Seminars in Immunopathology

, 33:519 | Cite as

Stem cell sources for regenerative medicine: the immunological point of view

Review

Abstract

Stem cell transplantation consists in the introduction of stem cells or derived products in a diseased organism. Because of the differentiation properties of stem cells, the goal is to replace damaged cells or tissues. Numbers of stem cell were identified and isolated from embryos, fetuses, or adult organs, harboring different properties, and thus providing multiple strategies of regenerative medicine for different diseases. More recently, the artificial induction of stemness properties in adult somatic cells has proposed a new way to generate stem cells. One important concern of stem cell therapy is the possible risk that transplanted stem cells could be rejected by the recipient's immune system. Depending on their source, stem cell transplantation is associated with diverse immunological situations. If some sources allow autologous transplantation, others cannot bypass an allogeneic context between the donor and the recipient. This review summarizes all of the stem cell sources for regenerative medicine and the immunological questions associated to their use. Regarding the emerging strategies compatible with autologous transplantation, this article points notably the complexity of the choice between the immunological safety and the specific advantages of allogeneic stem cells.

Keywords

Stem cell transplantation Immune rejection Pluripotent stem cells Adult stem cells Induced pluripotent stem cells 

References

  1. 1.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147PubMedCrossRefGoogle Scholar
  2. 2.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. doi:10.1016/j.cell.2007.11.019 PubMedCrossRefGoogle Scholar
  3. 3.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi:10.1016/j.cell.2006.07.024 PubMedCrossRefGoogle Scholar
  4. 4.
    Zhang F, Pasumarthi KB (2008) Embryonic stem cell transplantation: promise and progress in the treatment of heart disease. BioDrugs 22(6):361–374PubMedCrossRefGoogle Scholar
  5. 5.
    Perrier AL, Tabar V, Barberi T, Rubio ME, Bruses J, Topf N, Harrison NL, Studer L (2004) Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 101(34):12543–12548PubMedCrossRefGoogle Scholar
  6. 6.
    Preynat-Seauve O, Burkhard PR, Villard J, Zingg W, Ginovart N, Feki A, Dubois-Dauphin M, Hurst SA, Mauron A, Jaconi M, Krause KH (2009) Pluripotent stem cells as new drugs? The example of Parkinson's disease. Int J Pharm 381(2):113–121. doi:10.1016/j.ijpharm.2009.03.003 PubMedCrossRefGoogle Scholar
  7. 7.
    Zeng X, Rao MS (2007) Human embryonic stem cells: long term stability, absence of senescence and a potential cell source for neural replacement. Neuroscience 145(4):1348–1358PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang SC (2006) Neural subtype specification from embryonic stem cells. Brain Pathol 16(2):132–142PubMedCrossRefGoogle Scholar
  9. 9.
    Champeris Tsaniras S, Jones PM (2010) Generating pancreatic β-cells from embryonic stem cells by manipulating signaling pathways. J Endocrinol 206(1):13–26. doi:JOE-10-0073[pii] PubMedCrossRefGoogle Scholar
  10. 10.
    Chinen J, Buckley RH (2010) Transplantation immunology: solid organ and bone marrow. J Allergy Clin Immunol 125(2):S324–335. doi:10.1016/j.jaci.2009.11.014 PubMedCrossRefGoogle Scholar
  11. 11.
    Mizuno H (2010) Adipose-derived stem and stromal cells for cell-based therapy: current status of preclinical studies and clinical trials. Curr Opin Mol Ther 12(4):442–449PubMedGoogle Scholar
  12. 12.
    Petrovic V, Stefanovic V (2009) Dental tissue–new source for stem cells. ScientificWorldJournal 9:1167–1177. doi:10.1100/tsw.2009.125 PubMedCrossRefGoogle Scholar
  13. 13.
    Garcia-Gomez I, Elvira G, Zapata AG, Lamana ML, Ramirez M, Castro JG, Arranz MG, Vicente A, Bueren J, Garcia-Olmo D (2010) Mesenchymal stem cells: biological properties and clinical applications. Expert Opin Biol Ther 10(10):1453–1468. doi:10.1517/14712598.2010.519333 PubMedCrossRefGoogle Scholar
  14. 14.
    Kode JA, Mukherjee S, Joglekar MV, Hardikar AA (2009) Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy 11(4):377–391. doi:10.1080/14653240903080367 PubMedCrossRefGoogle Scholar
  15. 15.
    Deleyrolle LP, Reynolds BA (2009) Isolation, expansion, and differentiation of adult mammalian neural stem and progenitor cells using the neurosphere assay. Methods Mol Biol 549:91–101. doi:10.1007/978-1-60327-931-4_7 PubMedCrossRefGoogle Scholar
  16. 16.
    Chiasson BJ, Tropepe V, Morshead CM, van der Kooy D (1999) Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. J Neurosci 19(11):4462–4471PubMedGoogle Scholar
  17. 17.
    Johansson CB, Svensson M, Wallstedt L, Janson AM, Frisen J (1999) Neural stem cells in the adult human brain. Exp Cell Res 253(2):733–736. doi:10.1006/excr.1999.4678 PubMedCrossRefGoogle Scholar
  18. 18.
    Han SS, Kang DY, Mujtaba T, Rao MS, Fischer I (2002) Grafted lineage-restricted precursors differentiate exclusively into neurons in the adult spinal cord. Exp Neurol 177(2):360–375PubMedCrossRefGoogle Scholar
  19. 19.
    Wang X, Lu Y, Zhang H, Wang K, He Q, Wang Y, Liu X, Li L (2004) Distinct efficacy of pre-differentiated versus intact fetal mesencephalon-derived human neural progenitor cells in alleviating rat model of Parkinson's disease. Int J Dev Neurosci 22(4):175–183. doi:10.1016/j.ijdevneu.2004.05.008 PubMedCrossRefGoogle Scholar
  20. 20.
    Totoiu MO, Nistor GI, Lane TE, Keirstead HS (2004) Remyelination, axonal sparing, and locomotor recovery following transplantation of glial-committed progenitor cells into the MHV model of multiple sclerosis. Exp Neurol 187(2):254–265. doi:10.1016/j.expneurol.2004.01.028 PubMedCrossRefGoogle Scholar
  21. 21.
    Veizovic T, Beech JS, Stroemer RP, Watson WP, Hodges H (2001) Resolution of stroke deficits following contralateral grafts of conditionally immortal neuroepithelial stem cells. Stroke 32(4):1012–1019PubMedCrossRefGoogle Scholar
  22. 22.
    Mackay-Sim A (2010) Stem cells and their niche in the adult olfactory mucosa. Arch Ital Biol 148(2):47–58PubMedGoogle Scholar
  23. 23.
    Brundin P, Karlsson J, Emgard M, Schierle GS, Hansson O, Petersen A, Castilho RF (2000) Improving the survival of grafted dopaminergic neurons: a review over current approaches. Cell Transplant 9(2):179–195PubMedGoogle Scholar
  24. 24.
    Fong CY, Gauthaman K, Bongso A (2010) Teratomas from pluripotent stem cells: a clinical hurdle. J Cell Biochem 111(4):769–781. doi:10.1002/jcb.22775 PubMedCrossRefGoogle Scholar
  25. 25.
    Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA, Zhang SC (2010) Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci USA 107(9):4335–4340. doi:10.1073/pnas.0910012107 PubMedCrossRefGoogle Scholar
  26. 26.
    Kim DS, Lee JS, Leem JW, Huh YJ, Kim JY, Kim HS, Park IH, Daley GQ, Hwang DY, Kim DW (2010) Robust enhancement of neural differentiation from human ES and iPS cells regardless of their innate difference in differentiation propensity. Stem Cell Rev 6(2):270–281. doi:10.1007/s12015-010-9138-1 PubMedCrossRefGoogle Scholar
  27. 27.
    Moore JC, Sadowy S, Alikani M, Toro-Ramos AJ, Swerdel MR, Hart RP, Cohen RI (2010) A high-resolution molecular-based panel of assays for identification and characterization of human embryonic stem cell lines. Stem Cell Res 4(2):92–106. doi:10.1016/j.scr.2009.11.001 PubMedCrossRefGoogle Scholar
  28. 28.
    Tanasijevic B, Dai B, Ezashi T, Livingston K, Roberts RM, Rasmussen TP (2009) Progressive accumulation of epigenetic heterogeneity during human ES cell culture. Epigenetics 4(5):330–338PubMedCrossRefGoogle Scholar
  29. 29.
    Salazar DL, Uchida N, Hamers FP, Cummings BJ, Anderson AJ (2010) Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model. PLoS One 5(8):e12272. doi:10.1371/journal.pone.0012272 PubMedCrossRefGoogle Scholar
  30. 30.
    Kordower JH, Brundin P (2009) Propagation of host disease to grafted neurons: accumulating evidence. Exp Neurol 220(2):224–225. doi:10.1016/j.expneurol.2009.09.016 PubMedCrossRefGoogle Scholar
  31. 31.
    Preynat-Seauve O, de Rham C, Tirefort D, Ferrari-Lacraz S, Krause KH, Villard J (2009) Neural progenitors derived from human embryonic stem cells are targeted by allogeneic T and natural killer cells. J Cell Mol Med 13(9B):3556–3569. doi:10.1111/j.1582-4934.2009.00746 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Laboratory of Immuno-HematologyGeneva University HospitalGenevaSwitzerland
  2. 2.Laboratory of Experimental Cell Therapy, Department of Genetic and Laboratory MedicineGeneva University HospitalGenevaSwitzerland
  3. 3.Geneva University HospitalGenevaSwitzerland

Personalised recommendations