Seminars in Immunopathology

, 33:535 | Cite as

Death and inflammation following somatic cell transplantation



The fields of regenerative medicine and cellular therapy have been the subject of tremendous hype and hope. In particular, the perceived usage of somatic cells like mesenchymal stromal stem cells (MSCs) has captured the imagination of many. Clinical trials are currently evaluating the therapeutic efficacy of MSCs in disorders ranging from heart disease to pediatric graft-vs-host disease; however, numerous questions still remain regarding mechanism of action, effective dose, and whether these cells can be used in the allogeneic setting. One of the major issues surrounding the development of somatic cell therapies like MSCs is that despite evoking a positive response, long-term engraftment and persistence of these cells is rare. Consequently, very large cell doses need be administered raising production, delivery, and efficacy issues. In this review, we will discuss causes for this lack of persistence and highlight some of the methodologies be used to enhance cell survival post-transplantation.


Programmed cell death Apoptosis Anoikis necrosis Mesenchymal stem cell Somatic cell Transplantation 


  1. 1.
    Axis Research Mind (2010) Stem cells market and technologiesGoogle Scholar
  2. 2.
    Devine SM et al (2003) Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood 101(8):2999–3001PubMedCrossRefGoogle Scholar
  3. 3.
    Chute JP (2006) Stem cell homing. Curr Opin Hematol 13(6):399–406PubMedCrossRefGoogle Scholar
  4. 4.
    Golias C et al (2007) Review. Leukocyte and endothelial cell adhesion molecules in inflammation focusing on inflammatory heart disease. In Vivo 21(5):757–769PubMedGoogle Scholar
  5. 5.
    Weber C (2003) Novel mechanistic concepts for the control of leukocyte transmigration: specialization of integrins, chemokines, and junctional molecules. J Mol Med 81(1):4–19PubMedGoogle Scholar
  6. 6.
    Karp JM, Leng Teo GS (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4(3):206–216PubMedCrossRefGoogle Scholar
  7. 7.
    Huang NF et al (2010) Embryonic stem cell-derived endothelial cells engraft into the ischemic hindlimb and restore perfusion. Arterioscler Thromb Vasc Biol 30(5):984–991PubMedCrossRefGoogle Scholar
  8. 8.
    Freas W et al (1989) Contractile properties of isolated vascular smooth muscle after photoradiation. Am J Physiol 256(3 Pt 2):H655–H664PubMedGoogle Scholar
  9. 9.
    Hudson W et al (2007) Beating and arrested intramyocardial injections are associated with significant mechanical loss: implications for cardiac cell transplantation. J Surg Res 142(2):263–267PubMedCrossRefGoogle Scholar
  10. 10.
  11. 11.
    Friedenstein AJ et al (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2(2):83–92PubMedGoogle Scholar
  12. 12.
    Pittenger MF et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147PubMedCrossRefGoogle Scholar
  13. 13.
    Caplan AI (2009) Why are MSCs therapeutic? New data: new insight. J Pathol 217(2):318–324PubMedCrossRefGoogle Scholar
  14. 14.
    Crisan M et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313PubMedCrossRefGoogle Scholar
  15. 15.
    Kinnaird T et al (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94(5):678–685PubMedCrossRefGoogle Scholar
  16. 16.
    Shi Y et al (2010) Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res 20(5):510–518PubMedCrossRefGoogle Scholar
  17. 17.
    Chamberlain G et al (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11):2739–2749PubMedCrossRefGoogle Scholar
  18. 18.
    Horwitz EM et al (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5(3):309–313PubMedCrossRefGoogle Scholar
  19. 19.
    Awaya N et al (2002) Failure of adult marrow-derived stem cells to generate marrow stroma after successful hematopoietic stem cell transplantation. Exp Hematol 30(8):937–942PubMedCrossRefGoogle Scholar
  20. 20.
    Pettigrew CA, Cotter TG (2009) Deregulation of cell death (apoptosis): implications for tumor development. Discov Med 8(41):61–63PubMedGoogle Scholar
  21. 21.
    Fiers W et al (1999) More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18(54):7719–7730PubMedCrossRefGoogle Scholar
  22. 22.
    Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257PubMedCrossRefGoogle Scholar
  23. 23.
    Galluzzi L et al (2007) Cell death modalities: classification and pathophysiological implications. Cell Death Differ 14(7):1237–1243PubMedCrossRefGoogle Scholar
  24. 24.
    Igney FH, Krammer PH (2002) Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2(4):277–288PubMedCrossRefGoogle Scholar
  25. 25.
    Atkinson EA, Bleackley RC (1995) Mechanisms of lysis by cytotoxic T cells. Crit Rev Immunol 15(3–4):359–384PubMedGoogle Scholar
  26. 26.
    Grossmann J (2002) Molecular mechanisms of “detachment-induced apoptosis—Anoikis”. Apoptosis 7(3):247–260PubMedCrossRefGoogle Scholar
  27. 27.
    Vicencio JM et al (2008) Senescence, apoptosis or autophagy? When a damaged cell must decide its path—a mini-review. Gerontology 54(2):92–99PubMedCrossRefGoogle Scholar
  28. 28.
    Fullard JF, Kale A, Baker NE (2009) Clearance of apoptotic corpses. Apoptosis 14(8):1029–1037PubMedCrossRefGoogle Scholar
  29. 29.
    Frisch SM, Francis H (1994) Disruption of epithelial cell–matrix interactions induces apoptosis. J Cell Biol 124(4):619–626PubMedCrossRefGoogle Scholar
  30. 30.
    Meredith JE Jr, Fazeli B, Schwartz MA (1993) The extracellular matrix as a cell survival factor. Mol Biol Cell 4(9):953–961PubMedGoogle Scholar
  31. 31.
    Zvibel I, Smets F, Soriano H (2002) Anoikis: roadblock to cell transplantation? Cell Transplant 11(7):621–630PubMedGoogle Scholar
  32. 32.
    Guerette B et al (1997) Prevention by anti-LFA-1 of acute myoblast death following transplantation. J Immunol 159(5):2522–2531PubMedGoogle Scholar
  33. 33.
    Song H et al (2010) Reactive oxygen species inhibit adhesion of mesenchymal stem cells implanted into ischemic myocardium via interference of focal adhesion complex. Stem Cells 28(3):555–563PubMedGoogle Scholar
  34. 34.
    Matter ML, Ruoslahti E (2001) A signaling pathway from the alpha5beta1 and alpha(v)beta3 integrins that elevates bcl-2 transcription. J Biol Chem 276(30):27757–27763PubMedCrossRefGoogle Scholar
  35. 35.
    Stupack DG et al (2001) Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J Cell Biol 155(3):459–470PubMedCrossRefGoogle Scholar
  36. 36.
    Mailleux AA et al (2007) BIM regulates apoptosis during mammary ductal morphogenesis, and its absence reveals alternative cell death mechanisms. Dev Cell 12(2):221–234PubMedCrossRefGoogle Scholar
  37. 37.
    Fox JM et al (2007) Recent advances into the understanding of mesenchymal stem cell trafficking. Br J Haematol 137(6):491–502PubMedCrossRefGoogle Scholar
  38. 38.
    Jung Y et al (2005) Cell-to-cell contact is critical for the survival of hematopoietic progenitor cells on osteoblasts. Cytokine 32(3–4):155–162PubMedCrossRefGoogle Scholar
  39. 39.
    Halfon S et al (2010) Markers distinguishing mesenchymal stem cells from fibroblasts are downregulated with passaging. Stem Cells Dev 20:53–66PubMedCrossRefGoogle Scholar
  40. 40.
    Harburger DS, Calderwood DA (2009) Integrin signalling at a glance. J Cell Sci 122(Pt 2):159–163PubMedCrossRefGoogle Scholar
  41. 41.
    Chiarugi P, Giannoni E (2008) Anoikis: a necessary death program for anchorage-dependent cells. Biochem Pharmacol 76(11):1352–1364PubMedCrossRefGoogle Scholar
  42. 42.
    Giancotti FG (2000) Complexity and specificity of integrin signalling. Nat Cell Biol 2(1):E13–E14PubMedCrossRefGoogle Scholar
  43. 43.
    Docheva D et al (2007) Human mesenchymal stem cells in contact with their environment: surface characteristics and the integrin system. J Cell Mol Med 11(1):21–38PubMedCrossRefGoogle Scholar
  44. 44.
    Semon JA et al (2010) Integrin expression and integrin-mediated adhesion in vitro of human multipotent stromal cells (MSCs) to endothelial cells from various blood vessels. Cell Tissue Res 341(1):147–158PubMedCrossRefGoogle Scholar
  45. 45.
    Ip JE et al (2007) Mesenchymal stem cells use integrin beta1 not CXC chemokine receptor 4 for myocardial migration and engraftment. Mol Biol Cell 18(8):2873–2882PubMedCrossRefGoogle Scholar
  46. 46.
    Kumar S, Ponnazhagan S (2007) Bone homing of mesenchymal stem cells by ectopic alpha 4 integrin expression. FASEB J 21(14):3917–3927PubMedCrossRefGoogle Scholar
  47. 47.
    Angst BD, Marcozzi C, Magee AI (2001) The cadherin superfamily: diversity in form and function. J Cell Sci 114(Pt 4):629–641PubMedGoogle Scholar
  48. 48.
    Christofori G, Semb H (1999) The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends Biochem Sci 24(2):73–76PubMedCrossRefGoogle Scholar
  49. 49.
    Bergin E et al (2000) Mouse proximal tubular cell–cell adhesion inhibits apoptosis by a cadherin-dependent mechanism. Am J Physiol Ren Physiol 278(5):F758–F768Google Scholar
  50. 50.
    Lugo-Martinez VH et al (2009) Epidermal growth factor receptor is involved in enterocyte anoikis through the dismantling of E-cadherin-mediated junctions. Am J Physiol Gastrointest Liver Physiol 296(2):G235–G244PubMedCrossRefGoogle Scholar
  51. 51.
    Obara H, Harasawa R (2010) Nitric oxide causes anoikis through attenuation of E-cadherin and activation of caspase-3 in human gastric carcinoma AZ-521 cells infected with Mycoplasma hyorhinis. J Vet Med Sci 72(7):869–874PubMedCrossRefGoogle Scholar
  52. 52.
    Hosokawa K et al (2010) Knockdown of N-cadherin suppresses the long-term engraftment of hematopoietic stem cells. Blood 116(4):554–563PubMedCrossRefGoogle Scholar
  53. 53.
    Karabekian Z et al (2009) Effects of N-cadherin overexpression on the adhesion properties of embryonic stem cells. Cell Adh Migr 3(3):305–310PubMedCrossRefGoogle Scholar
  54. 54.
    Wein F et al (2010) N-cadherin is expressed on human hematopoietic progenitor cells and mediates interaction with human mesenchymal stromal cells. Stem Cell Res 4(2):129–139PubMedCrossRefGoogle Scholar
  55. 55.
    Kim I, Yilmaz OH, Morrison SJ (2005) CD144 (VE-cadherin) is transiently expressed by fetal liver hematopoietic stem cells. Blood 106(3):903–905PubMedCrossRefGoogle Scholar
  56. 56.
    Kii I et al (2004) Cell–cell interaction mediated by cadherin-11 directly regulates the differentiation of mesenchymal cells into the cells of the osteo-lineage and the chondro-lineage. J Bone Miner Res 19(11):1840–1849PubMedCrossRefGoogle Scholar
  57. 57.
    Michel JB (2003) Anoikis in the cardiovascular system: known and unknown extracellular mediators. Arterioscler Thromb Vasc Biol 23(12):2146–2154PubMedCrossRefGoogle Scholar
  58. 58.
    Klein G et al (1995) Perlecan in human bone marrow: a growth-factor-presenting, but anti-adhesive, extracellular matrix component for hematopoietic cells. Matrix Biol 14(6):457–465PubMedCrossRefGoogle Scholar
  59. 59.
    Asakura S et al (1992) Inhibition of cell adhesion by high molecular weight kininogen. J Cell Biol 116(2):465–476PubMedCrossRefGoogle Scholar
  60. 60.
    Copland IB et al (2008) Improved autograft survival of MSCs by PAI-1 inhibition. Stem Cells Feb;27(2):467-77Google Scholar
  61. 61.
    Migliaccio E et al (1997) Opposite effects of the p52shc/p46shc and p66shc splicing isoforms on the EGF receptor-MAP kinase-fos signalling pathway. EMBO J 16(4):706–716PubMedCrossRefGoogle Scholar
  62. 62.
    Natalicchio A et al (2004) Role of the p66Shc isoform in insulin-like growth factor I receptor signaling through MEK/Erk and regulation of actin cytoskeleton in rat myoblasts. J Biol Chem 279(42):43900–43909PubMedCrossRefGoogle Scholar
  63. 63.
    Gottlieb RA, Mentzer RM (2010) Autophagy during cardiac stress: joys and frustrations of autophagy. Annu Rev Physiol 72:45–59PubMedCrossRefGoogle Scholar
  64. 64.
    Mylotte LA et al (2008) Metabolic flexibility permits mesenchymal stem cell survival in an ischemic environment. Stem Cells 26(5):1325–1336PubMedCrossRefGoogle Scholar
  65. 65.
    Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9(12):1004–1010PubMedCrossRefGoogle Scholar
  66. 66.
    Challa S, Chan FK (2010) Going up in flames: necrotic cell injury and inflammatory diseases. Cell Mol Life Sci 67(19):3241–3253PubMedCrossRefGoogle Scholar
  67. 67.
    Christofferson DE, Yuan J (2010) Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol 22(2):263–268PubMedCrossRefGoogle Scholar
  68. 68.
    Leist M, Jaattela M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2(8):589–598PubMedCrossRefGoogle Scholar
  69. 69.
    Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81(1):1–5PubMedCrossRefGoogle Scholar
  70. 70.
    Li M et al (2001) An essential role of the NF-kappa B/Toll-like receptor pathway in induction of inflammatory and tissue-repair gene expression by necrotic cells. J Immunol 166(12):7128–7135PubMedGoogle Scholar
  71. 71.
    Ohashi K et al (2000) Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164(2):558–561PubMedGoogle Scholar
  72. 72.
    Oppenheim JJ, Yang D (2005) Alarmins: chemotactic activators of immune responses. Curr Opin Immunol 17(4):359–365PubMedCrossRefGoogle Scholar
  73. 73.
    Yu M et al (2006) HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock 26(2):174–179PubMedCrossRefGoogle Scholar
  74. 74.
    Elkon KB (2007) IL-1alpha responds to necrotic cell death. Nat Med 13(7):778–780PubMedCrossRefGoogle Scholar
  75. 75.
    Eigenbrod T et al (2008) Cutting edge: critical role for mesothelial cells in necrosis-induced inflammation through the recognition of IL-1 alpha released from dying cells. J Immunol 181(12):8194–8198PubMedGoogle Scholar
  76. 76.
    Yang H et al (2010) Programmed necrosis induced by asbestos in human mesothelial cells causes high-mobility group box 1 protein release and resultant inflammation. Proc Natl Acad Sci USA 107(28):12611–12616PubMedCrossRefGoogle Scholar
  77. 77.
    Lim SY et al (2006) The effects of mesenchymal stem cells transduced with Akt in a porcine myocardial infarction model. Cardiovasc Res 70(3):530–542PubMedCrossRefGoogle Scholar
  78. 78.
    Li W et al (2007) Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 25(8):2118–2127PubMedCrossRefGoogle Scholar
  79. 79.
    Tang YL et al (2005) Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J Am Coll Cardiol 46(7):1339–1350PubMedCrossRefGoogle Scholar
  80. 80.
    Song SW et al (2009) Integrin-linked kinase is required in hypoxic mesenchymal stem cells for strengthening cell adhesion to ischemic myocardium. Stem Cells 27(6):1358–1365PubMedCrossRefGoogle Scholar
  81. 81.
    Liu XB et al (2008) Angiopoietin-1 protects mesenchymal stem cells against serum deprivation and hypoxia-induced apoptosis through the PI3K/Akt pathway. Acta Pharmacol Sin 29(7):815–822PubMedCrossRefGoogle Scholar
  82. 82.
    Bouchentouf M et al (2007) Induction of Anoikis following myoblast transplantation into SCID mouse muscles requires the Bit1 and FADD pathways. Am J Transplant 7(6):1491–1505PubMedCrossRefGoogle Scholar
  83. 83.
    Akimov SS et al (2000) Tissue transglutaminase is an integrin-binding adhesion coreceptor for fibronectin. J Cell Biol 148(4):825–838PubMedCrossRefGoogle Scholar
  84. 84.
    Song H et al (2007) Tissue transglutaminase is essential for integrin-mediated survival of bone marrow-derived mesenchymal stem cells. Stem Cells 25(6):1431–1438PubMedCrossRefGoogle Scholar
  85. 85.
    Warstat K et al (2010) TGF-beta enhances the integrin alpha2beta1-mediated attachment of mesenchymal stem cells to type I collagen. Stem Cells Dev 19(5):645–656PubMedCrossRefGoogle Scholar
  86. 86.
    Sackstein R et al (2008) Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med 14(2):181–187PubMedCrossRefGoogle Scholar
  87. 87.
    Lee RJ et al (2007) Antibody targeting of stem cells to infarcted myocardium. Stem Cells 25(3):712–717PubMedCrossRefGoogle Scholar
  88. 88.
    Zhao TC et al (2008) Targeting human CD34+ hematopoietic stem cells with anti-CD45 x anti-myosin light-chain bispecific antibody preserves cardiac function in myocardial infarction. J Appl Physiol 104(6):1793–1800PubMedCrossRefGoogle Scholar
  89. 89.
    Wang RN, Rosenberg L (1999) Maintenance of beta-cell function and survival following islet isolation requires re-establishment of the islet-matrix relationship. J Endocrinol 163(2):181–190PubMedCrossRefGoogle Scholar
  90. 90.
    Taylor DA (2009) From stem cells and cadaveric matrix to engineered organs. Curr Opin Biotechnol 20(5):598–605PubMedCrossRefGoogle Scholar
  91. 91.
    Coutu DL et al (2011) Hierarchical scaffold design for mesenchymal stem cell-based gene therapy of hemophilia B. Biomaterials 32(1):295–305PubMedCrossRefGoogle Scholar
  92. 92.
    Miyahara Y et al (2006) Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12(4):459–465PubMedCrossRefGoogle Scholar
  93. 93.
    Coutu DL, Yousefi AM, Galipeau J (2009) Three-dimensional porous scaffolds at the crossroads of tissue engineering and cell-based gene therapy. J Cell Biochem 108(3):537–546PubMedCrossRefGoogle Scholar
  94. 94.
    Engler AJ et al (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689PubMedCrossRefGoogle Scholar
  95. 95.
    McBeath R et al (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6(4):483–495PubMedCrossRefGoogle Scholar
  96. 96.
    Rosova I et al (2008) Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells 26(8):2173–2182PubMedCrossRefGoogle Scholar
  97. 97.
    Wang JA et al (2008) Hypoxic preconditioning attenuates hypoxia/reoxygenation-induced apoptosis in mesenchymal stem cells. Acta Pharmacol Sin 29(1):74–82PubMedCrossRefGoogle Scholar
  98. 98.
    Leroux L et al (2010) Hypoxia preconditioned mesenchymal stem cells improve vascular and skeletal muscle fiber regeneration after ischemia through a Wnt4-dependent pathway. Mol Ther 18(8):1545–1552PubMedCrossRefGoogle Scholar
  99. 99.
    Rasmussen JG et al (2010) Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells. Cytotherapy 13:318–328PubMedCrossRefGoogle Scholar
  100. 100.
    Hung SC et al (2007) Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. PLoS ONE 2(5):e416PubMedCrossRefGoogle Scholar
  101. 101.
    Liu H et al (2010) Hypoxic preconditioning advances CXCR4 and CXCR7 expression by activating HIF-1alpha in MSCs. Biochem Biophys Res Commun 401(4):509–515PubMedCrossRefGoogle Scholar
  102. 102.
    Kim HW et al (2009) Ischemic preconditioning augments survival of stem cells via miR-210 expression by targeting caspase-8-associated protein 2. J Biol Chem 284(48):33161–33168PubMedCrossRefGoogle Scholar
  103. 103.
    Crisostomo PR et al (2008) Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B- but not JNK-dependent mechanism. Am J Physiol Cell Physiol 294(3):C675–C682PubMedCrossRefGoogle Scholar
  104. 104.
    Zhang D et al (2010) Zinc supplementation results in improved therapeutic potential of bone marrow-derived mesenchymal stromal cells in a mouse ischemic limb model. Cytotherapy 13:156–164PubMedCrossRefGoogle Scholar
  105. 105.
    Suzuki Y et al (2010) Diazoxide potentiates mesenchymal stem cell survival via NF-kappaB-dependent miR-146a expression by targeting Fas. Am J Physiol Heart Circ Physiol 299(4):H1077–H1082PubMedCrossRefGoogle Scholar
  106. 106.
    Chen J et al (2008) Lysophosphatidic acid protects mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis. Stem Cells 26(1):135–145PubMedCrossRefGoogle Scholar
  107. 107.
    Danielyan L et al (2009) Survival, neuron-like differentiation and functionality of mesenchymal stem cells in neurotoxic environment: the critical role of erythropoietin. Cell Death Differ 16(12):1599–1614PubMedCrossRefGoogle Scholar
  108. 108.
    Hou X et al (2010) Erythropoietin augments the efficacy of therapeutic angiogenesis induced by allogenic bone marrow stromal cells in a rat model of limb ischemia. Mol Biol Rep 37(3):1467–1475PubMedCrossRefGoogle Scholar
  109. 109.
    Zhang D et al (2007) Erythropoietin enhances the angiogenic potency of autologous bone marrow stromal cells in a rat model of myocardial infarction. Cardiology 108(4):228–236PubMedCrossRefGoogle Scholar
  110. 110.
    Kucic T et al (2008) Mesenchymal stromal cells genetically engineered to overexpress IGF-I enhance cell-based gene therapy of renal failure-induced anemia. Am J Physiol Ren Physiol 295(2):F488–F496CrossRefGoogle Scholar
  111. 111.
    Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822PubMedCrossRefGoogle Scholar
  112. 112.
    Fibbe WE, Nauta AJ, Roelofs H (2007) Modulation of immune responses by mesenchymal stem cells. Ann NY Acad Sci 1106:272–278PubMedCrossRefGoogle Scholar
  113. 113.
    Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110(10):3499–3506PubMedCrossRefGoogle Scholar
  114. 114.
    Singer NG, Caplan AI (2010) Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol 6:457–478CrossRefGoogle Scholar
  115. 115.
    Gur-Wahnon D et al (2007) Contact-dependent induction of regulatory antigen-presenting cells by human mesenchymal stem cells is mediated via STAT3 signaling. Exp Hematol 35(3):426–433PubMedCrossRefGoogle Scholar
  116. 116.
    Le Blanc K et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371(9624):1579–1586PubMedCrossRefGoogle Scholar
  117. 117.
    Le Blanc K et al (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363(9419):1439–1441PubMedCrossRefGoogle Scholar
  118. 118.
    Garcia-Bosch O, Ricart E, Panes J (2010) Review article: stem cell therapies for inflammatory bowel disease—efficacy and safety. Aliment Pharmacol Ther 32(8):939–952PubMedCrossRefGoogle Scholar
  119. 119.
    Mei SH et al (2010) Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med 182(8):1047–1057PubMedCrossRefGoogle Scholar
  120. 120.
    Rafei M et al (2009) Mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting CD4 Th17 T cells in a CC chemokine ligand 2-dependent manner. J Immunol 182(10):5994–6002PubMedCrossRefGoogle Scholar
  121. 121.
    Mao F et al (2010) Immunosuppressive effects of mesenchymal stem cells in collagen-induced mouse arthritis. Inflamm Res 59(3):219–225PubMedCrossRefGoogle Scholar
  122. 122.
    Psaltis PJ et al (2008) Concise review: mesenchymal stromal cells: potential for cardiovascular repair. Stem Cells 26(9):2201–2210PubMedCrossRefGoogle Scholar
  123. 123.
    Romieu-Mourez R et al (2009) Cytokine modulation of TLR expression and activation in mesenchymal stromal cells leads to a proinflammatory phenotype. J Immunol 182(12):7963–7973PubMedCrossRefGoogle Scholar
  124. 124.
    Waterman RS et al (2010) A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS ONE 5(4):e10088PubMedCrossRefGoogle Scholar
  125. 125.
    Elliott MR et al (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461(7261):282–286PubMedCrossRefGoogle Scholar
  126. 126.
    Lauber K et al (2003) Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113(6):717–730PubMedCrossRefGoogle Scholar
  127. 127.
    Savill J, Fadok V (2000) Corpse clearance defines the meaning of cell death. Nature 407(6805):784–788PubMedCrossRefGoogle Scholar
  128. 128.
    Vieira OV, Botelho RJ, Grinstein S (2002) Phagosome maturation: aging gracefully. Biochem J 366(Pt 3):689–704PubMedGoogle Scholar
  129. 129.
    Voll RE et al (1997) Immunosuppressive effects of apoptotic cells. Nature 390(6658):350–351PubMedCrossRefGoogle Scholar
  130. 130.
    Fadok VA et al (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101(4):890–898PubMedCrossRefGoogle Scholar
  131. 131.
    Huynh ML, Fadok VA, Henson PM (2002) Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Invest 109(1):41–50PubMedGoogle Scholar
  132. 132.
    Grinnemo KH et al (2008) Immunogenicity of human embryonic stem cells. Cell Tissue Res 331(1):67–78PubMedCrossRefGoogle Scholar
  133. 133.
    Ito N, Hirota T (1992) Histochemical and cytochemical localization of blood group antigens. Prog Histochem Cytochem 25(2):1–85PubMedGoogle Scholar
  134. 134.
    Bradley JA, Bolton EM, Pedersen RA (2002) Stem cell medicine encounters the immune system. Nat Rev Immunol 2(11):859–871PubMedCrossRefGoogle Scholar
  135. 135.
    Francois M et al (2009) Mesenchymal stromal cells cross-present soluble exogenous antigens as part of their antigen-presenting cell properties. Blood 114(13):2632–2638PubMedGoogle Scholar
  136. 136.
    Dierselhuis M, Goulmy E (2009) The relevance of minor histocompatibility antigens in solid organ transplantation. Curr Opin Organ Transplant 14(4):419–425PubMedCrossRefGoogle Scholar
  137. 137.
    Javazon EH, Beggs KJ, Flake AW (2004) Mesenchymal stem cells: paradoxes of passaging. Exp Hematol 32(5):414–425PubMedCrossRefGoogle Scholar
  138. 138.
    Atoui R, Shum-Tim D, Chiu RC (2008) Myocardial regenerative therapy: immunologic basis for the potential “universal donor cells”. Ann Thorac Surg 86(1):327–334PubMedCrossRefGoogle Scholar
  139. 139.
    Eliopoulos N et al (2005) Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood 106(13):4057–4065PubMedCrossRefGoogle Scholar
  140. 140.
    Poncelet AJ et al (2007) Although pig allogeneic mesenchymal stem cells are not immunogenic in vitro, intracardiac injection elicits an immune response in vivo. Transplantation 83(6):783–790PubMedCrossRefGoogle Scholar
  141. 141.
    Stagg J et al (2006) Interferon-gamma-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood 107(6):2570–2577PubMedCrossRefGoogle Scholar
  142. 142.
    Romieu-Mourez R et al (2007) Regulation of MHC class II expression and antigen processing in murine and human mesenchymal stromal cells by IFN-gamma, TGF-beta, and cell density. J Immunol 179(3):1549–1558PubMedGoogle Scholar
  143. 143.
    Brunner T et al (2003) Fas (CD95/Apo-1) ligand regulation in T cell homeostasis, cell-mediated cytotoxicity and immune pathology. Semin Immunol 15(3):167–176PubMedCrossRefGoogle Scholar
  144. 144.
    Pardo J et al (2004) Apoptotic pathways are selectively activated by granzyme A and/or granzyme B in CTL-mediated target cell lysis. J Cell Biol 167(3):457–468PubMedCrossRefGoogle Scholar
  145. 145.
    Martinvalet D, Zhu P, Lieberman J (2005) Granzyme A induces caspase-independent mitochondrial damage, a required first step for apoptosis. Immunity 22(3):355–370PubMedCrossRefGoogle Scholar
  146. 146.
    Mackensen A et al (2000) Presence of IgE antibodies to bovine serum albumin in a patient developing anaphylaxis after vaccination with human peptide-pulsed dendritic cells. Cancer Immunol Immunother 49(3):152–156PubMedCrossRefGoogle Scholar
  147. 147.
    Selvaggi TA, Walker RE, Fleisher TA (1997) Development of antibodies to fetal calf serum with Arthus-like reactions in human immunodeficiency virus-infected patients given syngeneic lymphocyte infusions. Blood 89(3):776–779PubMedGoogle Scholar
  148. 148.
    Spees JL et al (2004) Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy. Mol Ther 9(5):747–756PubMedCrossRefGoogle Scholar
  149. 149.
    Shrimpton RE et al (2009) CD205 (DEC-205): a recognition receptor for apoptotic and necrotic self. Mol Immunol 46(6):1229–1239PubMedCrossRefGoogle Scholar
  150. 150.
    Kuznetsov SA, Mankani MH, Robey PG (2000) Effect of serum on human bone marrow stromal cells: ex vivo expansion and in vivo bone formation. Transplantation 70(12):1780–1787PubMedCrossRefGoogle Scholar
  151. 151.
    Tarte K et al (2010) Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood 115(8):1549–1553PubMedCrossRefGoogle Scholar
  152. 152.
    Bieback K et al (2009) Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem Cells 27(9):2331–2341PubMedCrossRefGoogle Scholar
  153. 153.
    Schallmoser K et al (2007) Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells. Transfusion 47(8):1436–1446PubMedCrossRefGoogle Scholar
  154. 154.
    Lange C et al (2007) Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine. J Cell Physiol 213(1):18–26PubMedCrossRefGoogle Scholar
  155. 155.
    Bernardo ME et al (2007) Optimization of in vitro expansion of human multipotent mesenchymal stromal cells for cell-therapy approaches: further insights in the search for a fetal calf serum substitute. J Cell Physiol 211(1):121–130PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Hematology and Medical OncologyEmory UniversityAtlantaUSA
  2. 2.School of MedicineEmory UniversityAtlantaUSA
  3. 3.Department of PediatricsEmory UniversityAtlantaUSA
  4. 4.Winship Cancer InstituteAtlantaUSA

Personalised recommendations