Seminars in Immunopathology

, Volume 34, Issue 6, pp 753–770 | Cite as

Current understanding of immunity to Trypanosoma cruzi infection and pathogenesis of Chagas disease

  • Fabiana S. Machado
  • Walderez O. Dutra
  • Lisia Esper
  • Kenneth J. Gollob
  • Mauro M. Teixeira
  • Stephen M. Factor
  • Louis M. Weiss
  • Fnu Nagajyothi
  • Herbert B. Tanowitz
  • Nisha J. Garg


Chagas disease caused by Trypanosoma cruzi remains an important neglected tropical disease and a cause of significant morbidity and mortality. No longer confined to endemic areas of Latin America, it is now found in non-endemic areas due to immigration. The parasite may persist in any tissue, but in recent years, there has been increased recognition of adipose tissue both as an early target of infection and a reservoir of chronic infection. The major complications of this disease are cardiomyopathy and megasyndromes involving the gastrointestinal tract. The pathogenesis of Chagas disease is complex and multifactorial involving many interactive pathways. The significance of innate immunity, including the contributions of cytokines, chemokines, reactive oxygen species, and oxidative stress, has been emphasized. The role of the components of the eicosanoid pathway such as thromboxane A2 and the lipoxins has been demonstrated to have profound effects as both pro- and anti-inflammatory factors. Additionally, we discuss the vasoconstrictive actions of thromboxane A2 and endothelin-1 in Chagas disease. Human immunity to T. cruzi infection and its role in pathogen control and disease progression have not been fully investigated. However, recently, it was demonstrated that a reduction in the anti-inflammatory cytokine IL-10 was associated with clinically significant chronic chagasic cardiomyopathy.


  1. 1.
    Aufderheide AC, Salo W, Madden M, Streitz J, Buikstra J et al (2004) A 9,000-year record of Chagas' disease. Proc Natl Acad Sci USA 101:2034–2039PubMedCrossRefGoogle Scholar
  2. 2.
    Araujo A, Jansen AM, Reinhard K, Ferreira LF (2009) Paleoparasitology of Chagas disease—a review. Mem Inst Oswaldo Cruz 104(Suppl 1):9–16PubMedCrossRefGoogle Scholar
  3. 3.
    Cantey PT, Stramer SL, Townsend RL, Kamel H, Ofafa K et al (2012) The United States Trypanosoma cruzi Infection Study: evidence for vector-borne transmission of the parasite that causes Chagas disease among United States blood donors. Transfusion 52:1922–1930PubMedCrossRefGoogle Scholar
  4. 4.
    Bern C, Montgomery SP (2009) An estimate of the burden of Chagas disease in the United States. Clin Infect Dis 49:e52–e54PubMedCrossRefGoogle Scholar
  5. 5.
    Basile L, Jansa JM, Carlier Y, Salamanca DD, Angheben A et al (2011) Chagas disease in European countries: the challenge of a surveillance system. Euro Surveill 16Google Scholar
  6. 6.
    Tanowitz HB, Weiss LM, Montgomery SP (2011) Chagas disease has now gone global. PLoS Negl Trop Dis 5:e1136PubMedCrossRefGoogle Scholar
  7. 7.
    Caradonna KL, Burleigh BA (2011) Mechanisms of host cell invasion by Trypanosoma cruzi. Adv Parasitol 76:33–61PubMedCrossRefGoogle Scholar
  8. 8.
    Nagajyothi F, Weiss LM, Silver DL, Desruisseaux MS, Scherer PE et al (2011) Trypanosoma cruzi utilizes the host low density lipoprotein receptor in invasion. PLoS Negl Trop Dis 5:e953PubMedCrossRefGoogle Scholar
  9. 9.
    Shikanai-Yasuda MA, Carvalho NB (2012) Oral transmission of chagas disease. Clin Infect Dis 54:845–852PubMedCrossRefGoogle Scholar
  10. 10.
    Hoff R, Teixeira RS, Carvalho JS, Mott KE (1978) Trypanosoma cruzi in the cerebrospinal fluid during the acute stage of Chagas' disease. N Engl J Med 298:604–606PubMedCrossRefGoogle Scholar
  11. 11.
    Carod-Artal FJ, Vargas AP, Falcao T (2011) Stroke in asymptomatic Trypanosoma cruzi-infected patients. Cerebrovasc Dis 31:24–28PubMedCrossRefGoogle Scholar
  12. 12.
    Fiorelli AI, Santos RH, Oliveira JL Jr, Lourenco-Filho DD, Dias RR et al (2011) Heart transplantation in 107 cases of Chagas' disease. Transplant Proc 43:220–224PubMedCrossRefGoogle Scholar
  13. 13.
    Gutierrez FR, Lalu MM, Mariano FS, Milanezi CM, Cena J et al (2008) Increased activities of cardiac matrix metalloproteinases matrix metalloproteinase (MMP)-2 and MMP-9 are associated with mortality during the acute phase of experimental Trypanosoma cruzi infection. J Infect Dis 197:1468–1476PubMedCrossRefGoogle Scholar
  14. 14.
    Andrade LO, Machado CR, Chiari E, Pena SD, Macedo AM (1999) Differential tissue distribution of diverse clones of Trypanosoma cruzi in infected mice. Mol Biochem Parasitol 100:163–172PubMedCrossRefGoogle Scholar
  15. 15.
    dos Santos DM, Talvani A, Guedes PM, Machado-Coelho GL, de Lana M et al (2009) Trypanosoma cruzi: genetic diversity influences the profile of immunoglobulins during experimental infection. Exp Parasitol 121:8–14PubMedCrossRefGoogle Scholar
  16. 16.
    Vago AR, Andrade LO, Leite AA, d’Avila Reis D, Macedo AM et al (2000) Genetic characterization of Trypanosoma cruzi directly from tissues of patients with chronic Chagas disease: differential distribution of genetic types into diverse organs. Am J Pathol 156:1805–1809PubMedCrossRefGoogle Scholar
  17. 17.
    Factor SM, Sonnenblick EH (1985) The pathogenesis of clinical and experimental congestive cardiomyopathies: recent concepts. Prog Cardiovasc Dis 27:395–420PubMedCrossRefGoogle Scholar
  18. 18.
    Factor SM, Cho SH, Scheuer J, Sonnenblick EH, Malhotra A (1988) Prevention of hereditary cardiomyopathy in the Syrian hamster with chronic verapamil therapy. J Am Coll Cardiol 12:1599–1604PubMedCrossRefGoogle Scholar
  19. 19.
    Sonnenblick EH, Fein F, Capasso JM, Factor SM (1985) Microvascular spasm as a cause of cardiomyopathies and the calcium-blocking agent verapamil as potential primary therapy. Am J Cardiol 55:179B–184BPubMedCrossRefGoogle Scholar
  20. 20.
    Factor SM, Cho S, Wittner M, Tanowitz H (1985) Abnormalities of the coronary microcirculation in acute murine Chagas' disease. Am J Trop Med Hyg 34:246–253PubMedGoogle Scholar
  21. 21.
    Tanowitz HB, Kaul DK, Chen B, Morris SA, Factor SM et al (1996) Compromised microcirculation in acute murine Trypanosoma cruzi infection. J Parasitol 82:124–130PubMedCrossRefGoogle Scholar
  22. 22.
    Chandra M, Shirani J, Shtutin V, Weiss LM, Factor SM et al (2002) Cardioprotective effects of verapamil on myocardial structure and function in a murine model of chronic Trypanosoma cruzi infection (Brazil strain): an echocardiographic study. Int J Parasitol 32:207–215PubMedCrossRefGoogle Scholar
  23. 23.
    De Souza AP, Tanowitz HB, Chandra M, Shtutin V, Weiss LM et al (2004) Effects of early and late verapamil administration on the development of cardiomyopathy in experimental chronic Trypanosoma cruzi (Brazil strain) infection. Parasitol Res 92:496–501PubMedCrossRefGoogle Scholar
  24. 24.
    Petkova SB, Tanowitz HB, Magazine HI, Factor SM, Chan J et al (2000) Myocardial expression of endothelin-1 in murine Trypanosoma cruzi infection. Cardiovasc Pathol 9:257–265PubMedCrossRefGoogle Scholar
  25. 25.
    Jelicks LA, Chandra M, Shirani J, Shtutin V, Tang B et al (2002) Cardioprotective effects of phosphoramidon on myocardial structure and function in murine Chagas' disease. Int J Parasitol 32:1497–1506PubMedCrossRefGoogle Scholar
  26. 26.
    Tanowitz HB, Huang H, Jelicks LA, Chandra M, Loredo ML et al (2005) Role of endothelin 1 in the pathogenesis of chronic chagasic heart disease. Infect Immun 73:2496–2503PubMedCrossRefGoogle Scholar
  27. 27.
    Hassan GS, Mukherjee S, Nagajyothi F, Weiss LM, Petkova SB et al (2006) Trypanosoma cruzi infection induces proliferation of vascular smooth muscle cells. Infect Immun 74:152–159PubMedCrossRefGoogle Scholar
  28. 28.
    Salomone OA, Caeiro TF, Madoery RJ, Amuchastegui M, Omelinauk M et al (2001) High plasma immunoreactive endothelin levels in patients with Chagas' cardiomyopathy. Am J Cardiol 87:1217–1220, A1217PubMedCrossRefGoogle Scholar
  29. 29.
    Mukherjee S, Machado FS, Huang H, Oz HS, Jelicks LA et al (2011) Aspirin treatment of mice infected with Trypanosoma cruzi and implications for the pathogenesis of Chagas disease. PLoS One 6:e16959PubMedCrossRefGoogle Scholar
  30. 30.
    Ashton AW, Mukherjee S, Nagajyothi FN, Huang H, Braunstein VL et al (2007) Thromboxane A2 is a key regulator of pathogenesis during Trypanosoma cruzi infection. J Exp Med 204:929–940PubMedCrossRefGoogle Scholar
  31. 31.
    Tanowitz HB, Burns ER, Sinha AK, Kahn NN, Morris SA et al (1990) Enhanced platelet adherence and aggregation in Chagas' disease: a potential pathogenic mechanism for cardiomyopathy. Am J Trop Med Hyg 43:274–281PubMedGoogle Scholar
  32. 32.
    Bern C, Martin DL, Gilman RH (2011) Acute and congenital Chagas disease. Adv Parasitol 75:19–47PubMedCrossRefGoogle Scholar
  33. 33.
    Diazgranados CA, Saavedra-Trujillo CH, Mantilla M, Valderrama SL, Alquichire C et al (2009) Chagasic encephalitis in HIV patients: common presentation of an evolving epidemiological and clinical association. Lancet Infect Dis 9:324–330PubMedCrossRefGoogle Scholar
  34. 34.
    da Silva AA, Pereira GV, de Souza AS, Silva RR, Rocha MS et al (2010) Trypanosoma cruzi-induced central nervous system alterations: from entry of inflammatory cells to potential cognitive and psychiatric abnormalities. J Neuroparasitol 1. Article ID N100901Google Scholar
  35. 35.
    Tanowitz HB, Brosnan C, Guastamacchio D, Baron G, Raventos-Suarez C et al (1982) Infection of organotypic cultures of spinal cord and dorsal root ganglia with Trypanosoma cruzi. Am J Trop Med Hyg 31:1090–1097PubMedGoogle Scholar
  36. 36.
    da Silveira AB, de Araujo FF, Freitas MA, Gomes JA, Chaves AT et al (2009) Characterization of the presence and distribution of Foxp3(+) cells in chagasic patients with and without megacolon. Hum Immunol 70:65–67PubMedCrossRefGoogle Scholar
  37. 37.
    Chuenkova MV, Pereiraperrin M (2010) Trypanosoma cruzi-derived neurotrophic factor: role in neural repair and neuroprotection. J Neuroparasitol 1:55–60CrossRefGoogle Scholar
  38. 38.
    Chuenkova MV, PereiraPerrin M (2005) A synthetic peptide modeled on PDNF, Chagas’ disease parasite neurotrophic factor, promotes survival and differentiation of neuronal cells through TrkA receptor. Biochemistry 44:15685–15694PubMedCrossRefGoogle Scholar
  39. 39.
    DA Silva Manoel-Caetano F, Silveira AF, Silva AE (29) Gene mutations in esophageal mucosa of chagas disease patients. Anticancer Res 29:1243–1247Google Scholar
  40. 40.
    Shoemaker JP, Hoffman RV Jr (1974) Trypanosoma cruzi: possible stimulatory factor(s) on brown adipose tissue of mice. Exp Parasitol 35:272–274PubMedCrossRefGoogle Scholar
  41. 41.
    Shoemaker JP, Hoffman RV Jr, Huffman DG (1970) Trypanosoma cruzi: preference for brown adipose tissue in mice by the Tulahuen strain. Exp Parasitol 27:403–407PubMedCrossRefGoogle Scholar
  42. 42.
    Andrade ZA, Silva HR (1995) Parasitism of adipocytes by Trypanosoma cruzi. Mem Inst Oswaldo Cruz 90:521–522PubMedCrossRefGoogle Scholar
  43. 43.
    Combs TP, Nagajyothi MS, de Almeida CJ, Jelicks LA et al (2005) The adipocyte as an important target cell for Trypanosoma cruzi infection. J Biol Chem 280:24085–24094PubMedCrossRefGoogle Scholar
  44. 44.
    Pajvani UB, Trujillo ME, Combs TP, Iyengar P, Jelicks L et al (2005) Fat apoptosis through targeted activation of caspase 8: a new mouse model of inducible and reversible lipoatrophy. Nat Med 11:797–803PubMedCrossRefGoogle Scholar
  45. 45.
    Nagajyothi F, Machado FS, Burleigh BA, Jelicks LA, Scherer PE et al (2012) Mechanisms of Trypanosoma cruzi persistence in Chagas disease. Cell Microbiol 14:634–43PubMedCrossRefGoogle Scholar
  46. 46.
    Shetty S, Kusminski CM, Scherer PE (2009) Adiponectin in health and disease: evaluation of adiponectin-targeted drug development strategies. Trends Pharmacol Sci 30:234–239PubMedCrossRefGoogle Scholar
  47. 47.
    Kosteli A, Sugaru E, Haemmerle G, Martin JF, Lei J et al (2010) Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J Clin Invest 120:3466–3479PubMedCrossRefGoogle Scholar
  48. 48.
    Ferreira AV, Segatto M, Menezes Z, Macedo AM, Gelape C et al (2011) Evidence for Trypanosoma cruzi in adipose tissue in human chronic Chagas disease. Microbes Infect 13:1002–1005PubMedCrossRefGoogle Scholar
  49. 49.
    Nagajyothi F, Desruisseaux MS, Thiruvur N, Weiss LM, Braunstein VL et al (2008) Trypanosoma cruzi infection of cultured adipocytes results in an inflammatory phenotype. Obesity (Silver Spring) 16:1992–1997CrossRefGoogle Scholar
  50. 50.
    Krautz GM, Kissinger JC, Krettli AU (2000) The targets of the lytic antibody response against Trypanosoma cruzi. Parasitol Today 16:31–34PubMedCrossRefGoogle Scholar
  51. 51.
    Tarleton RL (2007) Immune system recognition of Trypanosoma cruzi. Curr Opin Immunol 19:430–434PubMedCrossRefGoogle Scholar
  52. 52.
    Padilla AM, Bustamante JM, Tarleton RL (2009) CD8+ T cells in Trypanosoma cruzi infection. Curr Opin Immunol 21:385–390PubMedCrossRefGoogle Scholar
  53. 53.
    Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449:819–826PubMedCrossRefGoogle Scholar
  54. 54.
    Yamamoto M, Takeda K (2010) Current views of toll-like receptor signaling pathways. Gastroenterol Res Pract 2010:240365PubMedGoogle Scholar
  55. 55.
    Huang H, Calderon TM, Berman JW, Braunstein VL, Weiss LM et al (1999) Infection of endothelial cells with Trypanosoma cruzi activates NF-kappaB and induces vascular adhesion molecule expression. Infect Immun 67:5434–5440PubMedGoogle Scholar
  56. 56.
    Machado FS, Tyler KM, Brant F, Esper L, Teixeira MM et al (2012) Pathogenesis of Chagas disease: time to move on. Front Biosci (Elite Ed) 4:1743–1758Google Scholar
  57. 57.
    Machado FS, Souto JT, Rossi MA, Esper L, Tanowitz HB et al (2008) Nitric oxide synthase-2 modulates chemokine production by Trypanosoma cruzi-infected cardiac myocytes. Microbes Infect 10:1558–1566PubMedCrossRefGoogle Scholar
  58. 58.
    Coelho PS, Klein A, Talvani A, Coutinho SF, Takeuchi O et al (2002) Glycosylphosphatidylinositol-anchored mucin-like glycoproteins isolated from Trypanosoma cruzi trypomastigotes induce in vivo leukocyte recruitment dependent on MCP-1 production by IFN-gamma-primed-macrophages. J Leukoc Biol 71:837–844PubMedGoogle Scholar
  59. 59.
    Schmitz V, Svensjo E, Serra RR, Teixeira MM, Scharfstein J (2009) Proteolytic generation of kinins in tissues infected by Trypanosoma cruzi depends on CXC chemokine secretion by macrophages activated via Toll-like 2 receptors. J Leukoc Biol 85:1005–1014PubMedCrossRefGoogle Scholar
  60. 60.
    Camargo MM, Almedia IC, Pereira MES, Ferguson MAJ, Travassos LR et al (1997) Glycosylphosphatidylinositol anchored mucin like glycoproteins isolated from Trypanosoma cruzi trypomastigotes initiate the synthesis of proinflammatory cytokines by macrophages. J Immunol 158:5890–5901PubMedGoogle Scholar
  61. 61.
    Monteiro AC, Schmitz V, Morrot A, de Arruda LB, Nagajyothi F et al (2007) Bradykinin B2 receptors of dendritic cells, acting as sensors of kinins proteolytically released by Trypanosoma cruzi, are critical for the development of protective type-1 responses. PLoS Pathog 3:e185PubMedCrossRefGoogle Scholar
  62. 62.
    Monteiro AC, Schmitz V, Svensjo E, Gazzinelli RT, Almeida IC et al (2006) Cooperative activation of TLR2 and bradykinin B2 receptor is required for induction of type 1 immunity in a mouse model of subcutaneous infection by Trypanosoma cruzi. J Immunol 177:6325–6335PubMedGoogle Scholar
  63. 63.
    Kayama H, Takeda K (2010) The innate immune response to Trypanosoma cruzi infection. Microbes Infect 12:511–517PubMedCrossRefGoogle Scholar
  64. 64.
    Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN et al (2005) TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308:1626–1629PubMedCrossRefGoogle Scholar
  65. 65.
    Plata F, Wietzerbin J, Pons FG, Falcoff E, Eisen H (1984) Synergistic protection by specific antibodies and interferon against infection by Trypanosoma cruzi in vitro. Eur J Immunol 14:930–935PubMedCrossRefGoogle Scholar
  66. 66.
    Vespa GN, Cunha FQ, Silva JS (1994) Nitric oxide is involved in control of Trypanosoma cruzi-induced parasitemia and directly kills the parasite in vitro. Infect Immun 62:5177–5182PubMedGoogle Scholar
  67. 67.
    Moncada S, Higgs EA (1991) Endogenous nitric oxide: physiology, pathology and clinical relevance. Eur J Clin Invest 21:361–374PubMedCrossRefGoogle Scholar
  68. 68.
    Machado FS, Martins GA, Aliberti JC, Mestriner FL, Cunha FQ et al (2000) Trypanosoma cruzi-infected cardiomyocytes produce chemokines and cytokines that trigger potent nitric oxide-dependent trypanocidal activity. Circulation 102:3003–3008PubMedCrossRefGoogle Scholar
  69. 69.
    Cardillo F, Voltarelli JC, Reed SG, Silva JS (1996) Regulation of Trypanosoma cruzi infection in mice by gamma interferon and interleukin 10: role of NK cells. Infect Immun 64:128–134PubMedGoogle Scholar
  70. 70.
    Silva JS, Twardzik DR, Reed SG (1991) Regulation of Trypanosoma cruzi infections in vitro and in vivo by transforming growth factor beta (TGF-beta). J Exp Med 174:539–545PubMedCrossRefGoogle Scholar
  71. 71.
    Reed SG (1988) In vivo administration of recombinant IFN-gamma induces macrophage activation, and prevents acute disease, immune suppression, and death in experimental Trypanosoma cruzi infections. J Immunol 140:4342–4347PubMedGoogle Scholar
  72. 72.
    Miller MJ, Wrightsman RA, Stryker GA, Manning JE (1997) Protection of mice against Trypanosoma cruzi by immunization with paraflagellar rod proteins requires T cell, but not B cell, function. J Immunol 158:5330–5337PubMedGoogle Scholar
  73. 73.
    Zacks MA, Wen JJ, Vyatkina G, Bhatia V, Garg N (2005) An overview of chagasic cardiomyopathy: pathogenic importance of oxidative stress. An Acad Bras Cienc 77:695–715PubMedCrossRefGoogle Scholar
  74. 74.
    Holscher C, Mohrs M, Dai WJ, Kohler G, Ryffel B et al (2000) Tumor necrosis factor alpha-mediated toxic shock in Trypanosoma cruzi-infected interleukin 10-deficient mice. Infect Immun 68:4075–4083PubMedCrossRefGoogle Scholar
  75. 75.
    Tanowitz HB, Gumprecht JP, Spurr D, Calderon TM, Ventura MC et al (1992) Cytokine gene expression of endothelial cells infected with Trypanosoma cruzi. J Infect Dis 166:598–603PubMedCrossRefGoogle Scholar
  76. 76.
    Saavedra E, Herrera M, Gao W, Uemura H, Pereira MA (1999) The Trypanosoma cruzi trans-sialidase, through its COOH-terminal tandem repeat, upregulates interleukin 6 secretion in normal human intestinal microvascular endothelial cells and peripheral blood mononuclear cells. J Exp Med 190:1825–1836PubMedCrossRefGoogle Scholar
  77. 77.
    Ba X, Gupta S, Davidson M, Garg NJ (2010) Trypanosoma cruzi induces ROS-PARP-1-RelA pathway for up regulation of cytokine expression in cardiomyocytes. J Biol Chem 285:11596–11606PubMedCrossRefGoogle Scholar
  78. 78.
    Hardison JL, Kuziel WA, Manning JE, Lane TE (2006) Chemokine CC receptor 2 is important for acute control of cardiac parasitism but does not contribute to cardiac inflammation after infection with Trypanosoma cruzi. J Infect Dis 193:1584–1588PubMedCrossRefGoogle Scholar
  79. 79.
    Hardison JL, Wrightsman RA, Carpenter PM, Kuziel WA, Lane TE et al (2006) The CC chemokine receptor 5 is important in control of parasite replication and acute cardiac inflammation following infection with Trypanosoma cruzi. Infect Immun 74:135–143PubMedCrossRefGoogle Scholar
  80. 80.
    Hardison JL, Wrightsman RA, Carpenter PM, Lane TE, Manning JE (2006) The chemokines CXCL9 and CXCL10 promote a protective immune response but do not contribute to cardiac inflammation following infection with Trypanosoma cruzi. Infect Immun 74:125–134PubMedCrossRefGoogle Scholar
  81. 81.
    Gao JL, Wynn TA, Chang Y, Lee EJ, Broxmeyer HE et al (1997) Impaired host defense, hematopoiesis, granulomatous inflammation and type 1-type 2 cytokine balance in mice lacking CC chemokine receptor 1. J Exp Med 185:1959–1968PubMedCrossRefGoogle Scholar
  82. 82.
    Teixeira MM, Gazzinelli RT, Silva JS (2002) Chemokines, inflammation and Trypanosoma cruzi infection. Trends Parasitol 18:262–265PubMedCrossRefGoogle Scholar
  83. 83.
    Gutierrez FR, Guedes PM, Gazzinelli RT, Silva JS (2009) The role of parasite persistence in pathogenesis of Chagas heart disease. Parasite Immunol 31:673–685PubMedCrossRefGoogle Scholar
  84. 84.
    Qin S, Rottman JB, Myers P, Kassam N, Weinblatt M et al (1998) The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J Clin Invest 101:746–754PubMedCrossRefGoogle Scholar
  85. 85.
    Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875PubMedCrossRefGoogle Scholar
  86. 86.
    Goulet JL, Griffiths RC, Ruiz P, Spurney RF, Pisetsky DS et al (1999) Deficiency of 5-lipoxygenase abolishes sex-related survival differences in MRL-lpr/lpr mice. J Immunol 163:359–366PubMedGoogle Scholar
  87. 87.
    Martin P, Leibovich SJ (2005) Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol 15:599–607PubMedCrossRefGoogle Scholar
  88. 88.
    Rola-Pleszczynski M (1985) Differential effects of leukotriene B4 on T4+ and T8+ lymphocyte phenotype and immunoregulatory functions. J Immunol 135:1357–1360PubMedGoogle Scholar
  89. 89.
    Pavanelli WR, Gutierrez FR, Mariano FS, Prado CM, Ferreira BR et al (2010) 5-Lipoxygenase is a key determinant of acute myocardial inflammation and mortality during Trypanosoma cruzi infection. Microbes Infect 12:587–597PubMedCrossRefGoogle Scholar
  90. 90.
    Esper L, Roman-Campos D, Lara A, Brant F, Castro LL et al (2012) Role of SOCS2 in modulating heart damage and function in a murine model of acute Chagas disease. Am J Pathol 181:130–140PubMedCrossRefGoogle Scholar
  91. 91.
    Cardoni RL, Antunez MI, Morales C, Nantes IR (1997) Release of reactive oxygen species by phagocytic cells in response to live parasites in mice infected with Trypanosoma cruzi. Am J Trop Med Hyg 56:329–334PubMedGoogle Scholar
  92. 92.
    Alvarez MN, Piacenza L, Irigoin F, Peluffo G, Radi R (2004) Macrophage-derived peroxynitrite diffusion and toxicity to Trypanosoma cruzi. Arch Biochem Biophys 432:222–232PubMedCrossRefGoogle Scholar
  93. 93.
    Munoz-Fernandez MA, Fernandez MA, Fresno M (1992) Activation of human macrophages for the killing of intracellular Trypanosoma cruzi by TNF-alpha and IFN-gamma through a nitric oxide-dependent mechanism. Immunol Lett 33:35–40PubMedCrossRefGoogle Scholar
  94. 94.
    Melo RC, Fabrino DL, D’Avila H, Teixeira HC, Ferreira AP (2003) Production of hydrogen peroxide by peripheral blood monocytes and specific macrophages during experimental infection with Trypanosoma cruzi in vivo. Cell Biol Int 27:853–861PubMedCrossRefGoogle Scholar
  95. 95.
    Gupta S, Dhiman M, Wen JJ, Garg NJ (2011) ROS signalling of inflammatory cytokines during Trypanosoma cruzi infection. Adv Parasitol 76:153–170PubMedCrossRefGoogle Scholar
  96. 96.
    Alvarez MN, Peluffo G, Piacenza L, Radi R (2011) Intraphagosomal peroxynitrite as a macrophage-derived cytotoxin against internalized Trypanosoma cruzi: consequences for oxidative killing and role of microbial peroxiredoxins in infectivity. J Biol Chem 286:6627–6640PubMedCrossRefGoogle Scholar
  97. 97.
    Piacenza L, Peluffo G, Alvarez MN, Kelly JM, Wilkinson SR et al (2008) Peroxiredoxins play a major role in protecting Trypanosoma cruzi against macrophage- and endogenously-derived peroxynitrite. Biochem J 410:359–368PubMedCrossRefGoogle Scholar
  98. 98.
    Dhiman M, Garg NJ (2011) NADPH oxidase inhibition ameliorates Trypanosoma cruzi-induced myocarditis during Chagas disease. J Pathol 225:583–596PubMedCrossRefGoogle Scholar
  99. 99.
    Huang H, Chan J, Wittner M, Jelicks LA, Morris SA et al (1999) Expression of cardiac cytokines and inducible form of nitric oxide synthase (NOS2) in Trypanosoma cruzi-infected mice. J Mol Cell Cardiol 31:75–88PubMedCrossRefGoogle Scholar
  100. 100.
    Hall BS, Tam W, Sen R, Pereira ME (2000) Cell-specific activation of nuclear factor-kappaB by the parasite Trypanosoma cruzi promotes resistance to intracellular infection. Mol Biol Cell 11:153–160PubMedGoogle Scholar
  101. 101.
    Huang H, Petkova SB, Cohen AW, Bouzahzah B, Chan J et al (2003) Activation of transcription factors AP-1 and NF-kappa B in murine chagasic myocarditis. Infect Immun 71:2859–2867PubMedCrossRefGoogle Scholar
  102. 102.
    Gupta S, Bhatia V, Wen J-J, Wu Y, Huang M-H et al (2009) Trypanosoma cruzi infection disturbs mitochondrial membrane potential and ROS production rate in cardiomyocytes. Free Radic Biol Med 47:1414–1421PubMedCrossRefGoogle Scholar
  103. 103.
    Balakumar P, Singh M (2006) Possible role of poly(ADP-ribose) polymerase in pathological and physiological cardiac hypertrophy. Methods Find Exp Clin Pharmacol 28:683–689PubMedCrossRefGoogle Scholar
  104. 104.
    Pacher P, Szabo C (2008) Role of the peroxynitrite-poly(ADP-ribose) polymerase pathway in human disease. Am J Pathol 173:2–13PubMedCrossRefGoogle Scholar
  105. 105.
    Wen J-J, Vyatkina G, Garg N (2004) Oxidative damage during chagasic cardiomyopathy development: role of mitochondrial oxidant release and inefficient antioxidant defense. Free Radic Biol Med 37:1821–1833PubMedCrossRefGoogle Scholar
  106. 106.
    Perez-Fuentes R, Guegan JF, Barnabe C, Lopez-Colombo A, Salgado-Rosas H et al (2003) Severity of chronic Chagas disease is associated with cytokine/antioxidant imbalance in chronically infected individuals. Int J Parasitol 33:293–299PubMedCrossRefGoogle Scholar
  107. 107.
    de Oliveira TB, Pedrosa RC, Filho DW (2007) Oxidative stress in chronic cardiopathy associated with Chagas disease. Int J Cardiol 116:357–363PubMedCrossRefGoogle Scholar
  108. 108.
    Wen J-J, Bhatia V, Popov VL, Garg NJ (2006) Phenyl-alpha-tert-butyl nitrone reverses mitochondrial decay in acute Chagas disease. Am J Pathol 169:1953–1964PubMedCrossRefGoogle Scholar
  109. 109.
    Wen J-J, Yachelini PC, Sembaj A, Manzur RE, Garg N (2006) Increased oxidative stress is correlated with mitochondrial dysfunction in chagasic patients. Free Radic Biol Med 41:270–276PubMedCrossRefGoogle Scholar
  110. 110.
    Wen J-J, Gupta S, Guan Z, Dhiman M, Condon D et al (2010) Phenyl-alpha-tert-butyl-nitrone and benzonidazole treatment controlled the mitochondrial oxidative stress and evolution of cardiomyopathy in chronic chagasic rats. J Am Coll Cardiol 55:2499–2508PubMedCrossRefGoogle Scholar
  111. 111.
    Macao LB, Filho DW, Pedrosa RC, Pereira A, Backes P et al (2007) Antioxidant therapy attenuates oxidative stress in chronic cardiopathy associated with Chagas' disease. Int J Cardiol 123:43–9PubMedCrossRefGoogle Scholar
  112. 112.
    Liaudet L, Vassalli G, Pacher P (2009) Role of peroxynitrite in the redox regulation of cell signal transduction pathways. Front Biosci 14:4809–4814PubMedCrossRefGoogle Scholar
  113. 113.
    Xiao L, Pimental DR, Amin JK, Singh K, Sawyer DB et al (2001) MEK1/2-ERK1/2 mediates alpha1-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes. J Mol Cell Cardiol 33:779–787PubMedCrossRefGoogle Scholar
  114. 114.
    Kuster GM, Pimentel DR, Adachi T, Ido Y, Brenner DA et al (2005) Alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes is mediated via thioredoxin-1-sensitive oxidative modification of thiols on Ras. Circulation 111:1192–1198PubMedCrossRefGoogle Scholar
  115. 115.
    Satoh S, Tanaka H, Ueda Y, Oyama J, Sugano M et al (2007) Transient receptor potential (TRP) protein 7 acts as a G protein-activated Ca2+ channel mediating angiotensin II-induced myocardial apoptosis. Mol Cell Biochem 294:205–215PubMedCrossRefGoogle Scholar
  116. 116.
    Dingar D, Merlen C, Grandy S, Gillis MA, Villeneuve LR et al (2010) Effect of pressure overload-induced hypertrophy on the expression and localization of p38 MAP kinase isoforms in the mouse heart. Cell Signal 22:1634–1644PubMedCrossRefGoogle Scholar
  117. 117.
    Satoh M, Ogita H, Takeshita K, Mukai Y, Kwiatkowski DJ et al (2006) Requirement of Rac1 in the development of cardiac hypertrophy. Proc Natl Acad Sci USA 103:7432–7437PubMedCrossRefGoogle Scholar
  118. 118.
    Pan J, Chang Q, Wang X, Son Y, Zhang Z et al (2010) Reactive oxygen species-activated Akt/ASK1/p38 signaling pathway in nickel compound-induced apoptosis in BEAS 2B cells. Chem Res Toxicol 23:568–577PubMedCrossRefGoogle Scholar
  119. 119.
    Nakamura K, Fushimi K, Kouchi H, Mihara K, Miyazaki M et al (1998) Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation 98:794–799PubMedCrossRefGoogle Scholar
  120. 120.
    Tanaka K, Honda M, Takabatake T (2001) Redox regulation of MAPK pathways and cardiac hypertrophy in adult rat cardiac myocyte. J Am Coll Cardiol 37:676–685PubMedCrossRefGoogle Scholar
  121. 121.
    Bouzahzah B, Yurchenko V, Nagajyothi F, Hulit J, Sadofsky M et al (2008) Regulation of host cell cyclin D1 by Trypanosoma cruzi in myoblasts. Cell Cycle 7:500–503PubMedCrossRefGoogle Scholar
  122. 122.
    Huang YF, Gong KZ, Zhang ZG (2003) Different roles of ERK(1/2) and p38 MAPK(alpha/beta) in cellular signaling during cardiomyocyte anoxia preconditioning. Sheng Li Xue Bao 55:454–458PubMedGoogle Scholar
  123. 123.
    Adesse D, Lisanti MP, Spray DC, Machado FS, Meirelles Mde N et al (2010) Trypanosoma cruzi infection results in the reduced expression of caveolin-3 in the heart. Cell Cycle 9:1639–1646PubMedCrossRefGoogle Scholar
  124. 124.
    Nagajyothi F, Desruisseaux M, Bouzahzah B, Weiss LM, Andrade Ddos S et al (2006) Cyclin and caveolin expression in an acute model of murine chagasic myocarditis. Cell Cycle 5:107–112PubMedCrossRefGoogle Scholar
  125. 125.
    Hulit J, Bash T, Fu M, Galbiati F, Albanese C et al (2000) The cyclin D1 gene is transcriptionally repressed by caveolin-1. J Biol Chem 275:21203–21209PubMedCrossRefGoogle Scholar
  126. 126.
    Cohen AW, Park DS, Woodman SE, Williams TM, Chandra M et al (2003) Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am J Physiol Cell Physiol 284:C457–C474PubMedGoogle Scholar
  127. 127.
    Woodman SE, Park DS, Cohen AW, Cheung MW, Chandra M et al (2002) Caveolin-3 knock-out mice develop a progressive cardiomyopathy and show hyperactivation of the p42/44 MAPK cascade. J Biol Chem 277:38988–38997PubMedCrossRefGoogle Scholar
  128. 128.
    Park DS, Woodman SE, Schubert W, Cohen AW, Frank PG et al (2002) Caveolin-1/3 double-knockout mice are viable, but lack both muscle and non-muscle caveolae, and develop a severe cardiomyopathic phenotype. Am J Pathol 160:2207–2217PubMedCrossRefGoogle Scholar
  129. 129.
    Gullestad L, Aukrust P (2005) Review of trials in chronic heart failure showing broad-spectrum anti-inflammatory approaches. Am J Cardiol 95:17C–23C, Discussion, 38C–40CPubMedCrossRefGoogle Scholar
  130. 130.
    Cunha-Neto E, Rizzo LV, Albuquerque F, Abel L, Guilherme L et al (1998) Cytokine production profile of heart-infiltrating T cells in Chagas' disease cardiomyopathy. Braz J Med Biol Res 31:133–137PubMedCrossRefGoogle Scholar
  131. 131.
    Krettli AU, Brener Z (1982) Resistance against Trypanosoma cruzi associated to anti-living trypomastigote antibodies. J Immunol 128:2009–2012PubMedGoogle Scholar
  132. 132.
    Gazzinelli RT, Pereira ME, Romanha A, Gazzinelli G, Brener Z (1991) Direct lysis of Trypanosoma cruzi: a novel effector mechanism of protection mediated by human anti-gal antibodies. Parasite Immunol 13:345–356PubMedCrossRefGoogle Scholar
  133. 133.
    Grauert MR, Houdayer M, Hontebeyrie-Joskowciz M (1993) Trypanosoma cruzi infection enhances polyreactive antibody response in an acute case of human Chagas' disease. Clin Exp Immunol 93:85–92PubMedCrossRefGoogle Scholar
  134. 134.
    Teixeira AR, Teixeira G, Macedo V, Prata A (1978) Acquired cell-mediated immunodepression in acute Chagas' disease. J Clin Invest 62:1132–1141PubMedCrossRefGoogle Scholar
  135. 135.
    Antas PR, Medrano-Mercado N, Torrico F, Ugarte-Fernandez R, Gomez F et al (1999) Early, intermediate, and late acute stages in Chagas' disease: a study combining anti-galactose IgG, specific serodiagnosis, and polymerase chain reaction analysis. Am J Trop Med Hyg 61:308–314PubMedGoogle Scholar
  136. 136.
    Cordeiro FD, Martins-Filho OA, Da Costa Rocha MO, Adad SJ, Correa-Oliveira R et al (2001) Anti-Trypanosoma cruzi immunoglobulin G1 can be a useful tool for diagnosis and prognosis of human Chagas' disease. Clin Diagn Lab Immunol 8:112–118PubMedGoogle Scholar
  137. 137.
    Galvao LM, Nunes RM, Cancado JR, Brener Z, Krettli AU (1993) Lytic antibody titre as a means of assessing cure after treatment of Chagas disease: a 10 years follow-up study. Trans R Soc Trop Med Hyg 87:220–223PubMedCrossRefGoogle Scholar
  138. 138.
    Cunha-Neto E, Duranti M, Gruber A, Zingales B, De Messias I et al (1995) Autoimmunity in Chagas disease cardiopathy: biological relevance of a cardiac myosin-specific epitope crossreactive to an immunodominant Trypanosoma cruzi antigen. Proc Natl Acad Sci USA 92:3541–3545PubMedCrossRefGoogle Scholar
  139. 139.
    Talvani A, Rocha MO, Ribeiro AL, Borda E, Sterin-Borda L et al (2006) Levels of anti-M2 and anti-beta1 autoantibodies do not correlate with the degree of heart dysfunction in Chagas' heart disease. Microbes Infect 8:2459–2464PubMedCrossRefGoogle Scholar
  140. 140.
    Cunha-Neto E, Teixeira PC, Fonseca SG, Bilate AM, Kalil J (2011) Myocardial gene and protein expression profiles after autoimmune injury in Chagas' disease cardiomyopathy. Autoimmun Rev 10:163–165PubMedCrossRefGoogle Scholar
  141. 141.
    Dhiman M, Zago MP, Nunez S, Nunez-Burgio F, Garg NJ (2012) Cardiac oxidized antigens are targets of immune recognition by antibodies and potential molecular determinants in Chagas disease pathogenesis. PLoS ONE 7:e28449PubMedCrossRefGoogle Scholar
  142. 142.
    Reis DD, Gazzinelli RT, Gazzinelli G, Colley DG (1993) Antibodies to Trypanosoma cruzi express idiotypic patterns that can differentiate between patients with asymptomatic or severe Chagas' disease. J Immunol 150:1611–1618PubMedGoogle Scholar
  143. 143.
    Gazzinelli RT, Leme VM, Cancado JR, Gazzinelli G, Scharfstein J (1990) Identification and partial characterization of Trypanosoma cruzi antigens recognized by T cells and immune sera from patients with Chagas' disease. Infect Immun 58:1437–1444PubMedGoogle Scholar
  144. 144.
    Gazzinelli RT, Leme VM, Cancado JR, Gazzinelli G, Scharfstein J (1988) Identification of Trypanosoma cruzi antigens recognized by T cells and immune sera from chagasic patients. Mem Inst Oswaldo Cruz 83(Suppl 1):272–279PubMedCrossRefGoogle Scholar
  145. 145.
    Dutra WO, Colley DG, Pinto-Dias JC, Gazzinelli G, Brener Z et al (2000) Self and nonself stimulatory molecules induce preferential expansion of CD5+ B cells or activated T cells of chagasic patients, respectively. Scand J Immunol 51:91–97PubMedCrossRefGoogle Scholar
  146. 146.
    el Cheikh MC, Hontebeyrie-Joskowicz M, Coutinho A, Minoprio P (1992) CD5 B cells. Potential role in the (auto)immune responses to Trypanosoma cruzi infection. Ann N Y Acad Sci 651:557–563PubMedCrossRefGoogle Scholar
  147. 147.
    Sathler-Avelar R, Lemos EM, Reis DD, Medrano-Mercado N, Araujo-Jorge TC et al (2003) Phenotypic features of peripheral blood leucocytes during early stages of human infection with Trypanosoma cruzi. Scand J Immunol 58:655–663PubMedCrossRefGoogle Scholar
  148. 148.
    King IL, Fortier A, Tighe M, Dibble J, Watts GF et al (2012) Invariant natural killer T cells direct B cell responses to cognate lipid antigen in an IL-21-dependent manner. Nat Immunol 13:44–50CrossRefGoogle Scholar
  149. 149.
    Kierszenbaum F, Cuna WR, Beltz LA, Sztein MB (1990) Trypanosomal immunosuppressive factor: a secretion product(s) of Trypanosoma cruzi that inhibits proliferation and IL-2 receptor expression by activated human peripheral blood mononuclear cells. J Immunol 144:4000–4004PubMedGoogle Scholar
  150. 150.
    Costa RP, Gollob KJ, Fonseca LL, Rocha MO, Chaves AC et al (2000) T-cell repertoire analysis in acute and chronic human Chagas' disease: differential frequencies of Vbeta5 expressing T cells. Scand J Immunol 51:511–519PubMedCrossRefGoogle Scholar
  151. 151.
    Menezes CA, Rocha MO, Souza PE, Chaves AC, Gollob KJ et al (2004) Phenotypic and functional characteristics of CD28+ and CD28− cells from chagasic patients: distinct repertoire and cytokine expression. Clin Exp Immunol 137:129–138PubMedCrossRefGoogle Scholar
  152. 152.
    Fuenmayor C, Higuchi ML, Carrasco H, Parada H, Gutierrez P et al (2005) Acute Chagas' disease: immunohistochemical characteristics of T cell infiltrate and its relationship with T. cruzi parasitic antigens. Acta Cardiol 60:33–37PubMedCrossRefGoogle Scholar
  153. 153.
    Tarleton RL (1990) Depletion of CD8+ T cells increases susceptibility and reverses vaccine-induced immunity in mice infected with Trypanosoma cruzi. J Immunol 144:717–724PubMedGoogle Scholar
  154. 154.
    Mosca W, Briceno L, Hernandez MI (1991) Cell mediated immunity in Chagas' disease. Trypanosoma cruzi antigens induce suppression of the in vitro proliferative response of mononuclear cells. Mem Inst Oswaldo Cruz 86:147–152PubMedCrossRefGoogle Scholar
  155. 155.
    Morato MJ, Brener Z, Cancado JR, Nunes RM, Chiari E et al (1986) Cellular immune responses of chagasic patients to antigens derived from different Trypanosoma cruzi strains and clones. Am J Trop Med Hyg 35:505–511PubMedGoogle Scholar
  156. 156.
    Dutra WO, da Luz ZM, Cancado JR, Pereira ME, Brigido-Nunes RM et al (1996) Influence of parasite presence on the immunologic profile of peripheral blood mononuclear cells from chagasic patients after specific drug therapy. Parasite Immunol 18:579–585PubMedCrossRefGoogle Scholar
  157. 157.
    Dutra WO, Martins-Filho OA, Cancado JR, Pinto-Dias JC, Brener Z et al (1994) Activated T and B lymphocytes in peripheral blood of patients with Chagas' disease. Int Immunol 6:499–506PubMedCrossRefGoogle Scholar
  158. 158.
    Reis DD, Jones EM, Tostes S Jr, Lopes ER, Gazzinelli G et al (1993) Characterization of inflammatory infiltrates in chronic chagasic myocardial lesions: presence of tumor necrosis factor-alpha+ cells and dominance of granzyme A+, CD8+ lymphocytes. Am J Trop Med Hyg 48:637–644PubMedGoogle Scholar
  159. 159.
    Reis DD, Jones EM, Tostes S, Lopes ER, Chapadeiro E et al (1993) Expression of major histocompatibility complex antigens and adhesion molecules in hearts of patients with chronic Chagas' disease. Am J Trop Med Hyg 49:192–200PubMedGoogle Scholar
  160. 160.
    Gomes JA, Bahia-Oliveira LM, Rocha MO, Busek SC, Teixeira MM et al (2005) Type 1 chemokine receptor expression in Chagas' disease correlates with morbidity in cardiac patients. Infect Immun 73:7960–7966PubMedCrossRefGoogle Scholar
  161. 161.
    Talvani A, Rocha MO, Cogan J, Maewal P, de Lemos J et al (2004) Brain natriuretic peptide and left ventricular dysfunction in chagasic cardiomyopathy. Mem Inst Oswaldo Cruz 99:645–649PubMedCrossRefGoogle Scholar
  162. 162.
    Dutra WO, Menezes CA, Villani FN, da Costa GC, da Silveira AB et al (2009) Cellular and genetic mechanisms involved in the generation of protective and pathogenic immune responses in human Chagas disease. Mem Inst Oswaldo Cruz 104(Suppl 1):208–218PubMedCrossRefGoogle Scholar
  163. 163.
    Higuchi MD, Benvenuti LA, Martins Reis M, Metzger M (2003) Pathophysiology of the heart in Chagas' disease: current status and new developments. Cardiovasc Res 60:96–107CrossRefGoogle Scholar
  164. 164.
    Albareda MC, Laucella SA, Alvarez MG, Armenti AH, Bertochi G et al (2006) Trypanosoma cruzi modulates the profile of memory CD8+ T cells in chronic Chagas' disease patients. Int Immunol 18:465–471PubMedCrossRefGoogle Scholar
  165. 165.
    Souza PE, Rocha MO, Menezes CA, Coelho JS, Chaves AC et al (2007) Trypanosoma cruzi infection induces differential modulation of costimulatory molecules and cytokines by monocytes and T cells from patients with indeterminate and cardiac Chagas' disease. Infect Immun 75:1886–1894PubMedCrossRefGoogle Scholar
  166. 166.
    Souza PE, Rocha MO, Rocha-Vieira E, Menezes CA, Chaves AC et al (2004) Monocytes from patients with indeterminate and cardiac forms of Chagas' disease display distinct phenotypic and functional characteristics associated with morbidity. Infect Immun 72:5283–5291PubMedCrossRefGoogle Scholar
  167. 167.
    Cuellar A, Santander SP, Thomas Mdel C, Guzman F, Gomez A et al (2008) Monocyte-derived dendritic cells from chagasic patients vs healthy donors secrete differential levels of IL-10 and IL-12 when stimulated with a protein fragment of Trypanosoma cruzi heat-shock protein-70. Immunol Cell Biol 86:255–260PubMedCrossRefGoogle Scholar
  168. 168.
    Dutra WO, Gollob KJ, Pinto-Dias JC, Gazzinelli G, Correa-Oliveira R et al (1997) Cytokine mRNA profile of peripheral blood mononuclear cells isolated from individuals with Trypanosoma cruzi chronic infection. Scand J Immunol 45:74–80PubMedCrossRefGoogle Scholar
  169. 169.
    Benvenuti LA, Higuchi ML, Reis MM (2000) Upregulation of adhesion molecules and class I HLA in the myocardium of chronic chagasic cardiomyopathy and heart allograft rejection, but not in dilated cardiomyopathy. Cardiovasc Pathol 9:111–117PubMedCrossRefGoogle Scholar
  170. 170.
    Cunha-Neto E, Dzau VJ, Allen PD, Stamatiou D, Benvenutti L et al (2005) Cardiac gene expression profiling provides evidence for cytokinopathy as a molecular mechanism in Chagas' disease cardiomyopathy. Am J Pathol 167:305–313PubMedCrossRefGoogle Scholar
  171. 171.
    Araujo FF, Gomes JA, Rocha MO, Williams-Blangero S, Pinheiro VM et al (2007) Potential role of CD4+CD25HIGH regulatory T cells in morbidity in Chagas disease. Front Biosci 12:2797–2806PubMedCrossRefGoogle Scholar
  172. 172.
    Villani FN, Rocha MO, Nunes Mdo C, Antonelli LR, Magalhaes LM et al (2010) Trypanosoma cruzi-induced activation of functionally distinct alphabeta and gammadelta CD4− CD8− T cells in individuals with polar forms of Chagas' disease. Infect Immun 78:4421–4430PubMedCrossRefGoogle Scholar
  173. 173.
    Dutra WO, Gollob KJ (2008) Current concepts in immunoregulation and pathology of human Chagas disease. Curr Opin Infect Dis 21:287–292PubMedCrossRefGoogle Scholar
  174. 174.
    Drigo SA, Cunha-Neto E, Ianni B, Cardoso MR, Braga PE et al (2006) TNF gene polymorphisms are associated with reduced survival in severe Chagas' disease cardiomyopathy patients. Microbes Infect 8:598–603PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fabiana S. Machado
    • 1
  • Walderez O. Dutra
    • 2
    • 6
    • 9
  • Lisia Esper
    • 1
  • Kenneth J. Gollob
    • 3
    • 6
    • 9
  • Mauro M. Teixeira
    • 1
  • Stephen M. Factor
    • 4
    • 7
  • Louis M. Weiss
    • 4
    • 7
  • Fnu Nagajyothi
    • 4
  • Herbert B. Tanowitz
    • 4
    • 7
  • Nisha J. Garg
    • 5
    • 8
  1. 1.Department of Biochemistry and Immunology, Biological Sciences InstituteFederal University of Minas GeraisBelo HorizonteBrazil
  2. 2.Department of Morphology, Biological Sciences InstituteFederal University of Minas GeraisBelo HorizonteBrazil
  3. 3.Santa Casa HospitalBelo HorizonteBrazil
  4. 4.Department of PathologyAlbert Einstein College of MedicineNew YorkUSA
  5. 5.Department of Microbiology and Immunology, Center for Tropical DiseasesUniversity of Texas Medical BranchGalvestonUSA
  6. 6.Biosciences DivisionSRI InternationalMenlo ParkUSA
  7. 7.Department of MedicineAlbert Einstein College of MedicineNew YorkUSA
  8. 8.Department of Pathology, Center for Tropical DiseasesUniversity of Texas Medical BranchGalvestonUSA
  9. 9.National Institute of Science and Technology in Tropical DiseasesBelo HorizonteBrazil

Personalised recommendations