Skip to main content

Update on genetics and pathogenesis of autoinflammatory diseases: the last 2 years

Abstract

Autoinflammatory diseases are a genetically heterogeneous group of rheumatologic diseases that are driven by abnormal activation of the innate immune system. Patients present with recurrent episodes of systemic inflammation and a spectrum of organ-specific comorbidities. These diseases are mediated by the overproduction of various inflammatory cytokines, such as IL-1, IL-18, IL-6, TNFα, and type I interferon. Treatments with biologic agents that inhibit these cytokines have been very efficient in most patients. During the past 2 years, remarkable progress has been made in the identification of disease-associated genes owing mostly to new technologies. Next generation sequencing technologies (NGS) have become instrumental in finding single-gene defects in undiagnosed patients with early onset symptoms. NGS has advanced the field of autoinflammation by identifying disease-causing genes that point to pathways not known to regulate cytokine signaling or inflammation. They include a protein that has a role in differentiation of myeloid cells, a ubiquitously expressed enzyme that catalyzes the addition of the CCA terminus to the 3-prime end of tRNA precursors, and an enzyme that catalyzes the oxidation of a broad range of substrates. Lastly, newly described mutations have informed a whole new dimension on genotype-phenotype relationships. Mutations in the same gene can give rise to a range of phenotypes with a common inflammatory component. This suggests greater than anticipated contributions by modifying alleles and environmental factors to disease expressivity.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Ombrello MJ, Sikora KA, Kastner DL (2014) Genetics, genomics, and their relevance to pathology and therapy. Best Pract Res Clin Rheumatol 28:175–189

    PubMed Central  PubMed  Article  Google Scholar 

  2. Zhou Q et al (2014) Early-onset stroke and vasculopathy associated with mutations in ADA2. N Engl J Med 370:911–920

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  3. Navon Elkan P et al (2014) Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N Engl J Med 370:921–931

    PubMed  Article  Google Scholar 

  4. Garg N et al (2014) Novel adenosine deaminase 2 mutations in a child with a fatal vasculopathy. Eur J Pediatr 173:827–830

    PubMed  Article  Google Scholar 

  5. van Montfrans J, Zavialov A, Zhou Q (2014) Mutant ADA2 in vasculopathies. N Engl J Med 371:478

    PubMed  Article  Google Scholar 

  6. Van Eyck L, Liston A, Meyts I (2014) Mutant ADA2 in vasculopathies. N Engl J Med 371:478–479

    PubMed  Article  Google Scholar 

  7. Bras J, Guerreiro R, Santo GC (2014) Mutant ADA2 in vasculopathies. N Engl J Med 371:478–480

    PubMed  Article  Google Scholar 

  8. Van Eyck L, Liston A, Wouters C (2014) Mutant ADA2 in vasculopathies. N Engl J Med 371:480

    PubMed  Google Scholar 

  9. Zavialov AV, Yu X, Spillmann D, Lauvau G, Zavialov AV (2010) Structural basis for the growth factor activity of human adenosine deaminase ADA2. J Biol Chem 285:12367–12377

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  10. Iijima R et al (2008) The extracellular adenosine deaminase growth factor, ADGF/CECR1, plays a role in Xenopus embryogenesis via the adenosine/P1 receptor. J Biol Chem 283:2255–2264

    CAS  PubMed  Article  Google Scholar 

  11. Dolezal T, Dolezelova E, Zurovec M, Bryant PJ (2005) A role for adenosine deaminase in Drosophila larval development. PLoS Biol 3:e201

    PubMed Central  PubMed  Article  Google Scholar 

  12. Zavialov AV et al (2010) Human adenosine deaminase 2 induces differentiation of monocytes into macrophages and stimulates proliferation of T helper cells and macrophages. J Leukoc Biol 88:279–290

    CAS  PubMed  Article  Google Scholar 

  13. Belot A et al (2014) Mutations in CECR1 associated with a neutrophil signature in peripheral blood. Pediatr Rheumatol Online J 12:44

    PubMed Central  PubMed  Article  Google Scholar 

  14. Van Eyck L Jr et al (2015) Hematopoietic stem cell transplantation rescues the immunologic phenotype and prevents vasculopathy in patients with adenosine deaminase 2 deficiency. J Allergy Clin Immunol 135:283–287, e5

    PubMed Central  PubMed  Article  Google Scholar 

  15. Liu Y et al (2014) Activated STING in a vascular and pulmonary syndrome. N Engl J Med 371:507–518

    PubMed Central  PubMed  Article  Google Scholar 

  16. Jeremiah N et al (2014) Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J Clin Invest 124:5516–5520

    PubMed Central  PubMed  Article  Google Scholar 

  17. Burdette DL et al (2011) STING is a direct innate immune sensor of cyclic di-GMP. Nature 478:515–518

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  18. Barber GN (2014) STING-dependent cytosolic DNA sensing pathways. Trends Immunol 35:88–93

    CAS  PubMed  Google Scholar 

  19. Burdette DL, Vance RE (2013) STING and the innate immune response to nucleic acids in the cytosol. Nat Immunol 14:19–26

    CAS  PubMed  Article  Google Scholar 

  20. Ishikawa H, Barber GN (2008) STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455:674–678

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  21. Zhang L et al (2014) NLRC3, a member of the NLR family of proteins, is a negative regulator of innate immune signaling induced by the DNA sensor STING. Immunity 40:329–341

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  22. Boyce BF, Xing L (2007) The RANKL/RANK/OPG pathway. Curr Osteoporos Rep 5:98–104

    PubMed  Article  Google Scholar 

  23. Walsh MC, Choi Y (2014) Biology of the RANKL-RANK-OPG system in immunity, bone, and beyond. Front Immunol 5:511

    PubMed Central  PubMed  Article  Google Scholar 

  24. Soysa NS, Alles N, Aoki K, Ohya K (2012) Osteoclast formation and differentiation: an overview. J Med Dent Sci 59:65–74

    PubMed  Google Scholar 

  25. Whyte MP (2006) Paget's disease of bone and genetic disorders of RANKL/OPG/RANK/NF-kappaB signaling. Ann N Y Acad Sci 1068:143–164

    CAS  PubMed  Article  Google Scholar 

  26. Hanada R et al (2009) Central control of fever and female body temperature by RANKL/RANK. Nature 462:505–509

    CAS  PubMed  Article  Google Scholar 

  27. Jeru I et al (2014) Brief Report: Involvement of TNFRSF11A molecular defects in autoinflammatory disorders. Arthritis Rheumatol 66:2621–2627

    CAS  PubMed  Article  Google Scholar 

  28. Anderson DM et al (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390:175–179

    CAS  PubMed  Article  Google Scholar 

  29. Dougall WC et al (1999) RANK is essential for osteoclast and lymph node development. Genes Dev 13:2412–2424

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  30. Canna SW et al (2014) An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet 46:1140–1146

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  31. Romberg N et al (2014) Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet 46:1135–1139

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  32. Kitamura A, Sasaki Y, Abe T, Kano H, Yasutomo K (2014) An inherited mutation in NLRC4 causes autoinflammation in human and mice. J Exp Med 211:2385–2396

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  33. Franchi L et al (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol 7:576–582

    CAS  PubMed  Article  Google Scholar 

  34. Vance RE (2015) The NAIP/NLRC4 inflammasomes. Curr Opin Immunol 32C:84–89

    Article  Google Scholar 

  35. Sellin ME et al (2014) Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa. Cell Host Microbe 16:237–248

    CAS  PubMed  Article  Google Scholar 

  36. Zhao Y et al (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477:596–600

    CAS  PubMed  Article  Google Scholar 

  37. Nordlander S, Pott J, Maloy KJ (2014) NLRC4 expression in intestinal epithelial cells mediates protection against an enteric pathogen. Mucosal Immunol 7:775–785

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Wiseman DH et al (2013) A novel syndrome of congenital sideroblastic anemia, B-cell immunodeficiency, periodic fevers, and developmental delay (SIFD). Blood 122:112–123

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  39. Chakraborty PK et al (2014) Mutations in TRNT1 cause congenital sideroblastic anemia with immunodeficiency, fevers, and developmental delay (SIFD). Blood 124:2867–2871

    CAS  PubMed  Article  Google Scholar 

  40. Sasarman F, et al (2015) The 3' addition of CCA to mitochondrial tRNASer(AGY) is specifically impaired in patients with mutations in the tRNA nucleotidyl transferase TRNT1. Hum Mol Genet

  41. Xiong Y, Steitz TA (2006) A story with a good ending: tRNA 3'-end maturation by CCA-adding enzymes. Curr Opin Struct Biol 16:12–17

    CAS  PubMed  Article  Google Scholar 

  42. Cimaz R, Von Scheven A, Hofer M (2012) Systemic-onset juvenile idiopathic arthritis: the changing life of a rare disease. Swiss Med Wkly 142:w13582

    PubMed  Google Scholar 

  43. Pascual V et al (2008) How the study of children with rheumatic diseases identified interferon-alpha and interleukin-1 as novel therapeutic targets. Immunol Rev 223:39–59

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  44. Pascual V, Allantaz F, Arce E, Punaro M, Banchereau J (2005) Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J Exp Med 201:1479–1486

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  45. Wakil SM et al (2015) Association of a mutation in LACC1 with a monogenic form of systemic juvenile idiopathic arthritis. Arthritis Rheumatol 67:288–295

    CAS  PubMed  Article  Google Scholar 

  46. Wong SH, Hill AV, Vannberg FO, India-Africa-United Kingdom Leprosy Genetics, C (2010) Genomewide association study of leprosy. N Engl J Med 362:1446–7, author reply 1447-8

    CAS  PubMed  Article  Google Scholar 

  47. Zhang FR et al (2009) Genomewide association study of leprosy. N Engl J Med 361:2609–2618

    CAS  PubMed  Article  Google Scholar 

  48. Sales-Marques C et al (2014) NOD2 and CCDC122-LACC1 genes are associated with leprosy susceptibility in Brazilians. Hum Genet 133:1525–1532

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivona Aksentijevich.

Additional information

This article is a contribution to the Special Issue on The Inflammasome and Autoinflammatory Diseases - Guest Editors: Seth L. Masters, Tilmann Kallinich and Seza Ozen

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aksentijevich, I. Update on genetics and pathogenesis of autoinflammatory diseases: the last 2 years. Semin Immunopathol 37, 395–401 (2015). https://doi.org/10.1007/s00281-015-0478-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-015-0478-4

Keywords

  • Autoinflammation
  • Next generation sequencing (NGS)
  • Deficiency of ADA2 (DADA2)
  • STING-associated vasculopathy with onset in infancy (SAVI)
  • NLRC4-associated inflammatory diseases
  • TRNT1 deficiency/SIFD
  • LACC1-associated monogenic disease