Skip to main content

Advertisement

Log in

Two distinct lymphocyte homing systems involved in the pathogenesis of chronic inflammatory gastrointestinal diseases

  • Review Article
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Under normal and pathological conditions, lymphocyte migration into the gastrointestinal mucosa to form gut-associated lymphoid tissue is mediated by the L-selectin ligand peripheral lymph node addressin and the integrin α4β7 ligand mucosal addressin cell adhesion molecule 1 (MAdCAM-1) expressed on high endothelial venules (HEVs) and HEV-like vessels. In this review, we discuss these two distinct lymphocyte homing systems involved in the pathogenesis of chronic inflammatory gastrointestinal diseases with reference to our and others’ previously published works. We also describe a recently developed recombinant integrin α4β7 heterodimeric IgG chimera that can be used as an immunohistochemical reagent to stain functional MAdCAM-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Corr SC, Gahan CC, Hill C (2008) M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol Med Microbiol 52:2–12

    Article  PubMed  CAS  Google Scholar 

  2. Butcher EC, Picker LJ (1996) Lymphocyte homing and homeostasis. Science 572:60–66

    Article  Google Scholar 

  3. von Andrian UH, Mempel TR (2003) Homing and cellular traffic in lymph nodes. Nat Rev Immunol 3:867–878

    Article  Google Scholar 

  4. Rosen SD (2004) Ligands for L-selectin: homing, inflammation, and beyond. Annu Rev Immunol 22:129–156

    Article  PubMed  CAS  Google Scholar 

  5. Streeter PR, Rouse BT, Butcher EC (1988) Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes. J Cell Biol 107:1853–1862

    Article  PubMed  CAS  Google Scholar 

  6. Yeh JC, Hiraoka N, Petryniak B, Nakayama J, Ellies LG, Rabuka D, Hindsgaul O, Marth JD, Lowe JB, Fukuda M (2001) Novel sulfated lymphocyte homing receptors and their control by a core 1 extension β1,3-N-acetylglucosaminyltransferase. Cell 105:957–969

    Article  PubMed  CAS  Google Scholar 

  7. Hemmerich S, Leffler H, Rosen SD (1995) Structure of the O-glycans in GlyCAM-1, an endothelial-derived ligand for L-selectin. J Biol Chem 270:12035–12047

    Article  PubMed  CAS  Google Scholar 

  8. Streeter PR, Berg EL, Rouse BT, Bargatze RF, Butcher EC (1988) A tissue-specific endothelial cell molecule involved in lymphocyte homing. Nature 331:41–46

    Article  PubMed  CAS  Google Scholar 

  9. Bargatze RF, Jutila MA, Butcher EC (1995) Distinct roles of L-selectin and integrins α4β7 and LAF-1 in lymphocyte homing to Peyer’s patch-HEV in situ: the multistep model confirmed and refined. Immunity 3:99–108

    Article  PubMed  CAS  Google Scholar 

  10. Berlin C, Bargatze RF, Campbell JJ, von Andrian UH, Szabo MC, Hasslen SR, Nelson RD, Berg EL, Erlandsen SL, Butcher EC (1995) α4 integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell 80:413–422

    Article  PubMed  CAS  Google Scholar 

  11. Berlin C, Berg EL, Briskin MJ, Andrew DP, Kilshaw PJ, Holzmann B, Weissman IL, Hamann A, Butcher EC (1993) α4β7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 74:185–195

    Article  PubMed  CAS  Google Scholar 

  12. Berg EL, McEvoy LM, Berlin C, Bargatze RF, Butcher EC (1993) L-selectin-mediated lymphocyte rolling on MAdCAM-1. Nature 366:695–698

    Article  PubMed  CAS  Google Scholar 

  13. Aloisi F, Pujol-Borrell R (2006) Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 6:205–217

    Article  PubMed  CAS  Google Scholar 

  14. Renkonen J, Tynninen O, Hayry P, Paavonen T, Renkonen R (2002) Glycosylation might provide endothelial zip codes for organ-specific leukocyte traffic into inflammatory sites. Am J Pathol 161:543–550

    Article  PubMed  CAS  Google Scholar 

  15. van Dinther-Janssen AC, Pals ST, Scheper R, Breedveld F, Meijer CJ (1990) Dendritic cells and high endothelial venules in the rheumatoid synovial membrane. J Rheumatol 17:11–17

    PubMed  Google Scholar 

  16. Kabel PJ, Voorbij HA, de Haan-Meulman M, Pals ST, Drexhage HA (1989) High endothelial venules present in lymphoid cell accumulations in thyroids affected by autoimmune disease: a study in men and BB rats of functional activity and development. J Clin Endocrinol Metab 68:744–751

    Article  PubMed  CAS  Google Scholar 

  17. Dogan A, Du M, Koulis A, Briskin MJ, Isaacson PG (1997) Expression of lymphocyte homing receptors and vascular addressins in low-grade gastric B-cell lymphomas of mucosa-associated lymphoid tissue. Am J Pathol 151:1361–1369

    PubMed  CAS  Google Scholar 

  18. Kobayashi M, Mitoma J, Nakamura N, Katsuyama T, Nakayama J, Fukuda M (2004) Induction of peripheral lymph node addressin in human gastric mucosa infected by Helicobacter pylori. Proc Natl Acad Sci U S A 101:17807–17812

    Article  PubMed  CAS  Google Scholar 

  19. Salmi M, Granfors K, MacDermott R, Jalkanen S (1994) Aberrant binding of lamina propria lymphocytes to vascular endothelium in inflammatory bowel diseases. Gastroenterology 106:596–605

    PubMed  CAS  Google Scholar 

  20. Suzawa K, Kobayashi M, Sakai Y, Hoshino H, Watanabe M, Harada O, Ohtani H, Fukuda M, Nakayama J (2007) Preferential induction of peripheral lymph node addressin on high endothelial venule-like vessels in the active phase of ulcerative colitis. Am J Gastroenterol 102:1499–1509

    Article  PubMed  CAS  Google Scholar 

  21. Kobayashi M, Hoshino H, Masumoto J, Fukushima M, Suzawa K, Kageyama S, Suzuki M, Ohtani H, Fukuda M, Nakayama J (2009) GlcNAc6ST-1-mediated decoration of MAdCAM-1 protein with L-selectin ligand carbohydrates directs disease activity of ulcerative colitis. Inflamm Bowel Dis 15:697–706

    Article  PubMed  Google Scholar 

  22. Peek RM Jr, Blaser MJ (2002) Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer 2:28–37

    Article  PubMed  CAS  Google Scholar 

  23. Hidaka E, Ota H, Hidaka H, Hayama M, Matsuzawa K, Akamatsu T, Nakayama J, Katsuyama T (2001) Helicobacter pylori and two ultrastructurally distinct layers of gastric mucous cell mucins in the surface of mucous gel layer. Gut 49:474–480

    Article  PubMed  CAS  Google Scholar 

  24. Wotherspoon AC, Ortiz-Hidalgo C, Falzon MR, Isaacson PG (1991) Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet 338:1175–1176

    Article  PubMed  CAS  Google Scholar 

  25. Yuasa Y (2003) Control of gut differentiation and intestinal-type gastric carcinogenesis. Nat Rev Cancer 3:592–600

    Article  PubMed  CAS  Google Scholar 

  26. Nomura A, Stemmermann GN, Chyou PH, Kato I, Perez-Perez GI, Blaser MJ (1991) Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. N Engl J Med 325:1132–1136

    Article  PubMed  CAS  Google Scholar 

  27. Parsonnet J, Friedman GD, Vandersteen DP, Chang Y, Vogelman JH, Orentreich N, Sibley RK (1991) Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med 325:1127–1131

    Article  PubMed  CAS  Google Scholar 

  28. Higashi H, Tsutsumi R, Muto S, Sugiyama T, Azuma T, Asaka M, Hatakeyama M (2002) SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295:683–686

    Article  PubMed  CAS  Google Scholar 

  29. Duijvestijn AM, Horst E, Pals ST, Rouse BN, Steere AC, Picker LJ, Meijer CJ, Butcher EC (1988) High endothelial differentiation in human lymphoid and inflammatory tissues defined by monoclonal antibody HECA-452. Am J Pathol 130:147–155

    PubMed  CAS  Google Scholar 

  30. Kumamoto K, Mitsuoka C, Izawa M, Kimura N, Otsubo N, Ishida H, Kiso M, Yamada T, Hirohashi S, Kannagi R (1998) Specific detection of sialyl Lewis X determinant carried on the mucin GlcNAcβ1 → 6GalNAcα core structure as a tumor-associated antigen. Biochem Biophys Res Commun 247:514–517

    Article  PubMed  CAS  Google Scholar 

  31. Kobayashi M, Mitoma J, Hoshino H, Yu SY, Shimojo Y, Suzawa K, Khoo KH, Fukuda M, Nakayama J (2011) Prominent expression of sialyl Lewis X-capped core 2-branched O-glycans on high endothelial venules in gastric MALT lymphoma. J Pathol 224:67–77

    Article  PubMed  CAS  Google Scholar 

  32. Dixon MF, Genta RM, Yardley JH, Correa P (1996) Classification and grading of gastritis. The updated Sydney system. Am J Surg Pathol 20:1161–1181

    Article  PubMed  CAS  Google Scholar 

  33. Pablos JL, Santiago B, Tsay D, Singer MS, Palao G, Galindo M, Rosen SD (2005) A HEV-restricted sulfotransferase is expressed in rheumatoid arthritis synovium and is induced by lymphotoxin-α/β and TNF-α in cultured endothelial cells. BMC Immunol 6:6

    Article  PubMed  Google Scholar 

  34. Drayton DL, Ying X, Lee J, Lesslauer W, Ruddle NH (2003) Ectopic LTαβ directs lymphoid organ neogenesis with concomitant expression of peripheral node addressin and a HEV-restricted sulfotransferase. J Exp Med 197:1153–1163

    Article  PubMed  CAS  Google Scholar 

  35. Weninger W, Carlsen HS, Goodarzi MF, Crowley MA, Baekkevold ES, Cavanagh LL, von Andrian UH (2003) Naive T cell recruitment to nonlymphoid tissues: a role for endothelium-expressed CC chemokine ligand 21 in autoimmune disease and lymphoid neogenesis. J Immunol 170:4638–4648

    PubMed  CAS  Google Scholar 

  36. Manzo A, Bugatti S, Caporali R, Prevo R, Jackson DG, Uguccioni M, Buckley CD, Montecucco C, Pitzalis C (2007) CCL21 expression pattern of human secondary lymphoid organ stroma is conserved in inflammatory lesions with lymphoid neogenesis. Am J Pathol 171:1549–1562

    Article  PubMed  CAS  Google Scholar 

  37. Ohara H, Isomoto H, Wen CY, Ejima C, Murata M, Miyazaki M, Takeshima F, Mizuta Y, Murata I, Koji T, Nagura H, Kohno S (2003) Expression of mucosal addressin cell adhesion molecule 1 on vascular endothelium of gastric mucosa in patients with nodular gastritis. World J Gastroenterol 9:2701–2705

    PubMed  CAS  Google Scholar 

  38. Feagan BG, Greenberg GR, Wild G, Fedorak RN, Pare P, McDonald JW, Dube R, Cohen A, Steinhart AH, Landau S, Aguzzi RA, Fox IH, Vandervoort MK (2005) Treatment of ulcerative colitis with a humanized antibody to the α4β7 integrin. N Engl J Med 352:2499–2507

    Article  PubMed  CAS  Google Scholar 

  39. Hussell T, Isaacson PG, Crabtree JE, Spencer J (1993) The response of cells from low-grade B-cell gastric lymphomas of mucosa-associated lymphoid tissue to Helicobacter pylori. Lancet 342:571–574

    Article  PubMed  CAS  Google Scholar 

  40. Hussell T, Isaacson PG, Crabtree JE, Spencer J (1996) Helicobacter pylori-specific tumour-infiltrating T cells provide contact dependent help for the growth of malignant B cells in low-grade gastric lymphoma of mucosa-associated lymphoid tissue. J Pathol 178:122–127

    Article  PubMed  CAS  Google Scholar 

  41. Isaacson PG, Du MQ (2004) MALT lymphoma: from morphology to molecules. Nat Rev Cancer 4:644–653

    Article  PubMed  CAS  Google Scholar 

  42. Salmi M, Jalkanen S (1998) Endothelial ligands and homing of mucosal leukocytes in extraintestinal manifestations of IBD. Inflamm Bowel Dis 4:149–156

    Article  PubMed  CAS  Google Scholar 

  43. Schroeder KW, Tremaine WJ, Ilstrup DM (1987) Coated oral 5-aminosalicylic acid therapy for mildly to moderately active ulcerative colitis. A randomized study. N Engl J Med 317:1625–1629

    Article  PubMed  CAS  Google Scholar 

  44. Bibiloni R, Fedorak RN, Tannock GW, Madsen KL, Gionchetti P, Campieri M, De Simone C, Sartor RB (2005) VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis. Am J Gastroenterol 100:1539–1546

    Article  PubMed  Google Scholar 

  45. Briskin M, Winsor-Hines D, Shyjan A, Cochran N, Bloom S, Wilson J, McEvoy LM, Butcher EC, Kassam N, Mackay CR, Newman W, Ringler DJ (1997) Human mucosal addressin cell adhesion molecule-1 is preferentially expressed in intestinal tract and associated lymphoid tissue. Am J Pathol 151:97–110

    PubMed  CAS  Google Scholar 

  46. Souza HS, Elia CC, Spencer J, MacDonald TT (1999) Expression of lymphocyte–endothelial receptor-ligand pairs, α4β7/MAdCAM-1 and OX40/OX40 ligand in the colon and jejunum of patients with inflammatory bowel disease. Gut 45:856–863

    Article  PubMed  CAS  Google Scholar 

  47. Arihiro S, Ohtani H, Suzuki M, Murata M, Ejima C, Oki M, Kinouchi Y, Fukushima K, Sasaki I, Nakamura S, Matsumoto T, Torii A, Toda G, Nagura H (2002) Differential expression of mucosal addressin cell adhesion molecule-1 (MAdCAM-1) in ulcerative colitis and Crohn’s disease. Pathol Int 52:367–374

    Article  PubMed  CAS  Google Scholar 

  48. Uchimura K, Muramatsu H, Kaname T, Ogawa H, Yamakawa T, Fan QW, Mitsuoka C, Kannagi R, Habuchi O, Yokoyama I, Yamamura K, Ozaki T, Nakagawara A, Kadomatsu K, Muramatsu T (1998) Human N-acetylglucosamine-6-O-sulfotransferase involved in the biosynthesis of 6-sulfo sialyl Lewis X: molecular cloning, chromosomal mapping, and expression in various organs and tumor cells. J Biochem 124:670–678

    Article  PubMed  CAS  Google Scholar 

  49. Li X, Tedder TF (1999) CHST1 and CHST2 sulfotransferases expressed by human vascular endothelial cells: cDNA cloning, expression, and chromosomal localization. Genomics 55:345–347

    Article  PubMed  CAS  Google Scholar 

  50. Bistrup A, Bhakta S, Lee JK, Belov YY, Gunn MD, Zuo FR, Huang CC, Kannagi R, Rosen SD, Hemmerich S (1999) Sulfotransferases of two specificities function in the reconstitution of high endothelial cell ligands for L-selectin. J Cell Biol 145:899–910

    Article  PubMed  CAS  Google Scholar 

  51. Hiraoka N, Petryniak B, Nakayama J, Tsuboi S, Suzuki M, Yeh JC, Tanaka T, Miyasaka M, Lowe JB, Fukuda M (1999) A novel, high endothelial venule-specific sulfotransferase expresses 6-sulfo sialyl Lewis X, an L-selectin ligand displayed by CD34. Immunity 11:79–89

    Article  PubMed  CAS  Google Scholar 

  52. Kawashima H, Petryniak B, Hiraoka N, Mitoma J, Huckaby V, Nakayama J, Uchimura K, Kadomatsu K, Muramatsu T, Lowe JB, Fukuda M (2005) N-acetylglucosamine-6-O-sulfotransferase 1 and 2 cooperatively control lymphocyte homing through L-selectin ligand biosynthesis in high endothelial venules. Nat Immunol 6:1096–1104

    Article  PubMed  CAS  Google Scholar 

  53. Uchimura K, Gauguet JM, Singer MS, Tsay D, Kannagi R, Muramatsu T, von Andrian UH, Rosen SD (2005) A major class of L-selectin ligands is eliminated in mice deficient in two sulfotransferases expressed in high endothelial venules. Nat Immunol 6:1105–1113

    Article  PubMed  CAS  Google Scholar 

  54. Arata-Kawai H, Singer MS, Bistrup A, Zante A, Wang YQ, Ito Y, Bao X, Hemmerich S, Fukuda M, Rosen SD (2011) Functional contributions of N- and O-glycans to L-selectin ligands in murine and human lymphoid organs. Am J Pathol 178:423–433

    Article  PubMed  CAS  Google Scholar 

  55. Hirakawa J, Tsuboi K, Sato K, Kobayashi M, Watanabe S, Takakura A, Imai Y, Ito Y, Fukuda M, Kawashima H (2010) Novel anti-carbohydrate antibodies reveal the cooperative function of sulfated N- and O-glycans in lymphocyte homing. J Biol Chem 285:40864–40878

    Article  PubMed  CAS  Google Scholar 

  56. Mitoma J, Bao X, Petryniak B, Schaerli P, Gauguet JM, Yu SY, Kawashima H, Saito H, Ohtsubo K, Marth JD, Khoo KH, von Andrian UH, Lowe JB, Fukuda M (2007) Critical functions of N-glycans in L-selectin-mediated lymphocyte homing and recruitment. Nat Immunol 8:409–418

    Article  PubMed  CAS  Google Scholar 

  57. Gordon FH, Hamilton MI, Donoghue S, Greenlees C, Palmer T, Rowley-Jones D, Dhillon AP, Amlot PL, Pounder RE (2002) A pilot study of treatment of active ulcerative colitis with natalizumab, a humanized monoclonal antibody to α4 integrin. Aliment Pharmacol Ther 16:699–705

    Article  PubMed  CAS  Google Scholar 

  58. Ghosh S, Goldin E, Gordon FH, Malchow HA, Rask-Madsen J, Rutgeerts P, Vyhnalek P, Zadorova Z, Palmer T, Donoghue S (2003) Natalizumab for active Crohn’s disease. N Engl J Med 348:24–32

    Article  PubMed  CAS  Google Scholar 

  59. Soler D, Chapman T, Yang LL, Wyant T, Egan R, Fedyk ER (2009) The binding specificity and selective antagonism of vedolizumab, and anti-α4β7 integrin therapeutic antibody in development for inflammatory bowel diseases. J Pharmacol Exp Ther 330:864–875

    Article  PubMed  CAS  Google Scholar 

  60. Rutgeerts P, Vermeire S, Van Assche G (2009) Biological therapies for inflammatory bowel diseases. Gastroenterology 136:1182–1197

    Article  PubMed  CAS  Google Scholar 

  61. Aarden L, Ruuls SR, Wolbink G (2008) Immunogenicity of anti-tumor necrosis factor antibodies: toward improved methods of anti-antibody measurement. Curr Opin Immunol 20:431–435

    Article  PubMed  CAS  Google Scholar 

  62. Nechansky A (2010) HAHA, nothing to laugh about: measuring the immunogenicity (human anti-human antibody response) induced by humanized monoclonal antibodies applying ELISA and SPR technology. J Pharm Biomed Anal 51:252–254

    Article  PubMed  CAS  Google Scholar 

  63. Hoshino H, Kobayashi M, Mitoma J, Sato Y, Fukuda M, Nakayama J (2011) An integrin α4β7⋅IgG heterodimeric chimera binds to MAdCAM-1 on high endothelial venules in gut-associated lymphoid tissue. J Histochem Cytochem 59:572–583

    Article  PubMed  CAS  Google Scholar 

  64. Stephens PE, Ortlepp S, Perkins VC, Robinson MK, Kirby H (2000) Expression of a soluble functional form of the integrin α4β1 in mammalian cells. Cell Adhes Commun 7:377–390

    Article  PubMed  CAS  Google Scholar 

  65. Stamper HB Jr, Woodruff JJ (1976) Lymphocyte homing into lymph nodes: in vitro demonstration of the selective affinity of recirculating lymphocytes for high-endothelial venules. J Exp Med 144:828–833

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the members of the Fukudas’ and Nakayama’s laboratories for their critical contribution to the studies and useful discussion. We also thank Dr. Elise Lamar for critical reading of the manuscript. The work reviewed from our laboratories has been supported by Grants-in-Aid for Young Scientist B-18790240, B-20790278, and B-22790343 (to M.K.), for Scientific Research on Priority Area 14082201 (to J.N) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, Grant-in-Aid for Scientific Research B-18390113 and B-21390104 from the Japan Society for the Promotion of Science (to J.N.), and Grants RO1 CA48737 and CA33000 and PO1 CA71932 from the National Institutes of Health (to M.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Fukuda.

Additional information

This article is published as part of the Special Issue on Glycosylation and Immunity [34:3].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, M., Hoshino, H., Suzawa, K. et al. Two distinct lymphocyte homing systems involved in the pathogenesis of chronic inflammatory gastrointestinal diseases. Semin Immunopathol 34, 401–413 (2012). https://doi.org/10.1007/s00281-012-0302-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-012-0302-3

Keywords

Navigation