Skip to main content

Advertisement

Log in

Effector CD8 T cell immunity in microsporidial infection: a lone defense mechanism

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Microsporidia is a group of pathogens, which can pose severe risks to the immunocompromised population such as HIV-infected individuals. The expertise to diagnose these pathogens is limited and therefore their prevalence is believed to be much higher than what is currently known. In a mouse model of infections, it has been reported that CD8 T cells are the primary effector cells responsible for protecting the infected host. As the infection is acquired via per-oral route, CD8 T cells in the gut compartment apparently act as a first line of defense against the pathogens. Thus, generation of a robust CD8 T cell response that exhibits polyfunctional ability is critical for host survival. In this review, we describe the effector CD8 T cells generated during microsporidial infection and underline the factors that may be essential for the elicitation of protective immunity against this understudied but significant pathogen. Overall, this review will highlight the necessity for a better understanding of the development of the CD8 T cell response in gut associated lymphoid tissue (GALT) and provide some insights into therapies that may be used to restore defective CD8 T cell functionality in an immunocompromised situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Didier ES, Varner PW, Didier PJ, Aldras AM, Millichamp NJ, Murphey-Corb M, Bohm R, Shadduck JA (1994) Experimental microsporidiosis in immunocompetent and immunodeficient mice and monkeys. Folia Parasitol (Praha) 41(1):1–11

    CAS  Google Scholar 

  2. Hermanek J, Koudela B, Kucerova Z, Ditrich O, Travnicek J (1993) Prophylactic and therapeutic immune reconstitution of SCID mice infected with encephalitozoon cuniculi. Folia Parasitol (Praha) 40(4):287–291

    CAS  Google Scholar 

  3. Braunfuchsova P, Salat J, Kopecky J (2001) CD8 + T lymphocytes protect SCID mice against Encephalitozoon cuniculi infection. Int J Parasitol 31(7):681–686, S0020751901001345

    Article  CAS  PubMed  Google Scholar 

  4. Khan IA, Moretto M (1999) Role of gamma interferon in cellular immune response against murine Encephalitozoon cuniculi infection. Infect Immun 67(4):1887–1893

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Khan IA, Schwartzman JD, Kasper LH, Moretto M (1999) CD8 + CTLs are essential for protective immunity against Encephalitozoon cuniculi infection. J Immunol 162(10):6086–6091

    CAS  PubMed  Google Scholar 

  6. Moretto MM, Weiss LM, Combe CL, Khan IA (2007) IFN-gamma-producing dendritic cells are important for priming of gut intraepithelial lymphocyte response against intracellular parasitic infection. J Immunol 179(4):2485–2492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Moretto M, Casciotti L, Durell B, Khan IA (2000) Lack of CD4(+) T cells does not affect induction of CD8(+) T-cell immunity against Encephalitozoon cuniculi infection. Infect Immun 68(11):6223–6232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Moretto M, Weiss LM, Khan IA (2004) Induction of a rapid and strong antigen-specific intraepithelial lymphocyte response during oral Encephalitozoon cuniculi infection. J Immunol 172(7):4402–4409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Didier ES, Weiss LM (2011) Microsporidiosis: not just in AIDS patients. Curr Opin Infect Dis 24(5):490–495. doi:10.1097/QCO.0b013e32834aa152

    Article  PubMed Central  PubMed  Google Scholar 

  10. Izquierdo F, Castro Hermida JA, Fenoy S, Mezo M, Gonzalez-Warleta M, del Aguila C (2011) Detection of microsporidia in drinking water, wastewater and recreational rivers. Water Res 45(16):4837–4843. doi:10.1016/j.watres.2011.06.033

    Article  CAS  PubMed  Google Scholar 

  11. Cotte L, Rabodonirina M, Chapuis F, Bailly F, Bissuel F, Raynal C, Gelas P, Persat F, Piens MA, Trepo C (1999) Waterborne outbreak of intestinal microsporidiosis in persons with and without human immunodeficiency virus infection. J Infect Dis 180(6):2003–2008. doi:10.1086/315112

    Article  CAS  PubMed  Google Scholar 

  12. Decraene V, Lebbad M, Botero-Kleiven S, Gustavsson AM, Lofdahl M (2012) First reported foodborne outbreak associated with microsporidia, Sweden, October 2009. Epidemiol Infect 140(3):519–527. doi:10.1017/S095026881100077X

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Didier ES, Weiss LM (2006) Microsporidiosis: current status. Curr Opin Infect Dis 19(5):485–492. doi:10.1097/01.qco.0000244055.46382.23

    Article  PubMed Central  PubMed  Google Scholar 

  14. Didier ES (2005) Microsporidiosis: an emerging and opportunistic infection in humans and animals. Acta Trop 94(1):61–76. doi:10.1016/j.actatropica.2005.01.010

    Article  CAS  PubMed  Google Scholar 

  15. Chacin-Bonilla L, Panunzio AP, Monsalve-Castillo FM, Parra-Cepeda IE, Martinez R (2006) Microsporidiosis in Venezuela: prevalence of intestinal microsporidiosis and its contribution to diarrhea in a group of human immunodeficiency virus-infected patients from Zulia State. Am J Trop Med Hyg 74(3):482–486

    PubMed  Google Scholar 

  16. Sokolova OI, Demyanov AV, Bowers LC, Didier ES, Yakovlev AV, Skarlato SO, Sokolova YY (2011) Emerging microsporidian infections in Russian HIV-infected patients. J Clin Microbiol 49(6):2102–2108. doi:10.1128/JCM. 02624-10

    Article  PubMed Central  PubMed  Google Scholar 

  17. Viriyavejakul P, Nintasen R, Punsawad C, Chaisri U, Punpoowong B, Riganti M (2009) High prevalence of Microsporidium infection in HIV-infected patients. Southeast Asian J Trop Med Public Health 40(2):223–228

    PubMed  Google Scholar 

  18. Hocevar SN, Paddock CD, Spak CW, Rosenblatt R, Diaz-Luna H, Castillo I, Luna S, Friedman GC, Antony S, Stoddard RA, Tiller RV, Peterson T, Blau DM, Sriram RR, da Silva A, de Almeida M, Benedict T, Goldsmith CS, Zaki SR, Visvesvara GS, Kuehnert MJ (2014) Microsporidiosis acquired through solid organ transplantation: a public health investigation. Ann Intern Med 160(4):213–220. doi:10.7326/M13-2226

    Article  PubMed  Google Scholar 

  19. Kicia M, Wesolowska M, Jakuszko K, Kopacz Z, Sak B, Kvetonova D, Krajewska M, Kvac M (2014) Concurrent infection of the urinary tract with Encephalitozoon cuniculi and Enterocytozoon bieneusi in a renal transplant recipient. J Clin Microbiol 52(5):1780–1782. doi:10.1128/JCM. 03328-13

    Article  PubMed Central  PubMed  Google Scholar 

  20. Ladapo TA, Nourse P, Pillay K, Frean J, Birkhead M, Poonsamy B, Gajjar P (2014) Microsporidiosis in pediatric renal transplant patients in Cape Town, South Africa: two case reports. Pediatr Transplant 18(7):E220–226. doi:10.1111/petr.12327

    Article  CAS  PubMed  Google Scholar 

  21. Muller A, Bialek R, Kamper A, Fatkenheuer G, Salzberger B, Franzen C (2001) Detection of microsporidia in travelers with diarrhea. J Clin Microbiol 39(4):1630–1632. doi:10.1128/JCM. 39.4.1630-1632.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Lores B, Lopez-Miragaya I, Arias C, Fenoy S, Torres J, del Aguila C (2002) Intestinal microsporidiosis due to Enterocytozoon bieneusi in elderly human immunodeficiency virus-negative patients from Vigo, Spain. Clin Infect Dis 34(7):918–921. doi:10.1086/339205

    Article  PubMed  Google Scholar 

  23. Halanova M, Valencakova A, Malcekova B, Kvac M, Sak B, Kvetonova D, Balent P, Cislakova L (2013) Occurrence of microsporidia as emerging pathogens in Slovak Roma children and their impact on public health. Ann Agric Environ Med 20(4):695–698, 1081373

    PubMed  Google Scholar 

  24. Omura M, Furuya K, Kudo S, Sugiura W, Azuma H (2007) Detecting immunoglobulin M antibodies against microsporidian Encephalitozoon cuniculi polar tubes in sera from healthy and human immunodeficiency virus-infected persons in Japan. Clin Vaccine Immunol 14(2):168–172. doi:10.1128/CVI. 00224-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Sak B, Kvac M, Kucerova Z, Kvetonova D, Sakova K (2011) Latent microsporidial infection in immunocompetent individuals—a longitudinal study. PLoS Negl Trop Dis 5(5):e1162. doi:10.1371/journal.pntd.0001162

    Article  PubMed Central  PubMed  Google Scholar 

  26. Kotkova M, Sak B, Kvetonova D, Kvac M (2013) Latent microsporidiosis caused by Encephalitozoon cuniculi in immunocompetent hosts: a murine model demonstrating the ineffectiveness of the immune system and treatment with albendazole. PLoS One 8(4):e60941. doi:10.1371/journal.pone.0060941

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Carr A, Marriott D, Field A, Vasak E, Cooper DA (1998) Treatment of HIV-1-associated microsporidiosis and cryptosporidiosis with combination antiretroviral therapy. Lancet 351(9098):256–261. doi:10.1016/S0140-6736(97)07529-6

    Article  CAS  PubMed  Google Scholar 

  28. Molina JM, Chastang C, Goguel J, Michiels JF, Sarfati C, Desportes-Livage I, Horton J, Derouin F, Modai J (1998) Albendazole for treatment and prophylaxis of microsporidiosis due to Encephalitozoon intestinalis in patients with AIDS: a randomized double-blind controlled trial. J Infect Dis 177(5):1373–1377

    Article  CAS  PubMed  Google Scholar 

  29. Lono AR, Kumar S, Chye TT (2008) Incidence of microsporidia in cancer patients. J Gastrointest Cancer 39(1–4):124–129. doi:10.1007/s12029-009-9065-z

    Article  PubMed  Google Scholar 

  30. Chandramathi S, Suresh K, Anita ZB, Kuppusamy UR (2012) Infections of Blastocystis hominis and microsporidia in cancer patients: are they opportunistic? Trans R Soc Trop Med Hyg 106(4):267–269. doi:10.1016/j.trstmh.2011.12.008

    Article  PubMed  Google Scholar 

  31. Schmidt EC, Shadduck JA (1983) Murine encephalitozoonosis model for studying the host-parasite relationship of a chronic infection. Infect Immun 40(3):936–942

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Schmidt EC, Shadduck JA (1984) Mechanisms of resistance to the intracellular protozoan Encephalitozoon cuniculi in mice. J Immunol 133(5):2712–2719

    CAS  PubMed  Google Scholar 

  33. Braunfuchsova P, Salat J, Kopecky J (2002) Comparison of the significance of CD4+ and CD8 + T lymphocytes in the protection of mice against Encephalitozoon cuniculi infection. J Parasitol 88(4):797–799. doi:10.1645/0022-3395(2002)088[0797:COTSOC]2.0.CO;2

    Article  PubMed  Google Scholar 

  34. Moretto M, Durell B, Schwartzman JD, Khan IA (2001) Gamma delta T cell-deficient mice have a down-regulated CD8 + T cell immune response against Encephalitozoon cuniculi infection. J Immunol 166(12):7389–7397

    Article  CAS  PubMed  Google Scholar 

  35. Betts MR, Nason MC, West SM, De Rosa SC, Migueles SA, Abraham J, Lederman MM, Benito JM, Goepfert PA, Connors M, Roederer M, Koup RA (2006) HIV nonprogressors preferentially maintain highly functional HIV-specific CD8 + T cells. Blood 107(12):4781–4789. doi:10.1182/blood-2005-12-4818

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Precopio ML, Betts MR, Parrino J, Price DA, Gostick E, Ambrozak DR, Asher TE, Douek DC, Harari A, Pantaleo G, Bailer R, Graham BS, Roederer M, Koup RA (2007) Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8(+) T cell responses. J Exp Med 204(6):1405–1416. doi:10.1084/jem.20062363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Seder RA, Darrah PA, Roederer M (2008) T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol 8(4):247–258. doi:10.1038/nri2274

    Article  CAS  PubMed  Google Scholar 

  38. Bhadra R, Moretto MM, Castillo JC, Petrovas C, Ferrando-Martinez S, Shokal U, Leal M, Koup RA, Eleftherianos I, Khan IA (2014) Intrinsic TGF-beta signaling promotes age-dependent CD8 + T cell polyfunctionality attrition. J Clin Invest 124(6):2441–2455. doi:10.1172/JCI70522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Salat J, Braunfuchsova P, Kopecky J, Ditrich O (2002) Role of CD4+ and CD8 + T lymphocytes in the protection of mice against Encephalitozoon intestinalis infection. Parasitol Res 88(7):603–608. doi:10.1007/s00436-002-0620-9

    Article  PubMed  Google Scholar 

  40. Hayday A, Theodoridis E, Ramsburg E, Shires J (2001) Intraepithelial lymphocytes: exploring the third way in immunology. Nat Immunol 2(11):997–1003. doi:10.1038/ni1101-997

    Article  CAS  PubMed  Google Scholar 

  41. Hall JA, Bouladoux N, Sun CM, Wohlfert EA, Blank RB, Zhu Q, Grigg ME, Berzofsky JA, Belkaid Y (2008) Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 29(4):637–649. doi:10.1016/j.immuni.2008.08.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Moretto MM, Lawlor EM, Khan IA (2008) Aging mice exhibit a functional defect in mucosal dendritic cell response against an intracellular pathogen. J Immunol 181(11):7977–7984, 181/11/7977

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Salat J, Sak B, Le T, Kopecky J (2004) Susceptibility of IFN-gamma or IL-12 knock-out and SCID mice to infection with two microsporidian species, Encephalitozoon cuniculi and E. intestinalis. Folia Parasitol (Praha) 51(4):275–282

    Article  CAS  Google Scholar 

  44. Braunfuchsova P, Kopecky J, Ditrich O, Koudela B (1999) Cytokine response to infection with the microsporidian, Encephalitozoon cuniculi. Folia Parasitol (Praha) 46(2):91–95

    CAS  Google Scholar 

  45. Moretto MM, Lawlor EM, Khan IA (2010) Lack of interleukin-12 in p40-deficient mice leads to poor CD8 + T-cell immunity against Encephalitozoon cuniculi infection. Infect Immun 78(6):2505–2511. doi:10.1128/IAI. 00753-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100(6):655–669

    Article  CAS  PubMed  Google Scholar 

  47. Swain SL, McKinstry KK, Strutt TM (2012) Expanding roles for CD4(+) T cells in immunity to viruses. Nat Rev Immunol 12(2):136–148. doi:10.1038/nri3152

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Malek TR, Castro I (2010) Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity 33(2):153–165. doi:10.1016/j.immuni.2010.08.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Parrish-Novak J, Dillon SR, Nelson A, Hammond A, Sprecher C, Gross JA, Johnston J, Madden K, Xu W, West J, Schrader S, Burkhead S, Heipel M, Brandt C, Kuijper JL, Kramer J, Conklin D, Presnell SR, Berry J, Shiota F, Bort S, Hambly K, Mudri S, Clegg C, Moore M, Grant FJ, Lofton-Day C, Gilbert T, Rayond F, Ching A, Yao L, Smith D, Webster P, Whitmore T, Maurer M, Kaushansky K, Holly RD, Foster D (2000) Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408(6808):57–63. doi:10.1038/35040504

    Article  CAS  PubMed  Google Scholar 

  50. Elsaesser H, Sauer K, Brooks DG (2009) IL-21 is required to control chronic viral infection. Science 324(5934):1569–1572. doi:10.1126/science.1174182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Frohlich A, Kisielow J, Schmitz I, Freigang S, Shamshiev AT, Weber J, Marsland BJ, Oxenius A, Kopf M (2009) IL-21R on T cells is critical for sustained functionality and control of chronic viral infection. Science 324(5934):1576–1580. doi:10.1126/science.1172815

    Article  PubMed  Google Scholar 

  52. Yi JS, Du M, Zajac AJ (2009) A vital role for interleukin-21 in the control of a chronic viral infection. Science 324(5934):1572–1576. doi:10.1126/science.1175194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Khattar M, Miyahara Y, Schroder PM, Xie A, Chen W, Stepkowski SM (2014) Interleukin-21 is a critical regulator of CD4 and CD8 T cell survival during priming under Interleukin-2 deprivation conditions. PLoS One 9(1):e85882. doi:10.1371/journal.pone.0085882

    Article  PubMed Central  PubMed  Google Scholar 

  54. Liu S, Lizee G, Lou Y, Liu C, Overwijk WW, Wang G, Hwu P (2007) IL-21 synergizes with IL-7 to augment expansion and anti-tumor function of cytotoxic T cells. Int Immunol 19(10):1213–1221. doi:10.1093/intimm/dxm093

    Article  CAS  PubMed  Google Scholar 

  55. Nguyen H, Weng NP (2010) IL-21 preferentially enhances IL-15-mediated homeostatic proliferation of human CD28 + CD8 memory T cells throughout the adult age span. J Leukoc Biol 87(1):43–49. doi:10.1189/jlb.0209086

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Sutherland AP, Joller N, Michaud M, Liu SM, Kuchroo VK, Grusby MJ (2013) IL-21 promotes CD8 + CTL activity via the transcription factor T-bet. J Immunol 190(8):3977–3984. doi:10.4049/jimmunol.1201730

    Article  CAS  PubMed  Google Scholar 

  57. Kwon H, Thierry-Mieg D, Thierry-Mieg J, Kim HP, Oh J, Tunyaplin C, Carotta S, Donovan CE, Goldman ML, Tailor P, Ozato K, Levy DE, Nutt SL, Calame K, Leonard WJ (2009) Analysis of interleukin-21-induced Prdm1 gene regulation reveals functional cooperation of STAT3 and IRF4 transcription factors. Immunity 31(6):941–952. doi:10.1016/j.immuni.2009.10.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Attridge K, Wang CJ, Wardzinski L, Kenefeck R, Chamberlain JL, Manzotti C, Kopf M, Walker LS (2012) IL-21 inhibits T cell IL-2 production and impairs Treg homeostasis. Blood 119(20):4656–4664. doi:10.1182/blood-2011-10-388546

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants AI096978 and AI102711 to IAK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magali M. Moretto.

Additional information

This article is a contribution to the Special Issue on : CD8+ T-cell Responses against Non-Viral Pathogens - Guest Editors: Fidel Zavala and Imtiaz A. Khan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moretto, M.M., Harrow, D.I. & Khan, I.A. Effector CD8 T cell immunity in microsporidial infection: a lone defense mechanism. Semin Immunopathol 37, 281–287 (2015). https://doi.org/10.1007/s00281-015-0482-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-015-0482-8

Keywords

Navigation