occludin function and is required for blood brain barrier maintenance: relevance to multiple sclerosis. J Neurosci Off J Soc Neurosci 27(34):9032–9042. doi:10.1523/JNEUROSCI.2088-07.2007

    Article  CAS  Google Scholar 

  99. Tremblay ME, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A (2011) The role of microglia in the healthy brain. J Neurosci Off J Soc Neurosci 31(45):16064–16069. doi:10.1523/JNEUROSCI.4158-11.2011

    Article  CAS  Google Scholar 

  100. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164–1178. doi:10.1016/j.cell.2007.10.036

    Article  CAS  PubMed  Google Scholar 

  101. Bialas AR, Stevens B (2013) TGF-beta signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat Neurosci 16(12):1773–1782. doi:10.1038/nn.3560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Hughes V (2012) Microglia: the constant gardeners. Nature 485(7400):570–572. doi:10.1038/485570a

    Article  CAS  PubMed  Google Scholar 

  103. Schwartz M, Kipnis J, Rivest S, Prat A (2013) How do immune cells support and shape the brain in health, disease, and aging? J Neurosci Off J Soc Neurosci 33(45):17587–17596. doi:10.1523/JNEUROSCI.3241-13.2013

    Article  CAS  Google Scholar 

  104. Seo JH, Maki T, Maeda M, Miyamoto N, Liang AC, Hayakawa K, Pham LD, Suwa F, Taguchi A, Matsuyama T, Ihara M, Kim KW, Lo EH, Arai K (2014) Oligodendrocyte precursor cells support blood-brain barrier integrity via TGF-beta signaling. PLoS One 9(7):e103174. doi:10.1371/journal.pone.0103174

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  105. Leong SY, Rao VT, Bin JM, Gris P, Sangaralingam M, Kennedy TE, Antel JP (2014) Heterogeneity of oligodendrocyte progenitor cells in adult human brain. Ann Clin transl Neurol 1(4):272–283. doi:10.1002/acn3.55

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Eddleston M, Mucke L (1993) Molecular profile of reactive astrocytes—implications for their role in neurologic disease. Neuroscience 54(1):15–36

    Article  CAS  PubMed  Google Scholar 

  107. Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2(12):679–689. doi:10.1038/ncpneuro0355

    Article  CAS  PubMed  Google Scholar 

  108. Burda JE, Sofroniew MV (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81(2):229–248. doi:10.1016/j.neuron.2013.12.034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Gray F, Lescs MC, Keohane C, Paraire F, Marc B, Durigon M, Gherardi R (1992) Early brain changes in HIV infection: neuropathological study of 11 HIV seropositive, non-AIDS cases. J Neuropathol Exp Neurol 51(2):177–185

    Article  CAS  PubMed  Google Scholar 

  110. Girgrah N, Letarte M, Becker LE, Cruz TF, Theriault E, Moscarello MA (1991) Localization of the CD44 glycoprotein to fibrous astrocytes in normal white matter and to reactive astrocytes in active lesions in multiple sclerosis. J Neuropathol Exp Neurol 50(6):779–792

    Article  CAS  PubMed  Google Scholar 

  111. Raghavendra Rao VL, Dogan A, Bowen KK, Dempsey RJ (2000) Traumatic brain injury leads to increased expression of peripheral-type benzodiazepine receptors, neuronal death, and activation of astrocytes and microglia in rat thalamus. Exp Neurol 161(1):102–114. doi:10.1006/exnr.1999.7269

    Article  CAS  PubMed  Google Scholar 

  112. Petito CK, Morgello S, Felix JC, Lesser ML (1990) The two patterns of reactive astrocytosis in postischemic rat brain. J Cereb Blood Flow Metabol Off J Int Soc Cereb Blood Flow Metab 10(6):850–859. doi:10.1038/jcbfm.1990.141

    Article  CAS  Google Scholar 

  113. Jorgensen OS, Brooksbank BW, Balazs R (1990) Neuronal plasticity and astrocytic reaction in Down syndrome and Alzheimer disease. J Neurol Sci 98(1):63–79

    Article  CAS  PubMed  Google Scholar 

  114. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32(12):638–647. doi:10.1016/j.tins.2009.08.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35. doi:10.1007/s00401-009-0619-8

    Article  PubMed Central  PubMed  Google Scholar 

  116. Bardehle S, Kruger M, Buggenthin F, Schwausch J, Ninkovic J, Clevers H, Snippert HJ, Theis FJ, Meyer-Luehmann M, Bechmann I, Dimou L, Gotz M (2013) Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat Neurosci 16(5):580–586. doi:10.1038/nn.3371

    Article  CAS  PubMed  Google Scholar 

  117. Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN, Mucke L, Johnson MH, Sofroniew MV (1999) Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23(2):297–308

    Article  CAS  PubMed  Google Scholar 

  118. Drogemuller K, Helmuth U, Brunn A, Sakowicz-Burkiewicz M, Gutmann DH, Mueller W, Deckert M, Schluter D (2008) Astrocyte gp130 expression is critical for the control of Toxoplasma encephalitis. J Immunol 181(4):2683–2693

    Article  PubMed  Google Scholar 

  119. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci Off J Soc Neurosci 24(9):2143–2155. doi:10.1523/JNEUROSCI.3547-03.2004

    Article  CAS  Google Scholar 

  120. Voskuhl RR, Peterson RS, Song B, Ao Y, Morales LB, Tiwari-Woodruff S, Sofroniew MV (2009) Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J Neurosci Off J Soc Neurosci 29(37):11511–11522. doi:10.1523/JNEUROSCI.1514-09.2009

    Article  CAS  Google Scholar 

  121. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16(3):675–686

    Article  CAS  PubMed  Google Scholar 

  122. Brambilla R, Bracchi-Ricard V, Hu WH, Frydel B, Bramwell A, Karmally S, Green EJ, Bethea JR (2005) Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury. J Exp Med 202(1):145–156. doi:10.1084/jem.20041918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Brambilla R, Persaud T, Hu X, Karmally S, Shestopalov VI, Dvoriantchikova G, Ivanov D, Nathanson L, Barnum SR, Bethea JR (2009) Transgenic inhibition of astroglial NF-kappa B improves functional outcome in experimental autoimmune encephalomyelitis by suppressing chronic central nervous system inflammation. J Immunol 182(5):2628–2640. doi:10.4049/jimmunol.0802954

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Gimsa U, Mitchison NA, Brunner-Weinzierl MC (2013) Immune privilege as an intrinsic CNS property: astrocytes protect the CNS against T-cell-mediated neuroinflammation. Mediat Inflamm 2013:320519. doi:10.1155/2013/320519

    Article  CAS  Google Scholar 

  125. Koyama Y, Michinaga S (2012) Regulations of astrocytic functions by endothelins: roles in the pathophysiological responses of damaged brains. J Pharmacol Sci 118(4):401–407

    Article  CAS  PubMed  Google Scholar 

  126. Ifergan I, Kebir H, Bernard M, Wosik K, Dodelet-Devillers A, Cayrol R, Arbour N, Prat A (2008) The blood-brain barrier induces differentiation of migrating monocytes into Th17-polarizing dendritic cells. Brain J Neurol 131(Pt 3):785–799. doi:10.1093/brain/awm295

    Article  Google Scholar 

  127. Brambilla R, Morton PD, Ashbaugh JJ, Karmally S, Lambertsen KL, Bethea JR (2014) Astrocytes play a key role in EAE pathophysiology by orchestrating in the CNS the inflammatory response of resident and peripheral immune cells and by suppressing remyelination. Glia 62(3):452–467. doi:10.1002/glia.22616

    Article  PubMed  Google Scholar 

  128. Nylander A, Hafler DA (2012) Multiple sclerosis. J Clin Invest 122(4):1180–1188. doi:10.1172/JCI58649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. International Multiple Sclerosis Genetics C, Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, De Jager PL, de Bakker PI, Gabriel SB, Mirel DB, Ivinson AJ, Pericak-Vance MA, Gregory SG, Rioux JD, McCauley JL, Haines JL, Barcellos LF, Cree B, Oksenberg JR, Hauser SL (2007) Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 357(9):851–862. doi:10.1056/NEJMoa073493

    Article  Google Scholar 

  130. Broux B, Hellings N, Venken K, Rummens JL, Hensen K, Van Wijmeersch B, Stinissen P (2010) Haplotype 4 of the multiple sclerosis-associated interleukin-7 receptor alpha gene influences the frequency of recent thymic emigrants. Genes Immun 11(4):326–333. doi:10.1038/gene.2009.106

    Article  CAS  PubMed  Google Scholar 

  131. Brosnan CF, Raine CS (2013) The astrocyte in multiple sclerosis revisited. Glia 61(4):453–465. doi:10.1002/glia.22443

    Article  PubMed  Google Scholar 

  132. Broux B, Stinissen P, Hellings N (2013) Which immune cells matter? The immunopathogenesis of multiple sclerosis. Crit Rev Immunol 33(4):283–306

    Article  CAS  PubMed  Google Scholar 

  133. Cayrol R, Wosik K, Berard JL, Dodelet-Devillers A, Ifergan I, Kebir H, Haqqani AS, Kreymborg K, Krug S, Moumdjian R, Bouthillier A, Becher B, Arbour N, David S, Stanimirovic D, Prat A (2008) Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nat Immunol 9(2):137–145. doi:10.1038/ni1551

    Article  CAS  PubMed  Google Scholar 

  134. Ifergan I, Kebir H, Alvarez JI, Marceau G, Bernard M, Bourbonniere L, Poirier J, Duquette P, Talbot PJ, Arbour N, Prat A (2011) Central nervous system recruitment of effector memory CD8+ T lymphocytes during neuroinflammation is dependent on alpha4 integrin. Brain J Neurol 134(Pt 12):3560–3577. doi:10.1093/brain/awr268

    Article  Google Scholar 

  135. Ifergan I, Kebir H, Terouz S, Alvarez JI, Lecuyer MA, Gendron S, Bourbonniere L, Dunay IR, Bouthillier A, Moumdjian R, Fontana A, Haqqani A, Klopstein A, Prinz M, Lopez-Vales R, Birchler T, Prat A (2011) Role of Ninjurin-1 in the migration of myeloid cells to central nervous system inflammatory lesions. Ann Neurol 70(5):751–763. doi:10.1002/ana.22519

    Article  CAS  PubMed  Google Scholar 

  136. Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, Giuliani F, Arbour N, Becher B, Prat A (2007) Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 13(10):1173–1175. doi:10.1038/nm1651

    Article  CAS  PubMed  Google Scholar 

  137. Alvarez JI, Saint-Laurent O, Godschalk A, Terouz S, Briels C, Larouche S, Bourbonniere L, Larochelle C, Prat A (2014) Focal disturbances in the blood-brain barrier are associated with formation of neuroinflammatory lesions. Neurobiol Dis 74C:14–24. doi:10.1016/j.nbd.2014.09.016

    Google Scholar 

  138. Luo J, Ho P, Steinman L, Wyss-Coray T (2008) Bioluminescence in vivo imaging of autoimmune encephalomyelitis predicts disease. J Neuroinflammation 5:6. doi:10.1186/1742-2094-5-6

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  139. Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36(2):180–190

    Article  CAS  PubMed  Google Scholar 

  140. Chen Y, Swanson RA (2003) Astrocytes and brain injury. J Cereb Blood Flow Metabol Off J Int Soc Cereb Blood Flow Metab 23(2):137–149

    Article  Google Scholar 

  141. Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28(3):138–145. doi:10.1016/j.it.2007.01.005

    Article  CAS  PubMed  Google Scholar 

  142. Nair A, Frederick TJ, Miller SD (2008) Astrocytes in multiple sclerosis: a product of their environment. Cell Mol Life Sci CMLS 65(17):2702–2720. doi:10.1007/s00018-008-8059-5

    Article  CAS  PubMed  Google Scholar 

  143. Proescholdt MA, Jacobson S, Tresser N, Oldfield EH, Merrill MJ (2002) Vascular endothelial growth factor is expressed in multiple sclerosis plaques and can induce inflammatory lesions in experimental allergic encephalomyelitis rats. J Neuropathol Exp Neurol 61(10):914–925

    Article  CAS  PubMed  Google Scholar 

  144. Argaw AT, Zhang Y, Snyder BJ, Zhao ML, Kopp N, Lee SC, Raine CS, Brosnan CF, John GR (2006) IL-1beta regulates blood-brain barrier permeability via reactivation of the hypoxia-angiogenesis program. J Immunol 177(8):5574–5584

    Article  CAS  PubMed  Google Scholar 

  145. Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, Mahase S, Dutta DJ, Seto J, Kramer EG, Ferrara N, Sofroniew MV, John GR (2012) Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest 122(7):2454–2468. doi:10.1172/JCI60842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  146. Shrestha B, Ge S, Pachter JS (2014) Resolution of central nervous system astrocytic and endothelial sources of CCL2 gene expression during evolving neuroinflammation. Fluids Barriers CNS 11(1):6. doi:10.1186/2045-8118-11-6

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  147. Paul D, Ge S, Lemire Y, Jellison ER, Serwanski DR, Ruddle NH, Pachter JS (2014) Cell-selective knockout and 3D confocal image analysis reveals separate roles for astrocyte-and endothelial-derived CCL2 in neuroinflammation. J Neuroinflammation 11:10. doi:10.1186/1742-2094-11-10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  148. Kim RY, Hoffman AS, Itoh N, Ao Y, Spence R, Sofroniew MV, Voskuhl RR (2014) Astrocyte CCL2 sustains immune cell infiltration in chronic experimental autoimmune encephalomyelitis. J Neuroimmunol 274(1-2):53–61. doi:10.1016/j.jneuroim.2014.06.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  149. Moreno M, Bannerman P, Ma J, Guo F, Miers L, Soulika AM, Pleasure D (2014) Conditional ablation of astroglial CCL2 suppresses CNS accumulation of M1 macrophages and preserves axons in mice with MOG peptide EAE. J Neurosci Off J Soc Neurosci 34(24):8175–8185. doi:10.1523/JNEUROSCI.1137-14.2014

    Article  CAS  Google Scholar 

  150. Prat A, Biernacki K, Lavoie JF, Poirier J, Duquette P, Antel JP (2002) Migration of multiple sclerosis lymphocytes through brain endothelium. Arch Neurol 59(3):391–397

    Article  PubMed  Google Scholar 

  151. Ifergan I, Wosik K, Cayrol R, Kebir H, Auger C, Bernard M, Bouthillier A, Moumdjian R, Duquette P, Prat A (2006) Statins reduce human blood-brain barrier permeability and restrict leukocyte migration: relevance to multiple sclerosis. Ann Neurol 60(1):45–55. doi:10.1002/ana.20875

    Article  CAS  PubMed  Google Scholar 

  152. Kooij G, Mizee MR, van Horssen J, Reijerkerk A, Witte ME, Drexhage JA, van der Pol SM, van Het Hof B, Scheffer G, Scheper R, Dijkstra CD, van der Valk P, de Vries HE (2011) Adenosine triphosphate-binding cassette transporters mediate chemokine (C-C motif) ligand 2 secretion from reactive astrocytes: relevance to multiple sclerosis pathogenesis. Brain J Neurol 134(Pt 2):555–570. doi:10.1093/brain/awq330

    Article  Google Scholar 

  153. Mayo L, Trauger SA, Blain M, Nadeau M, Patel B, Alvarez JI, Mascanfroni ID, Yeste A, Kivisakk P, Kallas K, Ellezam B, Bakshi R, Prat A, Antel JP, Weiner HL, Quintana FJ (2014) Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nat Med 20(10):1147–1156. doi:10.1038/nm.3681

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  154. Wang Y, Imitola J, Rasmussen S, O'Connor KC, Khoury SJ (2008) Paradoxical dysregulation of the neural stem cell pathway Sonic Hedgehog-Gli1 in autoimmune encephalomyelitis and multiple sclerosis. Ann Neurol 64(4):417–427. doi:10.1002/ana.21457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  155. Wang Y, Jin S, Sonobe Y, Cheng Y, Horiuchi H, Parajuli B, Kawanokuchi J, Mizuno T, Takeuchi H, Suzumura A (2014) Interleukin-1beta induces blood-brain barrier disruption by downregulating Sonic Hedgehog in astrocytes. PLoS One 9(10):e110024. doi:10.1371/journal.pone.0110024

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  156. Podjaski C, Alvarez JI, Bourbonniere L, Larouche S, Terouz S, Bin JM, Lécuyer M-A, Saint-Laurent O, Larochelle C, Darlington PJ, Arbour N, Antel JP, Kennedy TE, Prat A (2015) Netrin 1 regulates blood–brain barrier function and neuroinflammation. Brain 138(6):1598–612. doi:10.1093/brain/awv092

  157. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19(8):312–318

    Article  CAS  PubMed  Google Scholar 

  158. Streit WJ, Walter SA, Pennell NA (1999) Reactive microgliosis. Prog Neurobiol 57(6):563–581

    Article  CAS  PubMed  Google Scholar 

  159. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318. doi:10.1126/science.1110647

    Article  CAS  PubMed  Google Scholar 

  160. da Fonseca AC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C, Lima FR (2014) The impact of microglial activation on blood-brain barrier in brain diseases. Front Cell Neurosci 8:362. doi:10.3389/fncel.2014.00362

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  161. Rojo AI, McBean G, Cindric M, Egea J, Lopez MG, Rada P, Zarkovic N, Cuadrado A (2014) Redox control of microglial function: molecular mechanisms and functional significance. Antioxid Redox Signal 21(12):1766–1801. doi:10.1089/ars.2013.5745

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  162. Sumi N, Nishioku T, Takata F, Matsumoto J, Watanabe T, Shuto H, Yamauchi A, Dohgu S, Kataoka Y (2010) Lipopolysaccharide-activated microglia induce dysfunction of the blood-brain barrier in rat microvascular endothelial cells co-cultured with microglia. Cell Mol Neurobiol 30(2):247–253. doi:10.1007/s10571-009-9446-7

    Article  CAS  PubMed  Google Scholar 

  163. Yenari MA, Xu L, Tang XN, Qiao Y, Giffard RG (2006) Microglia potentiate damage to blood-brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke J Cereb Circ 37(4):1087–1093. doi:10.1161/01.STR.0000206281.77178.ac

    Article  Google Scholar 

  164. Nishioku T, Matsumoto J, Dohgu S, Sumi N, Miyao K, Takata F, Shuto H, Yamauchi A, Kataoka Y (2010) Tumor necrosis factor-alpha mediates the blood-brain barrier dysfunction induced by activated microglia in mouse brain microvascular endothelial cells. J Pharmacol Sci 112(2):251–254

    Article  CAS  PubMed  Google Scholar 

  165. Bogie JF, Stinissen P, Hendriks JJ (2014) Macrophage subsets and microglia in multiple sclerosis. Acta Neuropathol 128(2):191–213. doi:10.1007/s00401-014-1310-2

    Article  CAS  PubMed  Google Scholar 

  166. van Horssen J, Singh S, van der Pol S, Kipp M, Lim JL, Peferoen L, Gerritsen W, Kooi EJ, Witte ME, Geurts JJ, de Vries HE, Peferoen-Baert R, van den Elsen PJ, van der Valk P, Amor S (2012) Clusters of activated microglia in normal-appearing white matter show signs of innate immune activation. J Neuroinflammation 9:156. doi:10.1186/1742-2094-9-156

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  167. Davalos D, Ryu JK, Merlini M, Baeten KM, Le Moan N, Petersen MA, Deerinck TJ, Smirnoff DS, Bedard C, Hakozaki H, Gonias Murray S, Ling JB, Lassmann H, Degen JL, Ellisman MH, Akassoglou K (2012) Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat Commun 3:1227. doi:10.1038/ncomms2230

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  168. Fischer MT, Sharma R, Lim JL, Haider L, Frischer JM, Drexhage J, Mahad D, Bradl M, van Horssen J, Lassmann H (2012) NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Brain J Neurol 135(Pt 3):886–899. doi:10.1093/brain/aws012

    Article  Google Scholar 

  169. Rochfort KD, Collins LE, Murphy RP, Cummins PM (2014) Downregulation of blood-brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase-dependent ROS generation: consequences for interendothelial adherens and tight junctions. PLoS One 9(7):e101815. doi:10.1371/journal.pone.0101815

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  170. Liu Y, Hao W, Letiembre M, Walter S, Kulanga M, Neumann H, Fassbender K (2006) Suppression of microglial inflammatory activity by myelin phagocytosis: role of p47-PHOX-mediated generation of reactive oxygen species. J Neurosci Off J Soc Neurosci 26(50):12904–12913. doi:10.1523/JNEUROSCI.2531-06.2006

    Article  CAS  Google Scholar 

  171. Boven LA, Van Meurs M, Van Zwam M, Wierenga-Wolf A, Hintzen RQ, Boot RG, Aerts JM, Amor S, Nieuwenhuis EE, Laman JD (2006) Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis. Brain J Neurol 129(Pt 2):517–526. doi:10.1093/brain/awh707

    Google Scholar 

  172. Bogie JF, Stinissen P, Hellings N, Hendriks JJ (2011) Myelin-phagocytosing macrophages modulate autoreactive T cell proliferation. J Neuroinflammation 8:85. doi:10.1186/1742-2094-8-85

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  173. Kotter MR, Li WW, Zhao C, Franklin RJ (2006) Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci Off J Soc Neurosci 26(1):328–332. doi:10.1523/JNEUROSCI.2615-05.2006

    Article  CAS  Google Scholar 

  174. Yamasaki R, Lu H, Butovsky O, Ohno N, Rietsch AM, Cialic R, Wu PM, Doykan CE, Lin J, Cotleur AC, Kidd G, Zorlu MM, Sun N, Hu W, Liu L, Lee JC, Taylor SE, Uehlein L, Dixon D, Gu J, Floruta CM, Zhu M, Charo IF, Weiner HL, Ransohoff RM (2014) Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med 211(8):1533–1549. doi:10.1084/jem.20132477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Prat is a senior Scholar of the FRQS. Dr. Broux is a postdoctoral fellow of Fonds voor Wetenschappelijk Onderzoek (FWO) Flanders. Ms. Gowing is funded by the Canadian Institutes of Health Research Strategic Training Program in Neuroinflammation. The work herein was funded by an operating grant from the MS Society of Canada.

The authors thank Phil Penalosa and Jérémie Lemarbre from Let There Be for their help in preparing the figure for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Prat.

Additional information

This article is a contribution to the Special Issue on : Role of Astrocytes and Microglia in CNS Inflammation - Guest Editor: Francisco Quintana

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broux, B., Gowing, E. & Prat, A. Glial regulation of the blood-brain barrier in health and disease. Semin Immunopathol 37, 577–590 (2015). https://doi.org/10.1007/s00281-015-0516-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-015-0516-2

Keywords

Navigation