Skip to main content

Advertisement

Log in

Listeria monocytogenes: a model pathogen to study antigen-specific memory CD8 T cell responses

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Memory CD8 T cells play a critical role in providing protection to immune hosts by orchestrating rapid elimination of pathogen-infected cells after re-infection. Systemic bacterial infection with Listeria monocytogenes has been a favored approach for researchers to characterize pathogen-specific CD8 T cell responses, and in-depth understanding of L. monocytogenes biology has provided invaluable experimental tools that have been used to increase our understanding of memory CD8 T cell differentiation. Here, we describe how the tools from this murine model system of infection have been utilized to characterize pathogen-specific CD8 T cells in inbred and genetically diverse outbred hosts as they undergo naïve-to-memory CD8 T cell differentiation in vivo. We also discuss how studying L. monocytogenes-evoked CD8 T cell responses have provided insight on the degree of diminished T cell immunity in clinically relevant conditions such as sepsis and obesity. Overall, this review will highlight how infection with the intracellular pathogen L. monocytogenes has enabled analysis of systemic CD8 T cell responses and greatly contributed to what is known about memory CD8 T cell generation and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hamon M, Bierne H, Cossart P (2006) Listeria monocytogenes: a multifaceted model. Nat Rev Microbiol 4:423–434

    Article  CAS  PubMed  Google Scholar 

  2. Schlech WF 3rd, Lavigne PM, Bortolussi RA, Allen AC, Haldane EV, Wort AJ, Hightower AW, Johnson SE, King SH, Nicholls ES, Broome CV (1983) Epidemic listeriosis—evidence for transmission by food. N Engl J Med 308:203–206

    Article  PubMed  Google Scholar 

  3. Stavru F, Archambaud C, Cossart P (2011) Cell biology and immunology of Listeria monocytogenes infections: novel insights. Immunol Rev 240:160–184

    Article  CAS  PubMed  Google Scholar 

  4. Condotta SA, Richer MJ, Badovinac VP, Harty JT (2012) Probing CD8 T cell responses with Listeria monocytogenes infection. Adv Immunol 113:51–80

    Article  CAS  PubMed  Google Scholar 

  5. Pamer EG (2004) Immune responses to Listeria monocytogenes. Nat Rev Immunol 4:812–823

    Article  CAS  PubMed  Google Scholar 

  6. Mackaness GB (1962) Cellular resistance to infection. J Exp Med 116:381–406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Ladel CH, Flesch IE, Arnoldi J, Kaufmann SH (1994) Studies with MHC-deficient knock-out mice reveal impact of both MHC I- and MHC II-dependent T cell responses on Listeria monocytogenes infection. J Immunol 153:3116–3122

    CAS  PubMed  Google Scholar 

  8. Lara-Tejero M, Pamer EG (2004) T cell responses to Listeria monocytogenes. Curr Opin Microbiol 7:45–50

    Article  CAS  PubMed  Google Scholar 

  9. Bielecki J, Youngman P, Connelly P, Portnoy DA (1990) Bacillus subtilis expressing a haemolysin gene from Listeria monocytogenes can grow in mammalian cells. Nature 345:175–176

    Article  CAS  PubMed  Google Scholar 

  10. Domann E, Wehland J, Rohde M, Pistor S, Hartl M, Goebel W, Leimeister-Wachter M, Wuenscher M, Chakraborty T (1992) A novel bacterial virulence gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin. EMBO J 11:1981–1990

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Kocks C, Gouin E, Tabouret M, Berche P, Ohayon H, Cossart P (1992) L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68:521–531

    Article  CAS  PubMed  Google Scholar 

  12. Goossens PL, Milon G (1992) Induction of protective CD8+ T lymphocytes by an attenuated Listeria monocytogenes actA mutant. Int Immunol 4:1413–1418

    Article  CAS  PubMed  Google Scholar 

  13. Brunt LM, Portnoy DA, Unanue ER (1990) Presentation of Listeria monocytogenes to CD8+ T cells requires secretion of hemolysin and intracellular bacterial growth. J Immunol 145:3540–3546

    CAS  PubMed  Google Scholar 

  14. Kaufmann SH (1993) Immunity to intracellular bacteria. Annu Rev Immunol 11:129–163

    Article  CAS  PubMed  Google Scholar 

  15. Wing EJ, Gregory SH (2000) From hot dogs to CD8+ T cells: Listeria monocytogenes. Trans Am Clin Climatol Assoc 111:76–83, discussion 84

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Pamer EG, Harty JT, Bevan MJ (1991) Precise prediction of a dominant class I MHC-restricted epitope of Listeria monocytogenes. Nature 353:852–855

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Pamer EG (1994) Direct sequence identification and kinetic analysis of an MHC class I-restricted Listeria monocytogenes CTL epitope. J Immunol 152:686–694

    CAS  PubMed  Google Scholar 

  18. Harty JT, Bevan MJ (1992) CD8+ T cells specific for a single nonamer epitope of Listeria monocytogenes are protective in vivo. J Exp Med 175:1531–1538

    Article  CAS  PubMed  Google Scholar 

  19. Harty JT, Pamer EG (1995) CD8 T lymphocytes specific for the secreted p60 antigen protect against Listeria monocytogenes infection. J Immunol 154:4642–4650

    CAS  PubMed  Google Scholar 

  20. Harty JT, Lenz LL, Bevan MJ (1996) Primary and secondary immune responses to Listeria monocytogenes. Curr Opin Immunol 8:526–530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Shen H, Miller JF, Fan X, Kolwyck D, Ahmed R, Harty JT (1998) Compartmentalization of bacterial antigens: differential effects on priming of CD8 T cells and protective immunity. Cell 92:535–545

    Article  CAS  PubMed  Google Scholar 

  22. Harty JT, Bevan MJ (1999) Responses of CD8(+) T cells to intracellular bacteria. Curr Opin Immunol 11:89–93

    Article  CAS  PubMed  Google Scholar 

  23. Harty JT, Tvinnereim AR, White DW (2000) CD8+ T cell effector mechanisms in resistance to infection. Annu Rev Immunol 18:275–308

    Article  CAS  PubMed  Google Scholar 

  24. Harty JT, White D (1999) A knockout approach to understanding CD8+ cell effector mechanisms in adaptive immunity to Listeria monocytogenes. Immunobiology 201:196–204

    Article  CAS  PubMed  Google Scholar 

  25. Blattman JN, Antia R, Sourdive DJ, Wang X, Kaech SM, Murali-Krishna K, Altman JD, Ahmed R (2002) Estimating the precursor frequency of naive antigen-specific CD8 T cells. J Exp Med 195:657–664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Butler NS, Nolz JC, Harty JT (2011) Immunologic considerations for generating memory CD8 T cells through vaccination. Cell Microbiol 13:925–933

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Harty JT, Badovinac VP (2008) Shaping and reshaping CD8+ T-cell memory. Nat Rev Immunol 8:107–119

    Article  CAS  PubMed  Google Scholar 

  28. Kaech SM, Ahmed R (2001) Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat Immunol 2:415–422

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Badovinac VP, Haring JS, Harty JT (2007) Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8(+) T cell response to infection. Immunity 26:827–841

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Porter BB, Harty JT (2006) The onset of CD8+-T-cell contraction is influenced by the peak of Listeria monocytogenes infection and antigen display. Infect Immun 74:1528–1536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Mercado R, Vijh S, Allen SE, Kerksiek K, Pilip IM, Pamer EG (2000) Early programming of T cell populations responding to bacterial infection. J Immunol 165:6833–6839

    Article  CAS  PubMed  Google Scholar 

  32. Badovinac VP, Porter BB, Harty JT (2002) Programmed contraction of CD8(+) T cells after infection. Nat Immunol 3:619–626

    Article  CAS  PubMed  Google Scholar 

  33. van Stipdonk MJ, Lemmens EE, Schoenberger SP (2001) Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat Immunol 2:423–429

    PubMed  Google Scholar 

  34. Curtsinger JM, Mescher MF (2010) Inflammatory cytokines as a third signal for T cell activation. Curr Opin Immunol 22:333–340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Aichele P, Unsoeld H, Koschella M, Schweier O, Kalinke U, Vucikuja S (2006) CD8 T cells specific for lymphocytic choriomeningitis virus require type I IFN receptor for clonal expansion. J Immunol 176:4525–4529

    Article  CAS  PubMed  Google Scholar 

  36. Way SS, Havenar-Daughton C, Kolumam GA, Orgun NN, Murali-Krishna K (2007) IL-12 and type-I IFN synergize for IFN-gamma production by CD4 T cells, whereas neither are required for IFN-gamma production by CD8 T cells after Listeria monocytogenes infection. J Immunol 178:4498–4505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Haring JS, Badovinac VP, Harty JT (2006) Inflaming the CD8+ T cell response. Immunity 25:19–29

    Article  CAS  PubMed  Google Scholar 

  38. Starbeck-Miller GR, Xue HH, Harty JT (2014) IL-12 and type I interferon prolong the division of activated CD8 T cells by maintaining high-affinity IL-2 signaling in vivo. J Exp Med 211:105–120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Rothe J, Lesslauer W, Lotscher H, Lang Y, Koebel P, Kontgen F, Althage A, Zinkernagel R, Steinmetz M, Bluethmann H (1993) Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature 364:798–802

    Article  CAS  PubMed  Google Scholar 

  40. Huang S, Hendriks W, Althage A, Hemmi S, Bluethmann H, Kamijo R, Vilcek J, Zinkernagel RM, Aguet M (1993) Immune response in mice that lack the interferon-gamma receptor. Science 259:1742–1745

    Article  CAS  PubMed  Google Scholar 

  41. Harty JT, Bevan MJ (1995) Specific immunity to Listeria monocytogenes in the absence of IFN gamma. Immunity 3:109–117

    Article  CAS  PubMed  Google Scholar 

  42. White DW, Badovinac VP, Kollias G, Harty JT (2000) Cutting edge: antilisterial activity of CD8+ T cells derived from TNF-deficient and TNF/perforin double-deficient mice. J Immunol 165:5–9

    Article  CAS  PubMed  Google Scholar 

  43. Kagi D, Vignaux F, Ledermann B, Burki K, Depraetere V, Nagata S, Hengartner H, Golstein P (1994) Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 265:528–530

    Article  CAS  PubMed  Google Scholar 

  44. Kagi D, Ledermann B, Burki K, Hengartner H, Zinkernagel RM (1994) CD8+ T cell-mediated protection against an intracellular bacterium by perforin-dependent cytotoxicity. Eur J Immunol 24:3068–3072

    Article  CAS  PubMed  Google Scholar 

  45. White DW, MacNeil A, Busch DH, Pilip IM, Pamer EG, Harty JT (1999) Perforin-deficient CD8+ T cells: in vivo priming and antigen-specific immunity against Listeria monocytogenes. J Immunol 162:980–988

    CAS  PubMed  Google Scholar 

  46. White DW, Harty JT (1998) Perforin-deficient CD8+ T cells provide immunity to Listeria monocytogenes by a mechanism that is independent of CD95 and IFN-gamma but requires TNF-alpha. J Immunol 160:898–905

    CAS  PubMed  Google Scholar 

  47. Badovinac VP, Tvinnereim AR, Harty JT (2000) Regulation of antigen-specific CD8+ T cell homeostasis by perforin and interferon-gamma. Science 290:1354–1358

    Article  CAS  PubMed  Google Scholar 

  48. Badovinac VP, Porter BB, Harty JT (2004) CD8+ T cell contraction is controlled by early inflammation. Nat Immunol 5:809–817

    Article  CAS  PubMed  Google Scholar 

  49. Badovinac VP, Harty JT (2006) Programming, demarcating, and manipulating CD8+ T-cell memory. Immunol Rev 211:67–80

    Article  CAS  PubMed  Google Scholar 

  50. Hammarlund E, Lewis MW, Hansen SG, Strelow LI, Nelson JA, Sexton GJ, Hanifin JM, Slifka MK (2003) Duration of antiviral immunity after smallpox vaccination. Nat Med 9:1131–1137

    Article  CAS  PubMed  Google Scholar 

  51. Sallusto F, Geginat J, Lanzavecchia A (2004) Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 22:745–763

    Article  CAS  PubMed  Google Scholar 

  52. Wherry EJ, Teichgraber V, Becker TC, Masopust D, Kaech SM, Antia R, von Andrian UH, Ahmed R (2003) Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 4:225–234

    Article  CAS  PubMed  Google Scholar 

  53. Badovinac VP, Harty JT (2007) Manipulating the rate of memory CD8+ T cell generation after acute infection. J Immunol 179:53–63

    Article  CAS  PubMed  Google Scholar 

  54. Badovinac VP, Messingham KA, Jabbari A, Haring JS, Harty JT (2005) Accelerated CD8+ T-cell memory and prime-boost response after dendritic-cell vaccination. Nat Med 11:748–756

    Article  CAS  PubMed  Google Scholar 

  55. Martin MD, Condotta SA, Harty JT, Badovinac VP (2012) Population dynamics of naive and memory CD8 T cell responses after antigen stimulations in vivo. J Immunol 188:1255–1265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Martin MD, Badovinac VP (2014) Influence of time and number of antigen encounters on memory CD8 T cell development. Immunol Res 59:35–44

    Article  CAS  PubMed  Google Scholar 

  57. Nolz JC, Harty JT (2011) Strategies and implications for prime-boost vaccination to generate memory CD8 T cells. Adv Exp Med Biol 780:69–83

    Article  CAS  PubMed  Google Scholar 

  58. Jabbari A, Harty JT (2006) Secondary memory CD8+ T cells are more protective but slower to acquire a central-memory phenotype. J Exp Med 203:919–932

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Wirth TC, Harty JT, Badovinac VP (2010) Modulating numbers and phenotype of CD8+ T cells in secondary immune responses. Eur J Immunol 40:1916–1926

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Wirth TC, Martin MD, Starbeck-Miller G, Harty JT, Badovinac VP (2011) Secondary CD8+ T-cell responses are controlled by systemic inflammation. Eur J Immunol 41:1321–1333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Wirth TC, Xue HH, Rai D, Sabel JT, Bair T, Harty JT, Badovinac VP (2010) Repetitive antigen stimulation induces stepwise transcriptome diversification but preserves a core signature of memory CD8(+) T cell differentiation. Immunity 33:128–140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Rai D, Pham NL, Harty JT, Badovinac VP (2009) Tracking the total CD8 T cell response to infection reveals substantial discordance in magnitude and kinetics between inbred and outbred hosts. J Immunol 183:7672–7681

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Condotta SA, Cabrera-Perez J, Badovinac VP, Griffith TS (2013) T-cell-mediated immunity and the role of TRAIL in sepsis-induced immunosuppression. Crit Rev Immunol 33:23–40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Condotta SA, Rai D, James BR, Griffith TS, Badovinac VP (2013) Sustained and incomplete recovery of naive CD8+ T cell precursors after sepsis contributes to impaired CD8+ T cell responses to infection. J Immunol 190:1991–2000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Duong S, Condotta SA, Rai D, Martin MD, Griffith TS, Badovinac VP (2014) Polymicrobial sepsis alters antigen-dependent and -independent memory CD8 T cell functions. J Immunol 192:3618–3625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Berg RE, Crossley E, Murray S, Forman J (2003) Memory CD8+ T cells provide innate immune protection against Listeria monocytogenes in the absence of cognate antigen. J Exp Med 198:1583–1593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Soudja SM, Ruiz AL, Marie JC, Lauvau G (2012) Inflammatory monocytes activate memory CD8(+) T and innate NK lymphocytes independent of cognate antigen during microbial pathogen invasion. Immunity 37:549–562

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Kanneganti TD, Dixit VD (2012) Immunological complications of obesity. Nat Immunol 13:707–712

    Article  CAS  PubMed  Google Scholar 

  69. Khan, S. H., E. A. Hemann, K. L. Legge, L. A. Norian, and V. P. Badovinac (2014) Diet-induced obesity does not impact the generation and maintenance of primary memory CD8 T cells. J Immunol

  70. Lecuit M, Dramsi S, Gottardi C, Fedor-Chaiken M, Gumbiner B, Cossart P (1999) A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. EMBO J 18:3956–3963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Lecuit M, Vandormael-Pournin S, Lefort J, Huerre M, Gounon P, Dupuy C, Babinet C, Cossart P (2001) A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292:1722–1725

    Article  CAS  PubMed  Google Scholar 

  72. Wollert T, Pasche B, Rochon M, Deppenmeier S, van den Heuvel J, Gruber AD, Heinz DW, Lengeling A, Schubert WD (2007) Extending the host range of Listeria monocytogenes by rational protein design. Cell 129:891–902

    Article  CAS  PubMed  Google Scholar 

  73. Sheridan BS, Pham QM, Lee YT, Cauley LS, Puddington L, Lefrancois L (2014) Oral infection drives a distinct population of intestinal resident memory CD8(+) T cells with enhanced protective function. Immunity 40:747–757

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge current members of our laboratory for helpful discussion and careful review of the manuscript. Work described in this review was supported by National Institutes of Health Grant AI114543.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Badovinac.

Additional information

This article is a contribution to the Special Issue on : CD8+ T-cell Responses against Non-viral Pathogens – Guest Editors Fidel Zavala and Imtiaz Khan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.H., Badovinac, V.P. Listeria monocytogenes: a model pathogen to study antigen-specific memory CD8 T cell responses. Semin Immunopathol 37, 301–310 (2015). https://doi.org/10.1007/s00281-015-0477-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-015-0477-5

Keywords

Navigation