Skip to main content
Log in

Inflammasomes and the microbiota—partners in the preservation of mucosal homeostasis

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Inflammasomes are multiprotein complexes that serve as signaling platforms initiating innate immune responses. These structures are assembled upon a large array of stimuli, sensing both microbial products and endogenous signals indicating loss of cellular homeostasis. As such, inflammasomes are regarded as sensors of cellular integrity and tissue health, which, upon disruption of homeostasis, provoke an inflammatory response by the release of potent cytokines. Recent evidence suggests that in addition to sensing cellular integrity, inflammasomes are involved in the homeostatic mutualism between the host and its indigenous microbiota. Here, we summarize the involvement of various inflammasomes in host–microbiota interactions and focus on the role of commensal as well as pathogenic bacteria in inflammasome signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mariathasan S, Monack DM (2007) Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol 7(1):31–40. doi:10.1038/nri1997

    Article  CAS  PubMed  Google Scholar 

  2. Martinon F et al (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–426

    Article  CAS  PubMed  Google Scholar 

  3. Henao-Mejia J et al (2014) Inflammasomes and metabolic disease. Annu Rev Physiol 76:57–78. doi:10.1146/annurev-physiol-021113-170324

    Article  CAS  PubMed  Google Scholar 

  4. Martinon F et al (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265. doi:10.1146/annurev.immunol.021908.132715

    Article  CAS  PubMed  Google Scholar 

  5. Thaiss CA et al (2014) The interplay between the innate immune system and the microbiota. Curr Opin Immunol 26:41–48. doi:10.1016/j.coi.2013.10.016

    Article  CAS  PubMed  Google Scholar 

  6. Munoz-Planillo R et al (2013) K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38(6):1142–1153. doi:10.1016/j.immuni.2013.05.016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Zambetti LP, Mortellaro A (2014) NLRPs, microbiota, and gut homeostasis: unravelling the connection. J Pathol. doi:10.1002/path.4357

    PubMed  Google Scholar 

  8. Gagliani N et al (2014) Inflammasomes and intestinal homeostasis: regulating and connecting infection, inflammation and the microbiota. Int Immunol. doi:10.1093/intimm/dxu066

    PubMed  Google Scholar 

  9. Zaki MH et al (2010) The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 32(3):379–391. doi:10.1016/j.immuni.2010.03.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Allen IC et al (2010) The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med 207(5):1045–1056. doi:10.1084/jem.20100050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Hirota SA et al (2011) NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis. Inflamm Bowel Dis 17(6):1359–1372. doi:10.1002/ibd.21478

    Article  PubMed Central  PubMed  Google Scholar 

  12. Bauer C et al (2010) Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut 59(9):1192–1199. doi:10.1136/gut.2009.197822

    Article  CAS  PubMed  Google Scholar 

  13. Bauer C et al (2012) Protective and aggravating effects of Nlrp3 inflammasome activation in IBD models: influence of genetic and environmental factors. Dig Dis 30(Suppl 1):82–90. doi:10.1159/000341681

    Article  PubMed  Google Scholar 

  14. Schoultz I et al (2009) Combined polymorphisms in genes encoding the inflammasome components NALP3 and CARD8 confer susceptibility to Crohn’s disease in Swedish men. Am J Gastroenterol 104(5):1180–1188. doi:10.1038/ajg.2009.29

    Article  CAS  PubMed  Google Scholar 

  15. Villani AC et al (2009) Common variants in the NLRP3 region contribute to Crohn’s disease susceptibility. Nat Genet 41(1):71–76. doi:10.1038/ng.285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Lewis GJ et al (2011) Genetic association between NLRP3 variants and Crohn’s disease does not replicate in a large UK panel. Inflamm Bowel Dis 17(6):1387–1391. doi:10.1002/ibd.21499

    Article  PubMed  Google Scholar 

  17. Mankan AK et al (2012) The NLRP3/ASC/Caspase-1 axis regulates IL-1beta processing in neutrophils. Eur J Immunol 42(3):710–715. doi:10.1002/eji.201141921

    Article  CAS  PubMed  Google Scholar 

  18. Guarda G et al (2011) Differential expression of NLRP3 among hematopoietic cells. J Immunol 186(4):2529–2534. doi:10.4049/jimmunol.1002720

    Article  CAS  PubMed  Google Scholar 

  19. Song-Zhao GX et al (2014) Nlrp3 activation in the intestinal epithelium protects against a mucosal pathogen. Mucosal Immunol 7(4):763–774. doi:10.1038/mi.2013.94

    CAS  PubMed  Google Scholar 

  20. Elinav E et al (2013) Integrative inflammasome activity in the regulation of intestinal mucosal immune responses. Mucosal Immunol 6(1):4–13. doi:10.1038/mi.2012.115

    Article  CAS  PubMed  Google Scholar 

  21. Siegmund B (2010) Interleukin-18 in intestinal inflammation: friend and foe? Immunity 32(3):300–302. doi:10.1016/j.immuni.2010.03.010

    Article  CAS  PubMed  Google Scholar 

  22. Coccia M et al (2012) IL-1beta mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4(+) Th17 cells. J Exp Med 209(9):1595–1609. doi:10.1084/jem.20111453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Zhang J et al (2014) Inflammasome activation has an important role in the development of spontaneous colitis. Mucosal Immunol 7(5):1139–1150. doi:10.1038/mi.2014.1

    Article  CAS  PubMed  Google Scholar 

  24. Thaiss CA, Elinav E (2014) Exploring new horizons in microbiome research. Cell Host Microbe 15(6):662–667. doi:10.1016/j.chom.2014.05.016

    Article  CAS  PubMed  Google Scholar 

  25. Grenier JM et al (2002) Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-kappaB and caspase-1. FEBS Lett 530(1–3):73–78

    Article  CAS  PubMed  Google Scholar 

  26. Elinav E et al (2011) NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145(5):745–757. doi:10.1016/j.cell.2011.04.022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Anand PK et al (2012) NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. Nature 488(7411):389–393. doi:10.1038/nature11250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Normand S et al (2011) Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury. Proc Natl Acad Sci U S A 108(23):9601–9606. doi:10.1073/pnas.1100981108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Chen GY et al (2011) A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J Immunol 186(12):7187–7194. doi:10.4049/jimmunol.1100412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Hu B et al (2013) Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. Proc Natl Acad Sci U S A 110(24):9862–9867. doi:10.1073/pnas.1307575110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Elinav E et al (2013) Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 13(11):759–771. doi:10.1038/nrc3611

    Article  CAS  PubMed  Google Scholar 

  32. Mehal WZ (2013) The Gordian Knot of dysbiosis, obesity and NAFLD. Nat Rev Gastroenterol Hepatol 10(11):637–644. doi:10.1038/nrgastro.2013.146

    Article  PubMed  Google Scholar 

  33. Sommer F, Backhed F (2013) The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11(4):227–238. doi:10.1038/nrmicro2974

    Article  CAS  PubMed  Google Scholar 

  34. Balmer ML et al (2014) The liver may act as a firewall mediating mutualism between the host and its gut commensal microbiota. Sci Transl Med 6(237):237ra266. doi:10.1126/scitranslmed.3008618

    Article  Google Scholar 

  35. Henao-Mejia J et al (2013) Role of the intestinal microbiome in liver disease. J Autoimmun 46:66–73. doi:10.1016/j.jaut.2013.07.001

    Article  CAS  PubMed  Google Scholar 

  36. Henao-Mejia J et al (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482(7384):179–185. doi:10.1038/nature10809

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Henao-Mejia J et al (2013) The intestinal microbiota in chronic liver disease. Adv Immunol 117:73–97. doi:10.1016/B978-0-12-410524-9.00003-7

    Article  CAS  PubMed  Google Scholar 

  38. Wlodarska M et al (2014) NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 156(5):1045–1059. doi:10.1016/j.cell.2014.01.026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Patel KK et al (2013) Autophagy proteins control goblet cell function by potentiating reactive oxygen species production. EMBO J 32(24):3130–3144. doi:10.1038/emboj.2013.233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Wang L et al (2002) PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-kappa B and caspase-1-dependent cytokine processing. J Biol Chem 277(33):29874–29880. doi:10.1074/jbc.M203915200

    Article  CAS  PubMed  Google Scholar 

  41. Lich JD, Ting JP (2007) Monarch-1/PYPAF7 and other CATERPILLER (CLR, NOD, NLR) proteins with negative regulatory functions. Microbes Infect / Institut Pasteur 9(5):672–676. doi:10.1016/j.micinf.2007.01.018

    Article  CAS  Google Scholar 

  42. Allen IC et al (2012) NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-kappaB signaling. Immunity 36(5):742–754. doi:10.1016/j.immuni.2012.03.012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Williams KL et al (2005) The CATERPILLER protein monarch-1 is an antagonist of toll-like receptor-, tumor necrosis factor alpha-, and Mycobacterium tuberculosis-induced pro-inflammatory signals. J Biol Chem 280(48):39914–39924. doi:10.1074/jbc.M502820200

    Article  CAS  PubMed  Google Scholar 

  44. Ye Z et al (2008) ATP binding by monarch-1/NLRP12 is critical for its inhibitory function. Mol Cell Biol 28(5):1841–1850. doi:10.1128/MCB.01468-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Arthur JC et al (2010) Cutting edge: NLRP12 controls dendritic and myeloid cell migration to affect contact hypersensitivity. J Immunol 185(8):4515–4519. doi:10.4049/jimmunol.1002227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Allen IC et al (2013) Characterization of NLRP12 during the in vivo host immune response to Klebsiella pneumoniae and Mycobacterium tuberculosis. PLoS One 8(4):e60842. doi:10.1371/journal.pone.0060842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Vladimer GI et al (2012) The NLRP12 inflammasome recognizes Yersinia pestis. Immunity 37(1):96–107. doi:10.1016/j.immuni.2012.07.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Zaki MH et al (2014) Salmonella exploits NLRP12-dependent innate immune signaling to suppress host defenses during infection. Proc Natl Acad Sci U S A 111(1):385–390. doi:10.1073/pnas.1317643111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Ataide MA et al (2014) Malaria-induced NLRP12/NLRP3-dependent caspase-1 activation mediates inflammation and hypersensitivity to bacterial superinfection. PLoS Pathog 10(1):e1003885. doi:10.1371/journal.ppat.1003885

    Article  PubMed Central  PubMed  Google Scholar 

  50. Zaki MH et al (2011) The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell 20(5):649–660. doi:10.1016/j.ccr.2011.10.022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Franchi L et al (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol 7(6):576–582. doi:10.1038/ni1346

    Article  CAS  PubMed  Google Scholar 

  52. Miao EA et al (2006) Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 7(6):569–575. doi:10.1038/ni1344

    Article  CAS  PubMed  Google Scholar 

  53. Mariathasan S et al (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430(6996):213–218. doi:10.1038/nature02664

    Article  CAS  PubMed  Google Scholar 

  54. Kupz A et al (2014) In vivo IFN-gamma secretion by NK cells in response to Salmonella typhimurium requires NLRC4 inflammasomes. PLoS One 9(5):e97418. doi:10.1371/journal.pone.0097418

    Article  PubMed Central  PubMed  Google Scholar 

  55. Franchi L et al (2012) NLRC4-driven production of IL-1beta discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat Immunol 13(5):449–456. doi:10.1038/ni.2263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Franchi L et al (2007) Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation. Eur J Immunol 37(11):3030–3039. doi:10.1002/eji.200737532

    Article  CAS  PubMed  Google Scholar 

  57. Sutterwala FS et al (2007) Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J Exp Med 204(13):3235–3245. doi:10.1084/jem.20071239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Miao EA et al (2008) Pseudomonas aeruginosa activates caspase 1 through Ipaf. Proc Natl Acad Sci U S A 105(7):2562–2567. doi:10.1073/pnas.0712183105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Ren T et al (2006) Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog 2(3):e18. doi:10.1371/journal.ppat.0020018

    Article  PubMed Central  PubMed  Google Scholar 

  60. Sun YH et al (2007) Injection of flagellin into the host cell cytosol by Salmonella enterica serotype Typhimurium. J Biol Chem 282(47):33897–33901. doi:10.1074/jbc.C700181200

    Article  CAS  PubMed  Google Scholar 

  61. Suzuki T et al (2007) Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog 3(8):e111. doi:10.1371/journal.ppat.0030111

    Article  PubMed Central  PubMed  Google Scholar 

  62. Zamboni DS et al (2006) The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7(3):318–325. doi:10.1038/ni1305

    Article  CAS  PubMed  Google Scholar 

  63. Amer A et al (2006) Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J Biol Chem 281(46):35217–35223. doi:10.1074/jbc.M604933200

    Article  CAS  PubMed  Google Scholar 

  64. Man SM et al (2014) Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex. Proc Natl Acad Sci U S A 111(20):7403–7408. doi:10.1073/pnas.1402911111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Lightfield KL et al (2008) Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol 9(10):1171–1178. doi:10.1038/ni.1646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Kofoed EM, Vance RE (2011) Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477(7366):592–595. doi:10.1038/nature10394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Zhao Y et al (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477(7366):596–600. doi:10.1038/nature10510

    Article  CAS  PubMed  Google Scholar 

  68. Manicassamy S et al (2010) Activation of beta-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science 329(5993):849–853. doi:10.1126/science.1188510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Smythies LE et al (2005) Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J Clin Invest 115(1):66–75. doi:10.1172/JCI19229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Franchi L et al (2009) Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J Immunol 183(2):792–796. doi:10.4049/jimmunol.0900173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Lotz M et al (2006) Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells. J Exp Med 203(4):973–984. doi:10.1084/jem.20050625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Smith PD et al (2001) Intestinal macrophages lack CD14 and CD89 and consequently are down-regulated for LPS- and IgA-mediated activities. J Immunol 167(5):2651–2656

    Article  CAS  PubMed  Google Scholar 

  73. Meunier E et al (2014) Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature 509(7500):366–370. doi:10.1038/nature13157

    Article  CAS  PubMed  Google Scholar 

  74. Kayagaki N et al (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479(7371):117–121. doi:10.1038/nature10558

    Article  CAS  PubMed  Google Scholar 

  75. Broz P et al (2012) Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature 490(7419):288–291. doi:10.1038/nature11419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Lamkanfi M, Dixit VM (2014) Mechanisms and functions of inflammasomes. Cell 157(5):1013–1022. doi:10.1016/j.cell.2014.04.007

    Article  CAS  PubMed  Google Scholar 

  77. Demon D et al (2014) Caspase-11 is expressed in the colonic mucosa and protects against dextran sodium sulfate-induced colitis. Mucosal Immunol. doi:10.1038/mi.2014.36

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank the members of the Elinav lab for fruitful discussions. We apologize to authors whose relevant work was not included in this review owing to space constraints. Eran Elinav is supported by Yael and Rami Ungar, Israel; The Abisch-Frenkel Foundation for the Promotion of Life Sciences; the Gurwin Family Fund for Scientific Research; The Leona M. and Harry B. Helmsley Charitable Trust; the Crown Endowment Fund for Immunological Research; the Estate of Jack Gitlitz; the Estate of Lydia Hershkovich; and the European Research Council. Christoph A. Thaiss is supported by a Boehringer Ingelheim Fonds PhD Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eran Elinav.

Additional information

Maayan Levy, Christoph A. Thaiss, Meirav N. Katz, and Jotham Suez are equal contributors.

This article is a contribution to the Special Issue on Microbiome, Immunity and Inflammation - Guest Editor: Hiroshi Ohno

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levy, M., Thaiss, C.A., Katz, M.N. et al. Inflammasomes and the microbiota—partners in the preservation of mucosal homeostasis. Semin Immunopathol 37, 39–46 (2015). https://doi.org/10.1007/s00281-014-0451-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-014-0451-7

Keywords

Navigation