Skip to main content

Advertisement

Log in

Structural aspects of fungal allergens

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Despite the increasing number of solved crystal structures of allergens, the key question why some proteins are allergenic and the vast majority is not remains unanswered. The situation is not different for fungal allergens which cover a wide variety of proteins with different chemical properties and biological functions. They cover enzymes, cell wall, secreted, and intracellular proteins which, except cross-reactive allergens, does not show any evidence for structural similarities at least at the three-dimensional level. However, from a diagnostic point of view, pure allergens biotechnologically produced by recombinant technology can provide us, in contrast to fungal extracts which are hardly producible as standardized reagents, with highly pure perfectly standardized diagnostic reagents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Prillinger H et al (2002) Phylogeny and systematics of the fungi with special reference to the Ascomycota and Basidiomycota. Chem Immunol 81:207–295

    Article  PubMed  Google Scholar 

  2. Horner WE, Helbling A, Salvaggio EJ, Lehrer SB (1995) Fungal allergens. Clin Microbiol Rev 8:8161–8179

    Google Scholar 

  3. Bush RK, Portneoy JA, Saxon A, Terr AI, Wood RA (2006) The medical effects of mold exposure. J Allergy Clin Immunol 117:326–333

    Article  PubMed  Google Scholar 

  4. Simon-Nobbe B, Denk U, Pöll V, Rid R, Breitenbach M (2008) The spectrum of fungal allergy. Int Arch Allergy Immunol 145:58–86

    Article  PubMed  Google Scholar 

  5. Crameri R, Weichel M, Flückiger S, Glaser AG, Rhyner C (2006) Fungal allergies: a yet unsolved problem. Chem Immunol Allergy 91:121–133

    Article  CAS  PubMed  Google Scholar 

  6. Gaitanis G et al (2012) The Malassezia genus in skin and systemic diseases. Clinic Microbiol Rev 25:106–141

    Article  Google Scholar 

  7. Schmid-Grendelmeier P, Scheynius A, Crameri R (2006) The role of sensitization to Malassezia sympodialis in atopic eczema. Chem Immunol Allergy 91:98–109

    Article  CAS  PubMed  Google Scholar 

  8. Mari A, Schneider P, Wally V, Breitenbach M, Simon-Nobbe B (2003) Sensitization to fungi: epidemiology, comparative skin tests, and IgE reactivity of fungal extracts. Clin Exp Allergy 33:1429–1438

    Article  CAS  PubMed  Google Scholar 

  9. Kao R, Martínez-Ruiz A, Martínez del Pozo A, Crameri R, Davies J (2001) Mitogillin and related fungal ribotoxins. Meth Enzymol 341:324–335

    Article  CAS  PubMed  Google Scholar 

  10. Moser M et al (1992) Cloning and expression of recombinant Aspergillus fumigatus allergenI/a (rAsp f I/a) with IgE binding and type I skin test activity. J Immunol 149:454–460

    CAS  PubMed  Google Scholar 

  11. Crameri R, Garbani M, Rhyner C, Huitema C (2014) Fungi: the neglected allergenic sources. Allergy 69:176–185

    Article  CAS  PubMed  Google Scholar 

  12. Kurup VP (2003) Fungal allergy. In: Arora N (ed) Handbook of fungal biotechnology. Dekker, New York, pp 515–525

    Google Scholar 

  13. Agarwal R (2011) Severe asthma with fungal sensitization. Curr Allergy Asthma Rep 11:403–413

    Article  CAS  PubMed  Google Scholar 

  14. Patterson K, Strek ME (2010) Allergic bronchopulmonary aspergillosis. Proc Am Thor Soc 7:237–244

    Article  Google Scholar 

  15. Fraczek MG, Bowyer P (2013) Genomics of fungal allergens. Fungal Genom Biol 3:e114. doi:10.4172/2165-8056.1000e114

    Article  Google Scholar 

  16. Casagrande B et al (2006) Sensitization to the yeast Malassezia sympodialis is specific for extrinsic and intrinsic eczema. J Invest Dermatol 126:2414–2421

    Article  PubMed  Google Scholar 

  17. Zeller S, Glaser AG, Vilhelmsson M, Rhyner C, Crameri R (2009) Cross-reactivity among fungal allergens: a clinically relevant phenomenon? Mycoses 52:99–106

    Article  PubMed  Google Scholar 

  18. Yang X, Moffat K (1996) Insights into specificity of cleavage and mechanism of cell entry from the crystal structure of the highly specific Aspergillus ribotoxins, restrictocin. Structure 15:837–852

    Article  Google Scholar 

  19. Olmo N et al (2001) Cytotoxic mechanism of the ribotoxins alpha-sarcin. Induction of cell death via apoptosis. Eur J Biochem 268:2113–2123

    Article  CAS  PubMed  Google Scholar 

  20. Yang X, Gérczei T, Glover LT, Correll CC (2001) Crystal structure of restrictocin-inhibitor complexes with implication for RNA recognition and base flipping. Nature Struct Biol 8:968–973

    Article  CAS  PubMed  Google Scholar 

  21. Bowyer P, Fraczek M, Denning DW (2006) Comparative genomics of fungal allergens and epitopes shows widespread distribution of closely related allergen and epitope orthologues. BMC Genomics 7:251

    Article  PubMed Central  PubMed  Google Scholar 

  22. Flückiger S et al (2002) Comparison of the crystal structures of the human manganese superoxide dismutase and the homologous Aspergillus fumigatus allergen at 2-Å resolution. J Immunol 168:1267–1272

    Article  PubMed  Google Scholar 

  23. Glaser AG et al (2006) Analysis of the cross-reactivity and of the 1.5 Å structure of the Malassezia sympodialis Mala s 6 allergen, a member of the cyclophilin pan-allergen family. Biochem J 396:41–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Limacher A et al (2007) Cross-reactivity and 1.4-Å crystal structure of Malassezia sympodialis thioredoxin (Mala s 13), a member of a new pan-allergen family. J Immunol 178:389–396

    Article  CAS  PubMed  Google Scholar 

  25. Limacher A et al (2006) The crystal structure of Aspergillus fumigatus cyclophilin reveals 3D domain swapping of a central element. Structure 14:185–195

    Article  CAS  PubMed  Google Scholar 

  26. Vilhelmsson M et al (2007) Crystal structure of the major Malassezia sympodialis allergen Mala s 1 reveals a beta-propeller fold: a novel fold among allergens. J Mol Biol 369:1079–1086

    Article  CAS  PubMed  Google Scholar 

  27. Vilhelmsson M et al (2008) Mutational analysis of amino acid residues involved in IgE-binding to the Malassezia sympodialis allergen Mala s 11. Mol Immunol 46:294–303

    Article  CAS  PubMed  Google Scholar 

  28. Flückiger S et al (2002) Immunological and structural analysis of IgE-mediated cross-reactivity between manganese superoxide dismutases. Int Arch Allergy Immunol 128:292–303

    Article  PubMed  Google Scholar 

  29. Schmid-Grendelmeier P et al (2005) IgE-mediated and T cell-mediated autoimmunity against manganese superoxide dismutase in atopic dermatitis. J Allergy Clin Immunol 115:1068–1075

    Article  CAS  PubMed  Google Scholar 

  30. Vilhelmsson M et al (2007) The Malassezia sympodialis allergen Mala s 11 induces human dendritic cell maturation, in contrast to its human homologue manganese superoxide dismutase. Int Arch Allergy Immunol 143:155–162

    Article  CAS  PubMed  Google Scholar 

  31. Crameri R (1996) Humoral and cell-mediated autoimmunity in allergy to Aspergillus fumigatus. J Exp Med 184:265–270

    Article  CAS  PubMed  Google Scholar 

  32. Appenzeller U, Meyer C, Menz G, Blaser K (1999) IgE-mediated reactions to autoantigens in allergic diseases. Int Arch Allergy Immunol 118:193–196

    Article  CAS  PubMed  Google Scholar 

  33. Mayer C, Hemmann S, Faith A, Blaser K, Crameri R (1997) Cloning, production, characterization and IgE cross-reactivity of different manganese superoxide dismutases in individuals sensitized to Aspergillus fumigatus. Int Arch Allergy Immunol 113:213–215

    Article  CAS  PubMed  Google Scholar 

  34. Flückiger S, Fijten H, Whitley P, Blaser K, Crameri R (2002) Cyclophilins, a new family of cross-reactive allergens. Eur J Immunol 32:10–17

    Article  PubMed  Google Scholar 

  35. Glaser AG et al (2008) Auto- and cross-reactivity to thioredoxin allergens in allergic bronchopulmonary aspergillosis. Allergy 63:1617–1623

    Article  CAS  PubMed  Google Scholar 

  36. Balaji H et al (2011) Malassezia sympodialis thioredoxin-specific T cells are highly cross-reactive to human thioredoxin in atopic dermatitis. J Allergy Clin Immunol 128:92–99.e4

    Article  CAS  PubMed  Google Scholar 

  37. Eyerich K et al (2009) IL-17 in atopic eczema: linking allergen-specific adaptive and microbial-triggered innate immune response. J Allergy Clin Immunol 123:59–66

    Article  CAS  PubMed  Google Scholar 

  38. Schmidt M et al (1997) The complete cDNA sequence and expression of the first major allergenic protein of Malassezia furfur, Mal f 1. Eur J Biochem 246:181–185

    Article  CAS  PubMed  Google Scholar 

  39. Vagin A, Teplyakow A (1997) MOLREP: an automated program for molecular replacement. J Appl Crystallogr 30:1022–1025

    Article  CAS  Google Scholar 

  40. Schneider TR, Sheldrick GM (2002) Substructure solution with SHELXD. Acta Crystallog Sec D 58:1772–1779

    Article  Google Scholar 

  41. Holm L, Sander C (1998) Touring protein fold space with Dali/FSSP. Nucleic Acids Res 32:D217–D222

    Google Scholar 

  42. Chruszecz M et al (2012) Alternaria alternata allergen Alt a 1: a unique β-barrel protein dimer found exclusively in fungi. J Allergy Clin Immunol 130:241–247

    Article  Google Scholar 

  43. Deards MJ, Montague AE (1991) Purification and characterisation of a major allergen of Alternaria alternata. Mol Immunol 28:409–415

    Article  CAS  PubMed  Google Scholar 

  44. Berman HM et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Rouvinen J, Janis J, Laukkanen ML et al (2010) Transient dimmers of allergens. PLoS One 5:e9037

    Article  PubMed Central  PubMed  Google Scholar 

  46. Radauer C et al (2014) Update of the WHA/IUIS allergen nomenclature database based on analysis of allergen sequences. Allergy 69:413–419

    Article  CAS  PubMed  Google Scholar 

  47. Paris S et al (1993) A transformant of Aspergillus fumigatus deficient in the antigenic cytotoxin ASPF1. FEMS Microbiol Lett 111:31–36

    Article  CAS  PubMed  Google Scholar 

  48. Achatz G et al (1995) Molecular cloning of major and minor allergens of Alternaria alternata and Cladosporium herbarum. Mol Immunol 32:213–227

    Article  CAS  PubMed  Google Scholar 

  49. Shen HD, Tam MF, Chou H, Han SH (1999) The importance of serine proteinases as aeroallergens associated with asthma. Int Arch Allergy Immunol 119:259–264

    Article  CAS  PubMed  Google Scholar 

  50. Mayer C et al (1999) Humoral and cell-mediated autoimmune reactions to human acidic ribosomal P2 protein in individuals sensitized to Aspergillus fumigatus P2 protein. J Exp Med 189:1507–1512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Hoff M et al (2003) Molecular cloning and immunological characterisation of potential allergens from the mould Fusarium culmorum. Mol Immunol 39:965–975

    Article  CAS  PubMed  Google Scholar 

  52. Postigo I et al (2011) Diagnostic value of Alt a 1, fungal enolase and manganese-dependent superoxide dismutase in the component-resolved diagnosis of allergy to Pleosporaceae. Clin Exp Allergy 41:443–451

    Article  CAS  PubMed  Google Scholar 

  53. Helbling A, Horner WE, Lehrer SB (1993) Identification of Psilocybe cubensis spore allergens by immunoprinting. Int Arch Allergy Immunol 100:263–267

    Article  CAS  PubMed  Google Scholar 

  54. Hemmann S, Blaser K, Crameri R (1997) Allergens of Aspergillus fumigatus and Candida boidinii share IgE-binding epitopes. Am J Respir Crit Care Med 156:1956–1962

    Article  CAS  PubMed  Google Scholar 

  55. Shen HD et al (2000) Complementary DAN cloning and immunologic characterization of a new Penicillium citrinum allergen (Pen c 3). J Allergy Clin Immunol 105:827–833

    Article  CAS  PubMed  Google Scholar 

  56. Yasueda H et al (1998) Identification and cloning of two novel allergens from the lipophilic yeast, Malassezia furfur. Biochim Biophys Res Comm 248:240–244

    Article  CAS  Google Scholar 

  57. Lai HY et al (2002) cDNA cloning and immunological characterization of a newly identified enolase allergen from Penicillium citrinum and Aspergillus fumigatus. Int Arch Allergy Immunol 127:181–190

    Article  CAS  PubMed  Google Scholar 

  58. Sharma V et al (2006) Cloning, recombinant expression and activity studies of a major allergen “enolase” from the fungus Curvularia lunata. J Clin Immunol 26:360–369

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The laboratory of the author is supported by the Swiss National Science Foundation grant nos. 320030_149978 and 31NM30_152038/1 (EuroNanoMed) and by the European Community’s Seventh Framework Program [FP7-2007-2013] under grant agreement no. HEALTH-F2-2010-260338 “ALLFUN.”

Conflict of interest

Author declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reto Crameri.

Additional information

This article is a contribution to the special issue on Immunopathology of Fungal Diseases - Guest Editor: Jean-Paul Latge

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crameri, R. Structural aspects of fungal allergens. Semin Immunopathol 37, 117–121 (2015). https://doi.org/10.1007/s00281-014-0458-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-014-0458-0

Keywords

Navigation