Skip to main content

Innate immunostimulatory properties of allergens and their relevance to food allergy

Abstract

Food allergy is an increasingly prevalent disease of immune dysregulation directed to a small subset of proteins. Shared structural and functional features of allergens, such as glycosylation, lipid-binding and protease activity may provide insight into the mechanisms involved in the induction of primary Th2 immune responses. We review the literature of innate Th2-type immune activation as a context for better understanding the properties of allergens that contribute to the induction of Th2-biased immune responses in at least a subset of individuals. Th2-priming signals have been largely identified in the context of parasite immunity and wound healing. Some of the features of parasite antigens and the innate immune responses to them are now understood to play a role in allergic inflammation as well. These include both exogenous and endogenous activators of innate immunity and subsequent release of key cytokine mediators such as thymic stromal lymphopoietin (TSLP), interleukin (IL)-25 and IL-33. Moreover, numerous innate immune cells including epithelium, dendritic cells, basophils, innate lymphoid cells and others all interact to shape the adaptive Th2 immune response. Progress toward understanding Th2-inducing innate immune signals more completely may lead to novel strategies for primary prevention and therapy of respiratory and food allergies.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Skypala IJ, Calderon MA, Leeds AR, Emery P, Till SJ, Durham SR (2011) Development and validation of a structured questionnaire for the diagnosis of oral allergy syndrome in subjects with seasonal allergic rhinitis during the UK birch pollen season. Clin Exp Allergy 41:1001–1011

    PubMed  CAS  Google Scholar 

  2. Aalberse RC (2000) Structural biology of allergens. J Allergy Clin Immunol 106:228–238

    PubMed  CAS  Google Scholar 

  3. Sicherer SH (2011) Epidemiology of food allergy. J Allergy Clin Immunol 127:594–602

    PubMed  Google Scholar 

  4. Aalberse RC, Stadler BM (2006) In silico predictability of allergenicity: from amino acid sequence via 3-D structure to allergenicity. Mol Nutr Food Res 50:625–7

    PubMed  CAS  Google Scholar 

  5. Radauer C, Bublin M, Wagner S, Mari A, Breiteneder H (2008) Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J Allergy Clin Immunol 121(847–852):e7

    PubMed  Google Scholar 

  6. Ivanciuc O, Garcia T, Torres M, Schein CH, Braun W (2009) Characteristic motifs for families of allergenic proteins. Mol Immunol 46:559–568

    PubMed  CAS  Google Scholar 

  7. http://www.meduniwien.ac.at/allergens/allfam/

  8. Astwood JD, Leach JN, Fuchs RL (1996) Stability of food allergens to digestion in vitro. Nat Biotechnol 14:1269–1273

    PubMed  CAS  Google Scholar 

  9. Bannon GA (2004) What makes a food protein an allergen? Curr Allergy Asthma Rep 4:43–46

    PubMed  Google Scholar 

  10. Fu TJ, Abbott UR, Hatzos C (2002) Digestibility of food allergens and nonallergenic proteins in simulated gastric fluid and simulated intestinal fluid—a comparative study. J Agric Food Chem 50:7154–7160

    PubMed  CAS  Google Scholar 

  11. Herman RA, Woolhiser MM, Ladics GS, Korjagin VA, Schafer BW, Storer NP, Green SB, Kan L (2007) Stability of a set of allergens and non-allergens in simulated gastric fluid. Int J Food Sci Nutr 58:125–141

    PubMed  Google Scholar 

  12. Pedrosa C, De Felice FG, Trisciuzzi C, Ferreira ST (2000) Selective neoglycosylation increases the structural stability of vicilin, the 7S storage globulin from pea seeds. Arch Biochem Biophys 382:203–210

    PubMed  CAS  Google Scholar 

  13. Altmann F (2007) The role of protein glycosylation in allergy. Int Arch Allergy Immunol 142:99–115

    PubMed  CAS  Google Scholar 

  14. Faveeuw C, Mallevaey T, Paschinger K, Wilson IB, Fontaine J, Mollicone R, Oriol R, Altmann F, Lerouge P, Capron M, Trottein F (2003) Schistosome N-glycans containing core alpha 3-fucose and core beta 2-xylose epitopes are strong inducers of Th2 responses in mice. Eur J Immunol 33:1271–1281

    PubMed  CAS  Google Scholar 

  15. Bencurova M, Hemmer W, Focke-Tejkl M, Wilson IB, Altmann F (2004) Specificity of IgG and IgE antibodies against plant and insect glycoprotein glycans determined with artificial glycoforms of human transferrin. Glycobiology 14:457–466

    PubMed  CAS  Google Scholar 

  16. Breiteneder H, Mills EN (2005) Molecular properties of food allergens. J Allergy Clin Immunol 115:14–23, quiz 4

    PubMed  CAS  Google Scholar 

  17. Trompette A, Divanovic S, Visintin A, Blanchard C, Hegde RS, Madan R, Thorne PS, Wills-Karp M, Gioannini TL, Weiss JP, Karp CL (2009) Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature 457:585–588

    PubMed  CAS  Google Scholar 

  18. Mills EN, Jenkins JA, Alcocer MJ, Shewry PR (2004) Structural, biological, and evolutionary relationships of plant food allergens sensitizing via the gastrointestinal tract. Crit Rev Food Sci Nutr 44:379–407

    PubMed  CAS  Google Scholar 

  19. Considine T, Patel HA, Singh H, Creamer LK (2005) Influence of binding of sodium dodecyl sulfate, all-trans-retinol, palmitate, and 8-anilino-1-naphthalene sulfonate on the heat-induced unfolding and aggregation of beta-lactoglobulin B. J Agric Food Chem 53:3197–3205

    PubMed  CAS  Google Scholar 

  20. Roth-Walter F, Berin MC, Arnaboldi P, Escalante CR, Dahan S, Rauch J, Jensen-Jarolim E, Mayer L (2008) Pasteurization of milk proteins promotes allergic sensitization by enhancing uptake through Peyer’s patches. Allergy 63:882–890

    PubMed  CAS  Google Scholar 

  21. Boyce JA, Assa’ad A, Burks AW, Jones SM, Sampson HA, Wood RA, Plaut M, Cooper SF, Fenton MJ, Arshad SH, Bahna SL, Beck LA, Byrd-Bredbenner C, Camargo CA Jr, Eichenfield L, Furuta GT, Hanifin JM, Jones C, Kraft M, Levy BD, Lieberman P, Luccioli S, McCall KM, Schneider LC, Simon RA, Simons FE, Teach SJ, Yawn BP, Schwaninger JM (2010) Guidelines for the diagnosis and management of food allergy in the United States: report of the NIAID-sponsored expert panel. J Allergy Clin Immunol 126:S1–S58

    PubMed  Google Scholar 

  22. Wills-Karp M, Finkelman FD (2008) Untangling the complex web of IL-4- and IL-13-mediated signaling pathways. Sci Signal 1:pe55

    PubMed  Google Scholar 

  23. Takatsu K, Kouro T, Nagai Y (2009) Interleukin 5 in the link between the innate and acquired immune response. Adv Immunol 101:191–236

    PubMed  CAS  Google Scholar 

  24. Allen JE, Maizels RM (2011) Diversity and dialogue in immunity to helminths. Nat Rev Immunol 11:375–388

    PubMed  CAS  Google Scholar 

  25. Vignali DA, Crocker P, Bickle QD, Cobbold S, Waldmann H, Taylor MG (1989) A role for CD4+ but not CD8+ T cells in immunity to Schistosoma mansoni induced by 20 krad-irradiated and Ro 11-3128-terminated infections. Immunology 67:466–472

    PubMed  CAS  Google Scholar 

  26. Katona IM, Urban JF Jr, Finkelman FD (1988) The role of L3T4+ and Lyt-2+ T cells in the IgE response and immunity to Nippostrongylus brasiliensis. J Immunol 140:3206–3211

    PubMed  CAS  Google Scholar 

  27. Mohrs M, Shinkai K, Mohrs K, Locksley RM (2001) Analysis of type 2 immunity in vivo with a bicistronic IL-4 reporter. Immunity 15:303–311

    PubMed  CAS  Google Scholar 

  28. Mitre E, Taylor RT, Kubofcik J, Nutman TB (2004) Parasite antigen-driven basophils are a major source of IL-4 in human filarial infections. J Immunol 172:2439–2445

    PubMed  CAS  Google Scholar 

  29. Spits H, Cupedo T (2012) Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu Rev Immunol 30:647–675

    PubMed  CAS  Google Scholar 

  30. Paul WE, Zhu J (2010) How are T(H)2-type immune responses initiated and amplified? Nat Rev Immunol 10:225–235

    PubMed  CAS  Google Scholar 

  31. Dunne DW, Butterworth AE, Fulford AJ, Kariuki HC, Langley JG, Ouma JH, Capron A, Pierce RJ, Sturrock RF (1992) Immunity after treatment of human schistosomiasis: association between IgE antibodies to adult worm antigens and resistance to reinfection. Eur J Immunol 22:1483–1494

    PubMed  CAS  Google Scholar 

  32. Hagan P, Blumenthal UJ, Dunn D, Simpson AJ, Wilkins HA (1991) Human IgE, IgG4 and resistance to reinfection with Schistosoma haematobium. Nature 349:243–245

    PubMed  CAS  Google Scholar 

  33. Jiz M, Friedman JF, Leenstra T, Jarilla B, Pablo A, Langdon G, Pond-Tor S, Wu HW, Manalo D, Olveda R, Acosta L, Kurtis JD (2009) Immunoglobulin E (IgE) responses to paramyosin predict resistance to reinfection with Schistosoma japonicum and are attenuated by IgG4. Infect Immun 77:2051–2058

    PubMed  CAS  Google Scholar 

  34. Black CL, Muok EM, Mwinzi PN, Carter JM, Karanja DM, Secor WE, Colley DG (2010) Increases in levels of schistosome-specific immunoglobulin E and CD23(+) B cells in a cohort of Kenyan children undergoing repeated treatment and reinfection with Schistosoma mansoni. J Infect Dis 202:399–405

    PubMed  CAS  Google Scholar 

  35. Capron M, Capron A (1994) Immunoglobulin E and effector cells in schistosomiasis. Science 264:1876–1877

    PubMed  CAS  Google Scholar 

  36. Gurish MF, Bryce PJ, Tao H, Kisselgof AB, Thornton EM, Miller HR, Friend DS, Oettgen HC (2004) IgE enhances parasite clearance and regulates mast cell responses in mice infected with Trichinella spiralis. J Immunol 172:1139–1145

    PubMed  CAS  Google Scholar 

  37. Watanabe N, Katakura K, Kobayashi A, Okumura K, Ovary Z (1988) Protective immunity and eosinophilia in IgE-deficient SJA/9 mice infected with Nippostrongylus brasiliensis and Trichinella spiralis. PNAS 85:4460–4462

    PubMed  CAS  Google Scholar 

  38. El Ridi R, Ozaki T, Kamiya H (1998) Schistosoma mansoni infection in IgE-producing and IgE-deficient mice. J Parasitol 84:171–174

    PubMed  CAS  Google Scholar 

  39. McCoy KD, Stoel M, Stettler R, Merky P, Fink K, Senn BM, Schaer C, Massacand J, Odermatt B, Oettgen HC, Zinkernagel RM, Bos NA, Hengartner H, Macpherson AJ, Harris NL (2008) Polyclonal and specific antibodies mediate protective immunity against enteric helminth infection. Cell Host Microbe 4:362–373

    PubMed  CAS  Google Scholar 

  40. Hepworth MR, Danilowicz-Luebert E, Rausch S, Metz M, Klotz C, Maurer M, Hartmann S (2012) Mast cells orchestrate type 2 immunity to helminths through regulation of tissue-derived cytokines. PNAS 109:6644–6649

    PubMed  CAS  Google Scholar 

  41. Wada T, Ishiwata K, Koseki H, Ishikura T, Ugajin T, Ohnuma N, Obata K, Ishikawa R, Yoshikawa S, Mukai K, Kawano Y, Minegishi Y, Yokozeki H, Watanabe N, Karasuyama H (2010) Selective ablation of basophils in mice reveals their nonredundant role in acquired immunity against ticks. J Clin Invest 120:2867–2875

    PubMed  CAS  Google Scholar 

  42. Commins SP, James HR, Kelly LA, Pochan SL, Workman LJ, Perzanowski MS, Kocan KM, Fahy JV, Nganga LW, Ronmark E, Cooper PJ, Platts-Mills TA (2011) The relevance of tick bites to the production of IgE antibodies to the mammalian oligosaccharide galactose-alpha-1,3-galactose. J Allergy Clin Immunol 127(1286–1293):e6

    PubMed  Google Scholar 

  43. Behnke JM, Barnard CJ, Wakelin D (1992) Understanding chronic nematode infections: evolutionary considerations, current hypotheses and the way forward. Int J Parasitol 22:861–907

    PubMed  CAS  Google Scholar 

  44. Ricardo-Gonzalez RR, Red Eagle A, Odegaard JI, Jouihan H, Morel CR, Heredia JE, Mukundan L, Wu D, Locksley RM, Chawla A (2010) IL-4/STAT6 immune axis regulates peripheral nutrient metabolism and insulin sensitivity. PNAS 107:22617–22622

    PubMed  CAS  Google Scholar 

  45. Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA, Bando JK, Chawla A, Locksley RM (2011) Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332:243–247

    PubMed  CAS  Google Scholar 

  46. Palm NW, Rosenstein RK, Medzhitov R (2012) Allergic host defences. Nature 484:465–472

    PubMed  CAS  Google Scholar 

  47. Artis D, Maizels RM, Finkelman FD (2012) Forum: immunology: allergy challenged. Nature 484:458–459

    PubMed  CAS  Google Scholar 

  48. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820

    PubMed  CAS  Google Scholar 

  49. Shpacovitch V, Feld M, Hollenberg MD, Luger TA, Steinhoff M (2008) Role of protease-activated receptors in inflammatory responses, innate and adaptive immunity. J Leukoc Biol 83:1309–1322

    PubMed  CAS  Google Scholar 

  50. Areschoug T, Gordon S (2009) Scavenger receptors: role in innate immunity and microbial pathogenesis. Cell Microbiol 11:1160–1169

    PubMed  CAS  Google Scholar 

  51. Minnicozzi M, Sawyer RT, Fenton MJ (2011) Innate immunity in allergic disease. Immunol Rev 242:106–127

    PubMed  CAS  Google Scholar 

  52. Akira S (2011) Innate immunity and adjuvants. Philos Trans R Soc Lond B Biol Sci 366:2748–2755

    PubMed  CAS  Google Scholar 

  53. Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34:637–650

    PubMed  CAS  Google Scholar 

  54. De Gregorio E, D’Oro U, Wack A (2009) Immunology of TLR-independent vaccine adjuvants. Curr Opin Immunol 21:339–345

    PubMed  Google Scholar 

  55. Palm NW, Medzhitov R (2009) Pattern recognition receptors and control of adaptive immunity. Immunol Rev 227:221–233

    PubMed  CAS  Google Scholar 

  56. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    PubMed  CAS  Google Scholar 

  57. Itano AA, Jenkins MK (2003) Antigen presentation to naive CD4 T cells in the lymph node. Nat Immunol 4:733–739

    PubMed  CAS  Google Scholar 

  58. Phythian-Adams AT, Cook PC, Lundie RJ, Jones LH, Smith KA, Barr TA, Hochweller K, Anderton SM, Hammerling GJ, Maizels RM, MacDonald AS (2010) CD11c depletion severely disrupts Th2 induction and development in vivo. J Exp Med 207:2089–2096

    PubMed  CAS  Google Scholar 

  59. MacDonald AS, Pearce EJ (2002) Cutting edge: polarized Th cell response induction by transferred antigen-pulsed dendritic cells is dependent on IL-4 or IL-12 production by recipient cells. J Immunol 168:3127–3230

    PubMed  CAS  Google Scholar 

  60. van Liempt E, van Vliet SJ, Engering A, Garcia Vallejo JJ, Bank CM, Sanchez-Hernandez M, van Kooyk Y, van Die I (2007) Schistosoma mansoni soluble egg antigens are internalized by human dendritic cells through multiple C-type lectins and suppress TLR-induced dendritic cell activation. Mol Immunol 44:2605–2615

    PubMed  Google Scholar 

  61. Ritter M, Gross O, Kays S, Ruland J, Nimmerjahn F, Saijo S, Tschopp J, Layland LE, Prazeres da Costa C (2010) Schistosoma mansoni triggers Dectin-2, which activates the Nlrp3 inflammasome and alters adaptive immune responses. PNAS 107:20459–20464

    PubMed  CAS  Google Scholar 

  62. Steinfelder S, Andersen JF, Cannons JL, Feng CG, Joshi M, Dwyer D, Caspar P, Schwartzberg PL, Sher A, Jankovic D (2009) The major component in schistosome eggs responsible for conditioning dendritic cells for Th2 polarization is a T2 ribonuclease (omega-1). J Exp Med 206:1681–1690

    PubMed  CAS  Google Scholar 

  63. Everts B, Perona-Wright G, Smits HH, Hokke CH, van der Ham AJ, Fitzsimmons CM, Doenhoff MJ, van der Bosch J, Mohrs K, Haas H, Mohrs M, Yazdanbakhsh M, Schramm G (2009) Omega-1, a glycoprotein secreted by Schistosoma mansoni eggs, drives Th2 responses. J Exp Med 206:1673–1680

    PubMed  CAS  Google Scholar 

  64. Skallova A, Iezzi G, Ampenberger F, Kopf M, Kopecky J (2008) Tick saliva inhibits dendritic cell migration, maturation, and function while promoting development of Th2 responses. J Immunol 180:6186–6192

    PubMed  CAS  Google Scholar 

  65. Oliveira CJ, Sa-Nunes A, Francischetti IM, Carregaro V, Anatriello E, Silva JS, Santos IK, Ribeiro JM, Ferreira BR (2011) Deconstructing tick saliva: non-protein molecules with potent immunomodulatory properties. J Biol Chem 286:10960–10969

    PubMed  CAS  Google Scholar 

  66. Wills-Karp M, Rani R, Dienger K, Lewkowich I, Fox JG, Perkins C, Lewis L, Finkelman FD, Smith DE, Bryce PJ, Kurt-Jones EA, Wang TC, Sivaprasad U, Hershey GK, Herbert DR (2012) Trefoil factor 2 rapidly induces interleukin 33 to promote type 2 immunity during allergic asthma and hookworm infection. J Exp Med 209:607–622

    PubMed  CAS  Google Scholar 

  67. Oliphant CJ, Barlow JL, McKenzie AN (2011) Insights into the initiation of type 2 immune responses. Immunology 134:378–385

    PubMed  CAS  Google Scholar 

  68. Zhao A, Urban JF Jr, Sun R, Stiltz J, Morimoto M, Notari L, Madden KB, Yang Z, Grinchuk V, Ramalingam TR, Wynn TA, Shea-Donohue T (2010) Critical role of IL-25 in nematode infection-induced alterations in intestinal function. J Immunol 185:6921–6929

    PubMed  CAS  Google Scholar 

  69. Humphreys NE, Xu D, Hepworth MR, Liew FY, Grencis RK (2008) IL-33, a potent inducer of adaptive immunity to intestinal nematodes. J Immunol 180:2443–2449

    PubMed  CAS  Google Scholar 

  70. Taylor BC, Zaph C, Troy AE, Du Y, Guild KJ, Comeau MR, Artis D (2009) TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis. J Exp Med 206:655–667

    PubMed  CAS  Google Scholar 

  71. Ito T, Wang YH, Duramad O, Hori T, Delespesse GJ, Watanabe N, Qin FX, Yao Z, Cao W, Liu YJ (2005) TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J Exp Med 202:1213–1223

    PubMed  CAS  Google Scholar 

  72. Wang YH, Ito T, Homey B, Watanabe N, Martin R, Barnes CJ, McIntyre BW, Gilliet M, Kumar R, Yao Z, Liu YJ (2006) Maintenance and polarization of human TH2 central memory T cells by thymic stromal lymphopoietin-activated dendritic cells. Immunity 24:827–838

    PubMed  CAS  Google Scholar 

  73. de Jong EC, Vieira PL, Kalinski P, Schuitemaker JH, Tanaka Y, Wierenga EA, Yazdanbakhsh M, Kapsenberg ML (2002) Microbial compounds selectively induce Th1 cell-promoting or Th2 cell-promoting dendritic cells in vitro with diverse th cell-polarizing signals. J Immunol 168:1704–1709

    PubMed  Google Scholar 

  74. Ekkens MJ, Liu Z, Liu Q, Whitmire J, Xiao S, Foster A, Pesce J, VanNoy J, Sharpe AH, Urban JF, Gause WC (2003) The role of OX40 ligand interactions in the development of the Th2 response to the gastrointestinal nematode parasite Heligmosomoides polygyrus. J Immunol 170:384–393

    PubMed  CAS  Google Scholar 

  75. Balic A, Harcus Y, Holland MJ, Maizels RM (2004) Selective maturation of dendritic cells by Nippostrongylus brasiliensis-secreted proteins drives Th2 immune responses. Eur J Immunol 34:3047–3059

    PubMed  CAS  Google Scholar 

  76. Massacand JC, Stettler RC, Meier R, Humphreys NE, Grencis RK, Marsland BJ, Harris NL (2009) Helminth products bypass the need for TSLP in Th2 immune responses by directly modulating dendritic cell function. PNAS 106:13968–13973

    PubMed  CAS  Google Scholar 

  77. Perrigoue JG, Saenz SA, Siracusa MC, Allenspach EJ, Taylor BC, Giacomin PR, Nair MG, Du Y, Zaph C, van Rooijen N, Comeau MR, Pearce EJ, Laufer TM, Artis D (2009) MHC class II-dependent basophil-CD4+ T cell interactions promote T(H)2 cytokine-dependent immunity. Nat Immunol 10:697–705

    PubMed  CAS  Google Scholar 

  78. Sokol CL, Chu NQ, Yu S, Nish SA, Laufer TM, Medzhitov R (2009) Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat Immunol 10:713–720

    PubMed  CAS  Google Scholar 

  79. Kool M, Hammad H, Lambrecht BN (2012) Cellular networks controlling Th2 polarization in allergy and immunity. F1000 Biol Rep 4:6

    PubMed  Google Scholar 

  80. Hammad H, Plantinga M, Deswarte K, Pouliot P, Willart MA, Kool M, Muskens F, Lambrecht BN (2010) Inflammatory dendritic cells—not basophils—are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J Exp Med 207:2097–2111

    PubMed  CAS  Google Scholar 

  81. Ohnmacht C, Schwartz C, Panzer M, Schiedewitz I, Naumann R, Voehringer D (2010) Basophils orchestrate chronic allergic dermatitis and protective immunity against helminths. Immunity 33:364–374

    PubMed  CAS  Google Scholar 

  82. van Panhuys N, Prout M, Forbes E, Min B, Paul WE, Le Gros G (2011) Basophils are the major producers of IL-4 during primary helminth infection. J Immunol 186:2719–2728

    PubMed  Google Scholar 

  83. Schramm G, Mohrs K, Wodrich M, Doenhoff MJ, Pearce EJ, Haas H, Mohrs M (2007) Cutting edge: IPSE/alpha-1, a glycoprotein from Schistosoma mansoni eggs, induces IgE-dependent, antigen-independent IL-4 production by murine basophils in vivo. J Immunol 178:6023–6027

    PubMed  CAS  Google Scholar 

  84. Reese TA, Liang HE, Tager AM, Luster AD, Van Rooijen N, Voehringer D, Locksley RM (2007) Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature 447:92–96

    PubMed  CAS  Google Scholar 

  85. Anthony RM, Urban JF Jr, Alem F, Hamed HA, Rozo CT, Boucher JL, Van Rooijen N, Gause WC (2006) Memory T(H)2 cells induce alternatively activated macrophages to mediate protection against nematode parasites. Nat Med 12:955–960

    PubMed  CAS  Google Scholar 

  86. Siracusa MC, Comeau MR, Artis D (2011) New insights into basophil biology: initiators, regulators, and effectors of type 2 inflammation. Ann N Y AcadSci 1217:166–177

    CAS  Google Scholar 

  87. Siracusa MC, Saenz SA, Hill DA, Kim BS, Headley MB, Doering TA, Wherry EJ, Jessup HK, Siegel LA, Kambayashi T, Dudek EC, Kubo M, Cianferoni A, Spergel JM, Ziegler SF, Comeau MR, Artis D (2011) TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature 477:229–233

    PubMed  CAS  Google Scholar 

  88. Kool M, Soullie T, van Nimwegen M, Willart MA, Muskens F, Jung S, Hoogsteden HC, Hammad H, Lambrecht BN (2008) Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J Exp Med 205:869–882

    PubMed  CAS  Google Scholar 

  89. Kool M, Petrilli V, De Smedt T, Rolaz A, Hammad H, van Nimwegen M, Bergen IM, Castillo R, Lambrecht BN, Tschopp J (2008) Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J Immunol 181:3755–3759

    PubMed  CAS  Google Scholar 

  90. Lambrecht BN, Kool M, Willart MA, Hammad H (2009) Mechanism of action of clinically approved adjuvants. Curr Opin Immunol 21:23–29

    PubMed  CAS  Google Scholar 

  91. Kuroda E, Ishii KJ, Uematsu S, Ohata K, Coban C, Akira S, Aritake K, Urade Y, Morimoto Y (2011) Silica crystals and aluminum salts regulate the production of prostaglandin in macrophages via NALP3 inflammasome-independent mechanisms. Immunity 34:514–526

    PubMed  CAS  Google Scholar 

  92. Marichal T, Ohata K, Bedoret D, Mesnil C, Sabatel C, Kobiyama K, Lekeux P, Coban C, Akira S, Ishii KJ, Bureau F, Desmet CJ (2011) DNA released from dying host cells mediates aluminum adjuvant activity. Nat Med 17:996–1002

    PubMed  CAS  Google Scholar 

  93. Oyoshi MK, Larson RP, Ziegler SF, Geha RS (2010) Mechanical injury polarizes skin dendritic cells to elicit a T(H)2 response by inducing cutaneous thymic stromal lymphopoietin expression. J Allergy Clin Immunol 126:976–984, 84 e1–e5

    PubMed  CAS  Google Scholar 

  94. Berin MC (2012) Mechanisms of allergic sensitization to foods: bypassing immune tolerance pathways. Immunol Allergy Clin North Am 32:1–10

    PubMed  Google Scholar 

  95. Spangler BD (1992) Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol Rev 56:622–647

    PubMed  CAS  Google Scholar 

  96. Gagliardi MC, Sallusto F, Marinaro M, Langenkamp A, Lanzavecchia A, De Magistris MT (2000) Cholera toxin induces maturation of human dendritic cells and licences them for Th2 priming. Eur J Immunol 30:2394–2403

    PubMed  CAS  Google Scholar 

  97. Veglia F, Sciaraffia E, Riccomi A, Pinto D, Negri DR, De Magistris MT, Vendetti S (2011) Cholera toxin impairs the differentiation of monocytes into dendritic cells, inducing professional antigen-presenting myeloid cells. Infect Immun 79:1300–1310

    PubMed  CAS  Google Scholar 

  98. Blazquez AB, Berin MC (2008) Gastrointestinal dendritic cells promote Th2 skewing via OX40L. J Immunol 180:4441–4450

    PubMed  CAS  Google Scholar 

  99. Wills-Karp M, Nathan A, Page K, Karp CL (2010) New insights into innate immune mechanisms underlying allergenicity. Mucosal Immunol 3:104–110

    PubMed  CAS  Google Scholar 

  100. Berin MC, Shreffler WG (2008) T(H)2 adjuvants: implications for food allergy. J Allergy Clin Immunol 121:1311–1320, quiz 21–22

    PubMed  CAS  Google Scholar 

  101. Barrett NA, Rahman OM, Fernandez JM, Parsons MW, Xing W, Austen KF, Kanaoka Y (2011) Dectin-2 mediates Th2 immunity through the generation of cysteinyl leukotrienes. J Exp Med 208:593–604

    PubMed  CAS  Google Scholar 

  102. Royer PJ, Emara M, Yang C, Al-Ghouleh A, Tighe P, Jones N, Sewell HF, Shakib F, Martinez-Pomares L, Ghaemmaghami AM (2010) The mannose receptor mediates the uptake of diverse native allergens by dendritic cells and determines allergen-induced T cell polarization through modulation of IDO activity. J Immunol 185:1522–1531

    PubMed  CAS  Google Scholar 

  103. Maneechotesuwan K, Wamanuttajinda V, Kasetsinsombat K, Huabprasert S, Yaikwawong M, Barnes PJ, Wongkajornsilp A (2009) Der p 1 suppresses indoleamine 2,3-dioxygenase in dendritic cells from house dust mite-sensitive patients with asthma. J Allergy Clin Immunol 123:239–248

    PubMed  CAS  Google Scholar 

  104. Emara M, Royer PJ, Mahdavi J, Shakib F, Ghaemmaghami AM (2012) Retagging identifies dendritic cell-specific intercellular adhesion molecule-3 (ICAM3)-grabbing non-integrin (DC-SIGN) protein as a novel receptor for a major allergen from house dust mite. J Biol Chem 287:5756–5763

    PubMed  CAS  Google Scholar 

  105. Huang HJ, Lin YL, Liu CF, Kao HF, Wang JY (2011) Mite allergen decreases DC-SIGN expression and modulates human dendritic cell differentiation and function in allergic asthma. Mucosal Immunol 4:519–527

    PubMed  CAS  Google Scholar 

  106. Hsu SC, Chen CH, Tsai SH, Kawasaki H, Hung CH, Chu YT, Chang HW, Zhou Y, Fu J, Plunkett B, Su SN, Vieths S, Lee RT, Lee YC, Huang SK (2010) Functional interaction of common allergens and a C-type lectin receptor, dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN), on human dendritic cells. J Biol Chem 285:7903–7910

    PubMed  CAS  Google Scholar 

  107. Nathan AT, Peterson EA, Chakir J, Wills-Karp M (2009) Innate immune responses of airway epithelium to house dust mite are mediated through beta-glucan-dependent pathways. J Allergy Clin Immunol 123:612–618

    PubMed  CAS  Google Scholar 

  108. Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN (2009) House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med 15:410–416

    PubMed  CAS  Google Scholar 

  109. Willart MA, Deswarte K, Pouliot P, Braun H, Beyaert R, Lambrecht BN, Hammad H (2012) Interleukin-1a controls allergic sensitization to inhaled house dust mite via the epithelial release of GM-CSF and IL-33. J Exp Med 209(8):1505–17

    Google Scholar 

  110. Li DQ, Zhang L, Pflugfelder SC, De Paiva CS, Zhang X, Zhao G, Zheng X, Su Z, Qu Y (2011) Short ragweed pollen triggers allergic inflammation through Toll-like receptor 4-dependent thymic stromal lymphopoietin/OX40 ligand/OX40 signaling pathways. J Allergy Clin Immunol 128(1318–1325):e2

    Google Scholar 

  111. Mueller GA, Edwards LL, Aloor JJ, Fessler MB, Glesner J, Pomes A, Chapman MD, London RE, Pedersen LC (2010) The structure of the dust mite allergen Der p 7 reveals similarities to innate immune proteins. J Allergy Clin Immunol 125(909–917):e4

    PubMed  Google Scholar 

  112. Ghaemmaghami AM, Gough L, Sewell HF, Shakib F (2002) The proteolytic activity of the major dust mite allergen Der p 1 conditions dendritic cells to produce less interleukin-12: allergen-induced Th2 bias determined at the dendritic cell level. Clin Exp Allergy 32:1468–1475

    PubMed  CAS  Google Scholar 

  113. Ghaemmaghami AM, Robins A, Gough L, Sewell HF, Shakib F (2001) Human T cell subset commitment determined by the intrinsic property of antigen: the proteolytic activity of the major mite allergen Der p 1 conditions T cells to produce more IL-4 and less IFN-gamma. Eur J Immunol 31:1211–1216

    PubMed  CAS  Google Scholar 

  114. Arizmendi NG, Abel M, Mihara K, Davidson C, Polley D, Nadeem A, El Mays T, Gilmore BF, Walker B, Gordon JR, Hollenberg MD, Vliagoftis H (2011) Mucosal allergic sensitization to cockroach allergens is dependent on proteinase activity and proteinase-activated receptor-2 activation. J Immunol 186:3164–3172

    PubMed  CAS  Google Scholar 

  115. Lewkowich IP, Day SB, Ledford JR, Zhou P, Dienger K, Wills-Karp M, Page K (2011) Protease-activated receptor 2 activation of myeloid dendritic cells regulates allergic airway inflammation. Respir Res 12:122

    PubMed  CAS  Google Scholar 

  116. Kobayashi T, Iijima K, Radhakrishnan S, Mehta V, Vassallo R, Lawrence CB, Cyong JC, Pease LR, Oguchi K, Kita H (2009) Asthma-related environmental fungus, Alternaria, activates dendritic cells and produces potent Th2 adjuvant activity. J Immunol 182:2502–2510

    PubMed  CAS  Google Scholar 

  117. Lamhamedi-Cherradi SE, Martin RE, Ito T, Kheradmand F, Corry DB, Liu YJ, Moyle M (2008) Fungal proteases induce Th2 polarization through limited dendritic cell maturation and reduced production of IL-12. J Immunol 180:6000–6009

    PubMed  CAS  Google Scholar 

  118. Kouzaki H, O’Grady SM, Lawrence CB, Kita H (2009) Proteases induce production of thymic stromal lymphopoietin by airway epithelial cells through protease-activated receptor-2. J Immunol 183:1427–1434

    PubMed  CAS  Google Scholar 

  119. Liang G, Barker T, Xie Z, Charles N, Rivera J, Druey KM (2012) Naive T cells sense the cysteine protease allergen papain through protease-activated receptor 2 and propel T(H)2 immunity. J Allergy Clin Immunol 129:1377–1386

    PubMed  CAS  Google Scholar 

  120. Knight DA, Lim S, Scaffidi AK, Roche N, Chung KF, Stewart GA, Thompson PJ (2001) Protease-activated receptors in human airways: upregulation of PAR-2 in respiratory epithelium from patients with asthma. J Allergy Clin Immunol 108:797–803

    PubMed  CAS  Google Scholar 

  121. Lee JH, Kim KW, Gee HY, Lee J, Lee KH, Park HS, Kim SH, Kim SW, Kim MN, Kim KE, Kim KH, Lee MG, Sohn MH (2011) A synonymous variation in protease-activated receptor-2 is associated with atopy in Korean children. J Allergy Clin Immunol 128(1326–1334):e3

    PubMed  Google Scholar 

  122. Cho HJ, Lee HJ, Kim SC, Kim K, Kim YS, Kim CH, Lee JG, Yoon JH, Choi JY (2012) Protease-activated receptor 2-dependent fluid secretion from airway submucosal glands by house dust mite extract. J Allergy Clin Immunol 129:529–535, 35 e1–e5

    PubMed  CAS  Google Scholar 

  123. Halim TY, Krauss RH, Sun AC, Takei F (2012) Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity 36:451–463

    PubMed  CAS  Google Scholar 

  124. Wolterink RG, Kleinjan A, van Nimwegen M, Bergen I, de Bruijn M, Levani Y, Hendriks RW (2012) Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma. Eur J Immunol 42:1106–1116

    PubMed  CAS  Google Scholar 

  125. Mjosberg JM, Trifari S, Crellin NK, Peters CP, van Drunen CM, Piet B, Fokkens WJ, Cupedo T, Spits H (2011) Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol 12:1055–1062

    PubMed  Google Scholar 

  126. Sokol CL, Barton GM, Farr AG, Medzhitov R (2008) A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat Immunol 9:310–318

    PubMed  CAS  Google Scholar 

  127. Tang H, Cao W, Kasturi SP, Ravindran R, Nakaya HI, Kundu K, Murthy N, Kepler TB, Malissen B, Pulendran B (2010) The T helper type 2 response to cysteine proteases requires dendritic cell-basophil cooperation via ROS-mediated signaling. Nat Immunol 11:608–617

    PubMed  CAS  Google Scholar 

  128. Kitzmuller C, Nagl B, Deifl S, Walterskirchen C, Jahn-Schmid B, Zlabinger GJ, Bohle B (2011) Human blood basophils do not act as antigen-presenting cells for the major birch pollen allergen Bet v 1. Allergy 67:593–600

    PubMed  Google Scholar 

  129. Eckl-Dorna J, Ellinger A, Blatt K, Ghanim V, Steiner I, Pavelka M, Valent P, Valenta R, Niederberger V (2012) Basophils are not the key antigen-presenting cells in allergic patients. Allergy 67:601–608

    PubMed  CAS  Google Scholar 

  130. Traidl-Hoffmann C, Mariani V, Hochrein H, Karg K, Wagner H, Ring J, Mueller MJ, Jakob T, Behrendt H (2005) Pollen-associated phytoprostanes inhibit dendritic cell interleukin-12 production and augment T helper type 2 cell polarization. J Exp Med 201:627–636

    PubMed  CAS  Google Scholar 

  131. Gilles S, Mariani V, Bryce M, Mueller MJ, Ring J, Jakob T, Pastore S, Behrendt H, Traidl-Hoffmann C (2009) Pollen-derived E1-phytoprostanes signal via PPAR-gamma and NF-kappaB-dependent mechanisms. J Immunol 182:6653–6658

    PubMed  CAS  Google Scholar 

  132. Gilles S, Fekete A, Zhang X, Beck I, Blume C, Ring J, Schmidt-Weber C, Behrendt H, Schmitt-Kopplin P, Traidl-Hoffmann C (2011) Pollen metabolome analysis reveals adenosine as a major regulator of dendritic cell-primed T(H) cell responses. J Allergy Clin Immunol 127(454–461):e1–e9

    PubMed  Google Scholar 

  133. la Sala A, He J, Laricchia-Robbio L, Gorini S, Iwasaki A, Braun M, Yap GS, Sher A, Ozato K, Kelsall B (2009) Cholera toxin inhibits IL-12 production and CD8alpha + dendritic cell differentiation by cAMP-mediated inhibition of IRF8 function. J Exp Med 206:1227–1235

    PubMed  Google Scholar 

  134. Robertson SJ, Rubino SJ, Geddes K, Philpott DJ (2012) Examining host-microbial interactions through the lens of NOD: from plants to mammals. Semin Immunol 24:9–16

    PubMed  CAS  Google Scholar 

  135. Magalhaes JG, Rubino SJ, Travassos LH, Le Bourhis L, Duan W, Sellge G, Geddes K, Reardon C, Lechmann M, Carneiro LA, Selvanantham T, Fritz JH, Taylor BC, Artis D, Mak TW, Comeau MR, Croft M, Girardin SE, Philpott DJ (2011) Nucleotide oligomerization domain-containing proteins instruct T cell helper type 2 immunity through stromal activation. PNAS 108:14896–14901

    PubMed  CAS  Google Scholar 

  136. Kool M, Willart MA, van Nimwegen M, Bergen I, Pouliot P, Virchow JC, Rogers N, Osorio F, Reis E, Sousa C, Hammad H, Lambrecht BN (2011) An unexpected role for uric acid as an inducer of T helper 2 cell immunity to inhaled antigens and inflammatory mediator of allergic asthma. Immunity 34:527–540

    PubMed  CAS  Google Scholar 

  137. Shreffler WG, Castro RR, Kucuk ZY, Charlop-Powers Z, Grishina G, Yoo S, Burks AW, Sampson HA (2006) The major glycoprotein allergen from Arachis hypogaea, Ara h 1, is a ligand of dendritic cell-specific ICAM-grabbing nonintegrin and acts as a Th2 adjuvant in vitro. J Immunol 177:3677–3685

    PubMed  CAS  Google Scholar 

  138. Ilchmann A, Burgdorf S, Scheurer S, Waibler Z, Nagai R, Wellner A, Yamamoto Y, Yamamoto H, Henle T, Kurts C, Kalinke U, Vieths S, Toda M (2010) Glycation of a food allergen by the Maillard reaction enhances its T-cell immunogenicity: role of macrophage scavenger receptor class A type I and II. J Allergy Clin Immunol 125(175–183):e1–e11

    PubMed  Google Scholar 

  139. Hilmenyuk T, Bellinghausen I, Heydenreich B, Ilchmann A, Toda M, Grabbe S, Saloga J (2010) Effects of glycation of the model food allergen ovalbumin on antigen uptake and presentation by human dendritic cells. Immunology 129:437–445

    PubMed  CAS  Google Scholar 

  140. Hsu SC, Tsai TH, Kawasaki H, Chen CH, Plunkett B, Lee RT, Lee YC, Huang SK (2007) Antigen coupled with Lewis-x trisaccharides elicits potent immune responses in mice. J Allergy Clin Immunol 119:1522–1528

    PubMed  CAS  Google Scholar 

  141. van Wijk F, Nierkens S, Hassing I, Feijen M, Koppelman SJ, de Jong GA, Pieters R, Knippels LM (2005) The effect of the food matrix on in vivo immune responses to purified peanut allergens. Toxicol Sci 86:333–341

    PubMed  Google Scholar 

  142. Ruiter B, Grishina G, den Hartog Jager CF, Knol EF, Ozias-Akins P, Sampson HA, Shreffler WG (2012) Human dendritic cells stimulated with a novel peanut protein express high levels of RALDH2 and induce RA-sensitive genes in naive T cells. J Allergy Clin Immunol 129:AB243

    Google Scholar 

  143. Keller B, Sauer N, Lamb CJ (1988) Glycine-rich cell wall proteins in bean: gene structure and association of the protein with the vascular system. EMBO J 7:3625–3633

    PubMed  CAS  Google Scholar 

  144. Khodoun M, Strait R, Orekov T, Hogan S, Karasuyama H, Herbert DR, Kohl J, Finkelman FD (2009) Peanuts can contribute to anaphylactic shock by activating complement. J Allergy Clin Immunol 123:342–351

    PubMed  CAS  Google Scholar 

  145. Jyonouchi S, Abraham V, Orange JS, Spergel JM, Gober L, Dudek E, Saltzman R, Nichols KE, Cianferoni A (2011) Invariant natural killer T cells from children with versus without food allergy exhibit differential responsiveness to milk-derived sphingomyelin. J Allergy Clin Immunol 128(102–109):e13

    PubMed  Google Scholar 

  146. Masilamani M, Wei J, Bhatt S, Paul M, Yakir S, Sampson HA (2011) Soybean isoflavones regulate dendritic cell function and suppress allergic sensitization to peanut. J Allergy Clin Immunol 128:1242–1250

    PubMed  CAS  Google Scholar 

  147. Chambers SJ, Bertelli E, Winterbone MS, Regoli M, Man AL, Nicoletti C (2004) Adoptive transfer of dendritic cells from allergic mice induces specific immunoglobulin E antibody in naive recipients in absence of antigen challenge without altering the T helper 1/T helper 2 balance. Immunology 112:72–79

    PubMed  CAS  Google Scholar 

  148. van Wijk F, Nierkens S, de Jong W, Wehrens EJ, Boon L, van Kooten P, Knippels LM, Pieters R (2007) The CD28/CTLA-4-B7 signaling pathway is involved in both allergic sensitization and tolerance induction to orally administered peanut proteins. J Immunol 178:6894–6900

    PubMed  Google Scholar 

  149. Ruiter B, Shreffler WG (2012) The role of dendritic cells in food allergy. J Allergy Clin Immunol 129:921–928

    PubMed  CAS  Google Scholar 

  150. Yang PC, Xing Z, Berin CM, Soderholm JD, Feng BS, Wu L, Yeh C (2007) TIM-4 expressed by mucosal dendritic cells plays a critical role in food antigen-specific Th2 differentiation and intestinal allergy. Gastroenterology 133:1522–1533

    PubMed  CAS  Google Scholar 

  151. Feng BS, Chen X, He SH, Zheng PY, Foster J, Xing Z, Bienenstock J, Yang PC (2008) Disruption of T-cell immunoglobulin and mucin domain molecule (TIM)-1/TIM4 interaction as a therapeutic strategy in a dendritic cell-induced peanut allergy model. J Allergy Clin Immunol 122(55–61):e1–e7

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert Ruiter.

Additional information

This article is published as part of the Special Issue on Food Allergy [34:6].

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ruiter, B., Shreffler, W.G. Innate immunostimulatory properties of allergens and their relevance to food allergy. Semin Immunopathol 34, 617–632 (2012). https://doi.org/10.1007/s00281-012-0334-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-012-0334-8

Keywords

  • Food allergy
  • Innate
  • Th2
  • Food
  • Respiratory
  • Allergen
  • Parasite
  • Helminth