Seminars in Immunopathology

, Volume 36, Issue 1, pp 13–25 | Cite as

Immune cells and metabolic dysfunction

Review

Abstract

Throughout evolution, effective nutrient sensing and control of systemic energy homeostasis have relied on a close physical and functional interaction between immune and metabolically active cells. However, in today's obesogenic environment, this fine-tuned immunometabolic interface is perturbed. As a consequence, chronic inflammatory conditions and aberrant activation of immune cells have emerged as key features of obesity-related metabolic disorders, including insulin resistance, cardiovascular complications, and type 2 diabetes, whereas a major research focus has been placed on the adipocyte–macrophage interaction in the context of metabolic dysfunction; recent studies have not only expanded the scope of relevant immune cells in this setting but also highlight the impact of distinct metabolic organs, including the liver, on immunometabolic control, metabolic disease development, and potential anti-inflammatory therapeutic options in obesity-driven pathologies. This review will thus summarize recent progress in this emerging area of metabolic research.

Keywords

Adipose tissue Liver Inflammation Immune cells 

References

  1. 1.
    Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, Singh GM, Gutierrez HR, Lu Y, Bahalim AN, Farzadfar F, Riley LM, Ezzati M (2011) National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 377(9765):557–567. doi:10.1016/S0140-6736(10)62037-5 PubMedGoogle Scholar
  2. 2.
    Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414(6865):813–820PubMedGoogle Scholar
  3. 3.
    Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Investig 112(12):1796–1808PubMedGoogle Scholar
  4. 4.
    Hotamisligil GS, Budavari A, Murray D, Spiegelman BM (1994) Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes, central role of tumor necrosis factor-alpha. J Clin Investig 94(4):1543–1549PubMedGoogle Scholar
  5. 5.
    Chiang SH, Bazuine M, Lumeng CN, Geletka LM, Mowers J, White NM, Ma JT, Zhou J, Qi N, Westcott D, Delproposto JB, Blackwell TS, Yull FE, Saltiel AR (2009) The protein kinase IKKepsilon regulates energy balance in obese mice. Cell 138(5):961–975. doi:10.1016/j.cell.2009.06.046 PubMedCentralPubMedGoogle Scholar
  6. 6.
    Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS (2002) A central role for JNK in obesity and insulin resistance. Nature 420(6913):333–336. doi:10.1038/nature01137 nature01137 PubMedGoogle Scholar
  7. 7.
    Yuan M, Konstantopoulos N, Lee J, Hansen L, Li ZW, Karin M, Shoelson SE (2001) Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 293(5535):1673–1677PubMedGoogle Scholar
  8. 8.
    Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444(7121):860–867PubMedGoogle Scholar
  9. 9.
    Farooqi IS (2011) Genetic, molecular and physiological insights into human obesity. Eur J Clin Investig 41(4):451–455. doi:10.1111/j.1365-2362.2010.02468.x Google Scholar
  10. 10.
    Rohm M, Sommerfeld A, Strzoda D, Jones A, Sijmonsma TP, Rudofsky G, Wolfrum C, Sticht C, Gretz N, Zeyda M, Leitner L, Nawroth PP, Stulnig TM, Diaz MB, Vegiopoulos A, Herzig S (2013) Transcriptional cofactor TBLR1 controls lipid mobilization in white adipose tissue. Cell metabolism 17(4):575–585. doi:10.1016/j.cmet.2013.02.010 PubMedGoogle Scholar
  11. 11.
    Casteels K, Mathieu C (2003) Diabetic ketoacidosis. Rev Endocr Metab Disord 4(2):159–166PubMedGoogle Scholar
  12. 12.
    Sommerfeld A, Krones-Herzig A, Herzig S (2011) Transcriptional co-factors and hepatic energy metabolism. Mol Cell Endocrinol 332(1–2):21–31. doi:10.1016/j.mce.2010.11.020 PubMedGoogle Scholar
  13. 13.
    Kulozik P, Jones A, Mattijssen F, Rose AJ, Reimann A, Strzoda D, Kleinsorg S, Raupp C, Kleinschmidt J, Muller-Decker K, Wahli W, Sticht C, Gretz N, von Loeffelholz C, Stockmann M, Pfeiffer A, Stohr S, Dallinga-Thie GM, Nawroth PP, Berriel Diaz M, Herzig S (2011) Hepatic deficiency in transcriptional cofactor TBL1 promotes liver steatosis and hypertriglyceridemia. Cell metabolism 13(4):389–400. doi:10.1016/j.cmet.2011.02.011 PubMedGoogle Scholar
  14. 14.
    Kim JK, Gavrilova O, Chen Y, Reitman ML, Shulman GI (2000) Mechanism of insulin resistance in A-ZIP/F-1 fatless mice. J Biol Chem 275(12):8456–8460PubMedGoogle Scholar
  15. 15.
    Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA, Kahn CR (2000) Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 6(1):87–97PubMedGoogle Scholar
  16. 16.
    Du K, Herzig S, Kulkarni RN, Montminy M (2003) TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science 300(5625):1574–1577PubMedGoogle Scholar
  17. 17.
    Odegaard JI, Chawla A (2013) Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science 339(6116):172–177. doi:10.1126/science.1230721 PubMedCentralPubMedGoogle Scholar
  18. 18.
    Sell H, Habich C, Eckel J (2012) Adaptive immunity in obesity and insulin resistance. Nat Rev Endocrinol 8(12):709–716. doi:10.1038/nrendo.2012.114 PubMedGoogle Scholar
  19. 19.
    Shu CJ, Benoist C, Mathis D (2012) The immune system's involvement in obesity-driven type 2 diabetes. Semin Immunol 24(6):436–442. doi:10.1016/j.smim.2012.12.001 PubMedCentralPubMedGoogle Scholar
  20. 20.
    Biswas SK, Mantovani A (2012) Orchestration of metabolism by macrophages. Cell Metab 15(4):432–437. doi:10.1016/j.cmet.2011.11.013 PubMedGoogle Scholar
  21. 21.
    Dalmas E, Clement K, Guerre-Millo M (2011) Defining macrophage phenotype and function in adipose tissue. Trends Immunol 32(7):307–314. doi:10.1016/j.it.2011.04.008 PubMedGoogle Scholar
  22. 22.
    Mantovani A, Cassatella MA, Costantini C, Jaillon S (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11(8):519–531. doi:10.1038/nri3024 PubMedGoogle Scholar
  23. 23.
    Elgazar-Carmon V, Rudich A, Hadad N, Levy R (2008) Neutrophils transiently infiltrate intra-abdominal fat early in the course of high-fat feeding. J Lipid Res 49(9):1894–1903. doi:10.1194/jlr.M800132-JLR200 PubMedGoogle Scholar
  24. 24.
    Talukdar S, da Oh Y, Bandyopadhyay G, Li D, Xu J, McNelis J, Lu M, Li P, Yan Q, Zhu Y, Ofrecio J, Lin M, Brenner MB, Olefsky JM (2012) Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med 18(9):1407–1412. doi:10.1038/nm.2885 PubMedCentralPubMedGoogle Scholar
  25. 25.
    Pham CT (2006) Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol 6(7):541–550. doi:10.1038/nri1841 PubMedGoogle Scholar
  26. 26.
    Nijhuis J, Rensen SS, Slaats Y, van Dielen FM, Buurman WA, Greve JW (2009) Neutrophil activation in morbid obesity, chronic activation of acute inflammation. Obesity (Silver Spring) 17(11):2014–2018. doi:10.1038/oby.2009.113 Google Scholar
  27. 27.
    Herishanu Y, Rogowski O, Polliack A, Marilus R (2006) Leukocytosis in obese individuals: possible link in patients with unexplained persistent neutrophilia. Eur J Haematol 76(6):516–520. doi:10.1111/j.1600-0609.2006.00658.x PubMedGoogle Scholar
  28. 28.
    Zaldivar F, McMurray RG, Nemet D, Galassetti P, Mills PJ, Cooper DM (2006) Body fat and circulating leukocytes in children. Int J Obes (Lond) 30(6):906–911. doi:10.1038/sj.ijo.0803227 Google Scholar
  29. 29.
    Suzukawa M, Nagase H, Ogahara I, Han K, Tashimo H, Shibui A, Koketsu R, Nakae S, Yamaguchi M, Ohta K (2011) Leptin enhances survival and induces migration, degranulation, and cytokine synthesis of human basophils. J Immunol 186(9):5254–5260. doi:10.4049/jimmunol.1004054 PubMedGoogle Scholar
  30. 30.
    Laurson KR, McCann DA, Senchina DS (2011) Age, sex, and ethnicity may modify the influence of obesity on inflammation. Journal of investigative medicine : the official publication of the American Federation for Clinical Research 59 (1): 27–31. doi:10.231/JIM.0b013e318200151a
  31. 31.
    Johannsen NM, Priest EL, Dixit VD, Earnest CP, Blair SN, Church TS (2010) Association of white blood cell subfraction concentration with fitness and fatness. Br J Sports Med 44(8):588–593. doi:10.1136/bjsm.2008.050682 PubMedGoogle Scholar
  32. 32.
    Vasudevan AR, Wu H, Xydakis AM, Jones PH, Smith EO, Sweeney JF, Corry DB, Ballantyne CM (2006) Eotaxin and obesity. J Clin Endocrinol Metab 91(1):256–261. doi:10.1210/jc.2005-1280 PubMedGoogle Scholar
  33. 33.
    Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA, Bando JK, Chawla A, Locksley RM (2011) Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332(6026):243–247. doi:10.1126/science.1201475 PubMedCentralPubMedGoogle Scholar
  34. 34.
    Galli SJ, Kalesnikoff J, Grimbaldeston MA, Piliponsky AM, Williams CM, Tsai M (2005) Mast cells as “tunable” effector and immunoregulatory cells: recent advances. Annu Rev Immunol 23:749–786. doi:10.1146/annurev.immunol.21.120601.141025 PubMedGoogle Scholar
  35. 35.
    Poglio S, De Toni-Costes F, Arnaud E, Laharrague P, Espinosa E, Casteilla L, Cousin B (2010) Adipose tissue as a dedicated reservoir of functional mast cell progenitors. Stem Cells 28(11):2065–2072. doi:10.1002/stem.523 PubMedGoogle Scholar
  36. 36.
    Liu J, Divoux A, Sun J, Zhang J, Clement K, Glickman JN, Sukhova GK, Wolters PJ, Du J, Gorgun CZ, Doria A, Libby P, Blumberg RS, Kahn BB, Hotamisligil GS, Shi GP (2009) Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat Med 15(8):940–945. doi:10.1038/nm.1994 PubMedCentralPubMedGoogle Scholar
  37. 37.
    Altintas MM, Azad A, Nayer B, Contreras G, Zaias J, Faul C, Reiser J, Nayer A (2011) Mast cells, macrophages, and crown-like structures distinguish subcutaneous from visceral fat in mice. J lipid Res 52(3):480–488. doi:10.1194/jlr.M011338 PubMedGoogle Scholar
  38. 38.
    Tanaka A, Nomura Y, Matsuda A, Ohmori K, Matsuda H (2011) Mast cells function as an alternative modulator of adipogenesis through 15-deoxy-delta-12, 14-prostaglandin J2. Am J Physiol Cell Physiol 301(6):C1360–1367. doi:10.1152/ajpcell.00514.2010 PubMedGoogle Scholar
  39. 39.
    Murakami M, Tada K, Nakajima K, Kudo I (1997) Cyclooxygenase-2-dependent delayed prostaglandin D2 generation is initiated by nerve growth factor in rat peritoneal mast cells: its augmentation by extracellular type II secretory phospholipase A2. J Immunol 159(1):439–446PubMedGoogle Scholar
  40. 40.
    Kliewer SA, Lenhard JM, Willson TM, Patel I, Morris DC, Lehmann JM (1995) A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell 83(5):813–819PubMedGoogle Scholar
  41. 41.
    Herlong JL, Scott TR (2006) Positioning prostanoids of the D and J series in the immunopathogenic scheme. Immunol lett 102(2):121–131. doi:10.1016/j.imlet.2005.10.004 PubMedGoogle Scholar
  42. 42.
    Sinha D, Addya S, Murer E, Boden G (1999) 15-Deoxy-delta(12,14) prostaglandin J2: a putative endogenous promoter of adipogenesis suppresses the ob gene. Metab: Clin Exp 48(6):786–791Google Scholar
  43. 43.
    Zhang J, Shi GP (2012) Mast cells and metabolic syndrome. Biochim Biophys Acta 1822(1):14–20. doi:10.1016/j.bbadis.2010.12.012 PubMedCentralPubMedGoogle Scholar
  44. 44.
    Caspar-Bauguil S, Cousin B, Galinier A, Segafredo C, Nibbelink M, Andre M, Casteilla L, Penicaud L (2005) Adipose tissues as an ancestral immune organ: site-specific change in obesity. FEBS lett 579(17):3487–3492. doi:10.1016/j.febslet.2005.05.031 PubMedGoogle Scholar
  45. 45.
    Barra NG, Chew MV, Reid S, Ashkar AA (2012) Interleukin-15 treatment induces weight loss independent of lymphocytes. PloS One 7(6):e39553. doi:10.1371/journal.pone.0039553 PubMedCentralPubMedGoogle Scholar
  46. 46.
    Lynch LA, O'Connell JM, Kwasnik AK, Cawood TJ, O'Farrelly C, O'Shea DB (2009) Are natural killer cells protecting the metabolically healthy obese patient? Obesity (Silver Spring) 17(3):601–605. doi:10.1038/oby.2008.565 Google Scholar
  47. 47.
    Duffaut C, Galitzky J, Lafontan M, Bouloumie A (2009) Unexpected trafficking of immune cells within the adipose tissue during the onset of obesity. Biochem Biophys Res Commun 384(4):482–485. doi:10.1016/j.bbrc.2009.05.002 PubMedGoogle Scholar
  48. 48.
    O'Rourke RW, White AE, Metcalf MD, Olivas AS, Mitra P, Larison WG, Cheang EC, Varlamov O, Corless CL, Roberts CT Jr, Marks DL (2011) Hypoxia-induced inflammatory cytokine secretion in human adipose tissue stromovascular cells. Diabetologia 54(6):1480–1490. doi:10.1007/s00125-011-2103-y PubMedCentralPubMedGoogle Scholar
  49. 49.
    Barra NG, Reid S, MacKenzie R, Werstuck G, Trigatti BL, Richards C, Holloway AC, Ashkar AA (2010) Interleukin-15 contributes to the regulation of murine adipose tissue and human adipocytes. Obesity (Silver Spring) 18(8):1601–1607. doi:10.1038/oby.2009.445 Google Scholar
  50. 50.
    Ahima RS, Flier JS (2000) Leptin. Annu Rev Physiol 62:413–437. doi:10.1146/annurev.physiol.62.1.413 PubMedGoogle Scholar
  51. 51.
    La Cava A, Matarese G (2004) The weight of leptin in immunity. Nat Rev Immunol 4(5):371–379. doi:10.1038/nri1350 PubMedGoogle Scholar
  52. 52.
    Faggioni R, Feingold KR, Grunfeld C (2001) Leptin regulation of the immune response and the immunodeficiency of malnutrition. FASEB J : Off Publ Fed Am Soc Exp Biol 15(14):2565–2571. doi:10.1096/fj.01-0431rev Google Scholar
  53. 53.
    Gainsford T, Willson TA, Metcalf D, Handman E, McFarlane C, Ng A, Nicola NA, Alexander WS, Hilton DJ (1996) Leptin can induce proliferation, differentiation, and functional activation of hemapoietic cells. Proc Natl Acad Sci U S A 93(25):14564–14568PubMedCentralPubMedGoogle Scholar
  54. 54.
    Loffreda S, Yang SQ, Lin HZ, Karp CL, Brengman ML, Wang DJ, Klein AS, Bulkley GB, Bao C, Noble PW, Lane MD, Diehl AM (1998) Leptin regulates proinflammatory immune responses. FASEB J : Off Publ Fed Am Soc Exp Biol 12(1):57–65Google Scholar
  55. 55.
    Lee FY, Li Y, Yang EK, Yang SQ, Lin HZ, Trush MA, Dannenberg AJ, Diehl AM (1999) Phenotypic abnormalities in macrophages from leptin-deficient, obese mice. Am J Physiol 276(2 Pt 1):C386–394PubMedGoogle Scholar
  56. 56.
    Mattioli B, Giordani L, Quaranta MG, Viora M (2009) Leptin exerts an anti-apoptotic effect on human dendritic cells via the PI3K-Akt signaling pathway. FEBS lett 583(7):1102–1106. doi:10.1016/j.febslet.2009.02.029 PubMedGoogle Scholar
  57. 57.
    Smith AG, Sheridan PA, Harp JB, Beck MA (2007) Diet-induced obese mice have increased mortality and altered immune responses when infected with influenza virus. J Nutr 137(5):1236–1243PubMedGoogle Scholar
  58. 58.
    Tian Z, Sun R, Wei H, Gao B (2002) Impaired natural killer (NK) cell activity in leptin receptor deficient mice: leptin as a critical regulator in NK cell development and activation. Biochem Biophys Res Commun 298(3):297–302PubMedGoogle Scholar
  59. 59.
    Wrann CD, Laue T, Hubner L, Kuhlmann S, Jacobs R, Goudeva L, Nave H (2012) Short-term and long-term leptin exposure differentially affect human natural killer cell immune functions. Am J Physiol Endocrinol Metab 302(1):E108–116. doi:10.1152/ajpendo.00057.2011 PubMedGoogle Scholar
  60. 60.
    Beckman EM, Porcelli SA, Morita CT, Behar SM, Furlong ST, Brenner MB (1994) Recognition of a lipid antigen by CD1-restricted alpha beta + T cells. Nature 372(6507):691–694. doi:10.1038/372691a0 PubMedGoogle Scholar
  61. 61.
    Lynch L, Nowak M, Varghese B, Clark J, Hogan AE, Toxavidis V, Balk SP, O'Shea D, O'Farrelly C, Exley MA (2012) Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity 37(3):574–587. doi:10.1016/j.immuni.2012.06.016 PubMedGoogle Scholar
  62. 62.
    Ohmura K, Ishimori N, Ohmura Y, Tokuhara S, Nozawa A, Horii S, Andoh Y, Fujii S, Iwabuchi K, Onoe K, Tsutsui H (2010) Natural killer T cells are involved in adipose tissues inflammation and glucose intolerance in diet-induced obese mice. Arterioscler, Thromb, Vasc Biol 30(2):193–199. doi:10.1161/ATVBAHA.109.198614 Google Scholar
  63. 63.
    Mantell BS, Stefanovic-Racic M, Yang X, Dedousis N, Sipula IJ, O'Doherty RM (2011) Mice lacking NKT cells but with a complete complement of CD8+ T-cells are not protected against the metabolic abnormalities of diet-induced obesity. PloS One 6(6):e19831. doi:10.1371/journal.pone.0019831 PubMedCentralPubMedGoogle Scholar
  64. 64.
    Schipper HS, Rakhshandehroo M, van de Graaf SF, Venken K, Koppen A, Stienstra R, Prop S, Meerding J, Hamers N, Besra G, Boon L, Nieuwenhuis EE, Elewaut D, Prakken B, Kersten S, Boes M, Kalkhoven E (2012) Natural killer T cells in adipose tissue prevent insulin resistance. J Clin Investig 122(9):3343–3354. doi:10.1172/JCI62739 PubMedGoogle Scholar
  65. 65.
    Ji Y, Sun S, Xu A, Bhargava P, Yang L, Lam KS, Gao B, Lee CH, Kersten S, Qi L (2012) Activation of natural killer T cells promotes M2 macrophage polarization in adipose tissue and improves systemic glucose tolerance via interleukin-4 (IL-4)/STAT6 protein signaling axis in obesity. J Biol Chem 287(17):13561–13571. doi:10.1074/jbc.M112.350066 PubMedGoogle Scholar
  66. 66.
    Ji Y, Sun S, Xia S, Yang L, Li X, Qi L (2012) Short-term high-fat-diet challenge promotes alternative macrophage polarization in adipose tissue via natural killer T cells and interleukin-4. J Biol Chem. doi:10.1074/jbc.M112.371807 Google Scholar
  67. 67.
    Wu L, Parekh VV, Gabriel CL, Bracy DP, Marks-Shulman PA, Tamboli RA, Kim S, Mendez-Fernandez YV, Besra GS, Lomenick JP, Williams B, Wasserman DH, Van Kaer L (2012) Activation of invariant natural killer T cells by lipid excess promotes tissue inflammation, insulin resistance, and hepatic steatosis in obese mice. Proc Natl Acad Sci U S A 109(19):E1143–1152. doi:10.1073/pnas.1200498109 PubMedCentralPubMedGoogle Scholar
  68. 68.
    Lynch L, O'Shea D, Winter DC, Geoghegan J, Doherty DG, O'Farrelly C (2009) Invariant NKT cells and CD1d(+) cells amass in human omentum and are depleted in patients with cancer and obesity. Eur J Immunol 39(7):1893–1901. doi:10.1002/eji.200939349 PubMedGoogle Scholar
  69. 69.
    Kenna T, Golden-Mason L, Porcelli SA, Koezuka Y, Hegarty JE, O'Farrelly C, Doherty DG (2003) NKT cells from normal and tumor-bearing human livers are phenotypically and functionally distinct from murine NKT cells. J Immunol 171(4):1775–1779PubMedGoogle Scholar
  70. 70.
    Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252. doi:10.1038/32588 PubMedGoogle Scholar
  71. 71.
    Dominguez PM, Ardavin C (2010) Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation. Immunol Rev 234(1):90–104. doi:10.1111/j.0105-2896.2009.00876.x PubMedGoogle Scholar
  72. 72.
    Joffre O, Nolte MA, Sporri R, Reis e Sousa C (2009) Inflammatory signals in dendritic cell activation and the induction of adaptive immunity. Immunol Rev 227(1):234–247. doi:10.1111/j.1600-065×.2008.00718.x PubMedGoogle Scholar
  73. 73.
    Bedford PA, Todorovic V, Westcott ED, Windsor AC, English NR, Al-Hassi HO, Raju KS, Mills S, Knight SC (2006) Adipose tissue of human omentum is a major source of dendritic cells, which lose MHC Class II and stimulatory function in Crohn's disease. J Leukoc Biol 80(3):546–554. doi:10.1189/jlb.0905501 PubMedGoogle Scholar
  74. 74.
    Bertola A, Ciucci T, Rousseau D, Bourlier V, Duffaut C, Bonnafous S, Blin-Wakkach C, Anty R, Iannelli A, Gugenheim J, Tran A, Bouloumie A, Gual P, Wakkach A (2012) Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes 61(9):2238–2247. doi:10.2337/db11-1274 PubMedGoogle Scholar
  75. 75.
    Stefanovic-Racic M, Yang X, Turner MS, Mantell BS, Stolz DB, Sumpter TL, Sipula IJ, Dedousis N, Scott DK, Morel PA, Thomson AW, O'Doherty RM (2012) Dendritic cells promote macrophage infiltration and comprise a substantial proportion of obesity-associated increases in CD11c + cells in adipose tissue and liver. Diabetes 61(9):2330–2339. doi:10.2337/db11-1523 PubMedGoogle Scholar
  76. 76.
    Winer S, Paltser G, Chan Y, Tsui H, Engleman E, Winer D, Dosch HM (2009) Obesity predisposes to Th17 bias. Eur J Immunol 39(9):2629–2635. doi:10.1002/eji.200838893 PubMedGoogle Scholar
  77. 77.
    Gao B, Jeong WI, Tian Z (2008) Liver: an organ with predominant innate immunity. Hepatology 47(2):729–736. doi:10.1002/hep.22034 PubMedGoogle Scholar
  78. 78.
    Bjorkstrom NK, Kekalainen E, Mjosberg J (2013) Tissue-specific effector functions of innate lymphoid cells. Immunology. doi:10.1111/imm.12098 PubMedGoogle Scholar
  79. 79.
    Sakaguchi S, Takahashi S, Sasaki T, Kumagai T, Nagata K (2011) Progression of alcoholic and non-alcoholic steatohepatitis: common metabolic aspects of innate immune system and oxidative stress. Drug Metab Pharmacokinet 26(1):30–46PubMedGoogle Scholar
  80. 80.
    Williams KH, Shackel NA, Gorrell MD, McLennan SV, Twigg SM (2013) Diabetes and nonalcoholic fatty liver disease: a pathogenic duo. Endocr Rev 34(1):84–129. doi:10.1210/er.2012-1009 PubMedGoogle Scholar
  81. 81.
    Larrain S, Rinella ME (2012) A myriad of pathways to NASH. Clin liver Dis 16(3):525–548. doi:10.1016/j.cld.2012.05.009 PubMedGoogle Scholar
  82. 82.
    Bohinc BN, Diehl AM (2012) Mechanisms of disease progression in NASH: new paradigms. Clin liver Dis 16(3):549–565. doi:10.1016/j.cld.2012.05.002 PubMedGoogle Scholar
  83. 83.
    Zhan YT, An W (2010) Roles of liver innate immune cells in nonalcoholic fatty liver disease. World J Gastroenterol : WJG 16(37):4652–4660PubMedGoogle Scholar
  84. 84.
    Bilzer M, Roggel F, Gerbes AL (2006) Role of Kupffer cells in host defense and liver disease. Liver Int : Off J Int Assoc Study of the Liver 26(10):1175–1186. doi:10.1111/j.1478-3231.2006.01342.x Google Scholar
  85. 85.
    Szabo G, Petrasek J, Bala S (2012) Innate immunity and alcoholic liver disease. Dig Dis 30(Suppl 1):55–60. doi:10.1159/000341126 PubMedGoogle Scholar
  86. 86.
    Cubero FJ, Nieto N (2012) Arachidonic acid stimulates TNFalpha production in Kupffer cells via a reactive oxygen species-pERK1/2-Egr1-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 303(2):G228–239. doi:10.1152/ajpgi.00465.2011 PubMedGoogle Scholar
  87. 87.
    Mandrekar P, Ambade A, Lim A, Szabo G, Catalano D (2011) An essential role for monocyte chemoattractant protein-1 in alcoholic liver injury: regulation of proinflammatory cytokines and hepatic steatosis in mice. Hepatology 54(6):2185–2197. doi:10.1002/hep.24599 PubMedCentralPubMedGoogle Scholar
  88. 88.
    Miura K, Kodama Y, Inokuchi S, Schnabl B, Aoyama T, Ohnishi H, Olefsky JM, Brenner DA, Seki E (2010) Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology 139(1):323–334. doi:10.1053/j.gastro.2010.03.052, e327PubMedGoogle Scholar
  89. 89.
    Yang YY, Huang YT, Tsai TH, Hou MC, Lee FY, Lee SD, Lin HC (2012) Kupffer cell depletion attenuates leptin-mediated methoxamine-stimulated portal perfusion pressure and thromboxane A2 release in a rodent model of NASH-cirrhosis. Clin Sci 123(12):669–680. doi:10.1042/CS20110572 PubMedGoogle Scholar
  90. 90.
    Tosello-Trampont AC, Landes SG, Nguyen V, Novobrantseva TI, Hahn YS (2012) Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-alpha production. J Biol Chem 287(48):40161–40172. doi:10.1074/jbc.M112.417014 PubMedGoogle Scholar
  91. 91.
    Seki E, Schnabl B (2012) Role of innate immunity and the microbiota in liver fibrosis: crosstalk between the liver and gut. J Physiol 590(Pt 3):447–458. doi:10.1113/jphysiol.2011.219691 PubMedGoogle Scholar
  92. 92.
    Leroux A, Ferrere G, Godie V, Cailleux F, Renoud ML, Gaudin F, Naveau S, Prevot S, Makhzami S, Perlemuter G, Cassard-Doulcier AM (2012) Toxic lipids stored by Kupffer cells correlates with their pro-inflammatory phenotype at an early stage of steatohepatitis. J Hepatol 57(1):141–149. doi:10.1016/j.jhep.2012.02.028 PubMedGoogle Scholar
  93. 93.
    Odegaard JI, Chawla A (2008) Mechanisms of macrophage activation in obesity-induced insulin resistance. Nat Clin Pract Endocrinol Metab 4(11):619–626. doi:10.1038/ncpendmet0976 PubMedCentralPubMedGoogle Scholar
  94. 94.
    Odegaard JI, Ricardo-Gonzalez RR, Red Eagle A, Vats D, Morel CR, Goforth MH, Subramanian V, Mukundan L, Ferrante AW, Chawla A (2008) Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab 7(6):496–507. doi:10.1016/j.cmet.2008.04.003 PubMedCentralPubMedGoogle Scholar
  95. 95.
    de las Casas-Engel M, Dominguez-Soto A, E S-F, Bragado R, Nieto C, Puig-Kroger A, Samaniego R, Loza M, Corcuera MT, Gomez-Aguado F, Bustos M, Sanchez-Mateos P, Corbi AL (2013) Serotonin skews human macrophage polarization through HTR2B and HTR7. J Immunol 190(5):2301–2310. doi:10.4049/jimmunol.1201133 PubMedGoogle Scholar
  96. 96.
    Muldoon MF, Mackey RH, Korytkowski MT, Flory JD, Pollock BG, Manuck SB (2006) The metabolic syndrome is associated with reduced central serotonergic responsivity in healthy community volunteers. J Clin Endocrinol Metab 91(2):718–721. doi:10.1210/jc.2005-1654 PubMedGoogle Scholar
  97. 97.
    Gao B, Radaeva S (2012) Natural killer and natural killer T cells in liver fibrosis. Biochim Biophys Acta. doi:10.1016/j.bbadis.2012.09.008 Google Scholar
  98. 98.
    Kahraman A, Fingas CD, Syn WK, Gerken G, Canbay A (2012) Role of stress-induced NKG2D ligands in liver diseases. Liver Int : Off J Int Assoc Study Liver 32(3):370–382. doi:10.1111/j.1478-3231.2011.02608.x Google Scholar
  99. 99.
    Mondelli MU (2012) NKG2D and its ligands: key to immunotherapy of liver cancer? J Hepatol 56(2):308–310. doi:10.1016/j.jhep.2011.07.008 PubMedGoogle Scholar
  100. 100.
    Zou Y, Chen T, Han M, Wang H, Yan W, Song G, Wu Z, Wang X, Zhu C, Luo X, Ning Q (2010) Increased killing of liver NK cells by Fas/Fas ligand and NKG2D/NKG2D ligand contributes to hepatocyte necrosis in virus-induced liver failure. J Immunol 184(1):466–475. doi:10.4049/jimmunol.0900687 PubMedGoogle Scholar
  101. 101.
    Tian Z, Chen Y, Gao B (2012) Natural killer cells in liver disease. Hepatology. doi:10.1002/hep.26115 PubMedGoogle Scholar
  102. 102.
    Kahraman A, Schlattjan M, Kocabayoglu P, Yildiz-Meziletoglu S, Schlensak M, Fingas CD, Wedemeyer I, Marquitan G, Gieseler RK, Baba HA, Gerken G, Canbay A (2010) Major histocompatibility complex class I-related chains A and B (MIC A/B): a novel role in nonalcoholic steatohepatitis. Hepatology 51(1):92–102. doi:10.1002/hep.23253 PubMedGoogle Scholar
  103. 103.
    O'Shea D, Cawood TJ, O'Farrelly C, Lynch L (2010) Natural killer cells in obesity: impaired function and increased susceptibility to the effects of cigarette smoke. PloS One 5(1):e8660. doi:10.1371/journal.pone.0008660 PubMedCentralPubMedGoogle Scholar
  104. 104.
    Glassner A, Eisenhardt M, Kramer B, Korner C, Coenen M, Sauerbruch T, Spengler U, Nattermann J (2012) NK cells from HCV-infected patients effectively induce apoptosis of activated primary human hepatic stellate cells in a TRAIL-, FasL- and NKG2D-dependent manner. Lab Investig; J Tech Methods Pathol 92(7):967–977. doi:10.1038/labinvest.2012.54 Google Scholar
  105. 105.
    Gomez-Santos L, Luka Z, Wagner C, Fernandez-Alvarez S, Lu SC, Mato JM, Martinez-Chantar ML, Beraza N (2012) Inhibition of natural killer cells protects the liver against acute injury in the absence of glycine N-methyltransferase. Hepatology 56(2):747–759. doi:10.1002/hep.25694 PubMedCentralPubMedGoogle Scholar
  106. 106.
    Liaskou E, Wilson DV, Oo YH (2012) Innate immune cells in liver inflammation. Mediat Inflamm 2012:949157. doi:10.1155/2012/949157 Google Scholar
  107. 107.
    Rahman AH, Aloman C (2013) Dendritic cells and liver fibrosis. Biochim Biophys Acta. doi:10.1016/j.bbadis.2013.01.005 Google Scholar
  108. 108.
    Ibrahim J, Nguyen AH, Rehman A, Ochi A, Jamal M, Graffeo CS, Henning JR, Zambirinis CP, Fallon NC, Barilla R, Badar S, Mitchell A, Rao RS, Acehan D, Frey AB, Miller G (2012) Dendritic cell populations with different concentrations of lipid regulate tolerance and immunity in mouse and human liver. Gastroenterology 143(4):1061–1072. doi:10.1053/j.gastro.2012.06.003 PubMedCentralPubMedGoogle Scholar
  109. 109.
    Henning JR, Graffeo CS, Rehman A, Fallon NC, Zambirinis CP, Ochi A, Barilla R, Jamal M, Deutsch M, Greco S, Ego-Osuala M, Saeed UB, Rao RS, Badar S, Quesada JP, Acehan D, Miller G (2013) Dendritic cells limit fibro-inflammatory injury in NASH. Hepatology. doi:10.1002/hep.26267 PubMedGoogle Scholar
  110. 110.
    Satoh M, Andoh Y, Clingan CS, Ogura H, Fujii S, Eshima K, Nakayama T, Taniguchi M, Hirata N, Ishimori N, Tsutsui H, Onoe K, Iwabuchi K (2012) Type II NKT cells stimulate diet-induced obesity by mediating adipose tissue inflammation, steatohepatitis and insulin resistance. PloS One 7(2):e30568. doi:10.1371/journal.pone.0030568 PubMedCentralPubMedGoogle Scholar
  111. 111.
    Tajiri K, Shimizu Y, Tsuneyama K, Sugiyama T (2009) Role of liver-infiltrating CD3 + CD56+ natural killer T cells in the pathogenesis of nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol 21(6):673–680. doi:10.1097/MEG.0b013e32831bc3d6 PubMedGoogle Scholar
  112. 112.
    Xu CF, Yu CH, Li YM, Xu L, Du J, Shen Z (2007) Association of the frequency of peripheral natural killer T cells with nonalcoholic fatty liver disease. World J Gastroenterol : WJG 13(33):4504–4508PubMedGoogle Scholar
  113. 113.
    Johnson AR, Milner JJ, Makowski L (2012) The inflammation highway: metabolism accelerates inflammatory traffic in obesity. Immunol Rev 249(1):218–238. doi:10.1111/j.1600-065×.2012.01151.x PubMedCentralPubMedGoogle Scholar
  114. 114.
    Syn WK, Agboola KM, Swiderska M, Michelotti GA, Liaskou E, Pang H, Xie G, Philips G, Chan IS, Karaca GF, Pereira Tde A, Chen Y, Mi Z, Kuo PC, Choi SS, Guy CD, Abdelmalek MF, Diehl AM (2012) NKT-associated hedgehog and osteopontin drive fibrogenesis in non-alcoholic fatty liver disease. Gut 61(9):1323–1329. doi:10.1136/gutjnl-2011-301857 PubMedCentralPubMedGoogle Scholar
  115. 115.
    Locatelli I, Sutti S, Vacchiano M, Bozzola C, Albano E (2013) NF-kappaB1 deficiency stimulates the progression of non-alcoholic steatohepatitis (NASH) in mice by promoting NKT-cell-mediated responses. Clin Sci 124(4):279–287. doi:10.1042/CS20120289 PubMedGoogle Scholar
  116. 116.
    Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259(5091):87–91PubMedGoogle Scholar
  117. 117.
    Larsen CM, Faulenbach M, Vaag A, Volund A, Ehses JA, Seifert B, Mandrup-Poulsen T, Donath MY (2007) Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 356(15):1517–1526. doi:10.1056/NEJMoa065213 PubMedGoogle Scholar
  118. 118.
    Sauter NS, Schulthess FT, Galasso R, Castellani LW, Maedler K (2008) The antiinflammatory cytokine interleukin-1 receptor antagonist protects from high-fat diet-induced hyperglycemia. Endocrinology 149(5):2208–2218. doi:10.1210/en.2007-1059 PubMedGoogle Scholar
  119. 119.
    Rizos CV, Elisaf MS, Mikhailidis DP, Liberopoulos EN (2009) How safe is the use of thiazolidinediones in clinical practice? Expert Opin Drug Saf 8(1):15–32. doi:10.1517/14740330802597821 PubMedGoogle Scholar
  120. 120.
    De Vito R, Alisi A, Masotti A, Ceccarelli S, Panera N, Citti A, Salata M, Valenti L, Feldstein AE, Nobili V (2012) Markers of activated inflammatory cells correlate with severity of liver damage in children with nonalcoholic fatty liver disease. Int J Mol Med 30(1):49–56. doi:10.3892/ijmm.2012.965 PubMedGoogle Scholar
  121. 121.
    Inzaugarat ME, Ferreyra Solari NE, Billordo LA, Abecasis R, Gadano AC, Chernavsky AC (2011) Altered phenotype and functionality of circulating immune cells characterize adult patients with nonalcoholic steatohepatitis. J Clin Immunol 31(6):1120–1130. doi:10.1007/s10875-011-9571-1 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Joint Research Division Molecular Metabolic Control, German Cancer Research Center (DKFZ), Center for Molecular Biology (ZMBH) University of Heidelberg, Network Aging ResearchUniversity Hospital HeidelbergHeidelbergGermany

Personalised recommendations