Skip to main content

Advertisement

Log in

The immunomodulatory properties of mesenchymal stem cells

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Research on mesenchymal stem cells (MSC) has evolved rapidly during the last decade prompted by their potential use for tissue repair and immunotherapy. Not only can MSC differentiate into cells of the mesodermal lineage, but they also exhibit immunomodulatory functions depending on their interaction with cells of both innate and adaptive immune systems. Most aspects of MSC biology remain to be elucidated. It is emerging even more clearly that these cells are not always a panacea. Only the knowledge of their physiological role and their interactions with other cells will allow us to use them as a therapeutic tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV (1974) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17:331–40

    PubMed  CAS  Google Scholar 

  2. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–50

    PubMed  CAS  Google Scholar 

  3. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–7

    PubMed  CAS  Google Scholar 

  4. Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 96:10711–6

    PubMed  CAS  Google Scholar 

  5. Petersen BE, Bowen WC, Patrene KD et al (1999) Bone marrow as a potential source of hepatic oval cells. Science 284:1168–70

    PubMed  CAS  Google Scholar 

  6. Roche S, Delorme B, Oostendorp RA et al (2009) Comparative proteomic analysis of human mesenchymal and embryonic stem cells: towards the definition of a mesenchymal stem cell proteomic signature. Proteomics 9:223–32

    PubMed  CAS  Google Scholar 

  7. Morikawa S, Mabuchi Y, Niibe K et al (2009) Development of mesenchymal stem cells partially originate from the neural crest. Biochem Biophys Res Commun 379:1114–9

    PubMed  CAS  Google Scholar 

  8. Morikawa S, Mabuchi Y, Kubota Y et al (2009) Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med 206:2483–96

    PubMed  CAS  Google Scholar 

  9. Zannettino AC, Paton S, Arthur A et al (2008) Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol 214:413–21

    PubMed  CAS  Google Scholar 

  10. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97:13625–30

    PubMed  CAS  Google Scholar 

  11. Young HE, Steele TA, Bray RA et al (2001) Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec 264:51–62

    PubMed  CAS  Google Scholar 

  12. Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235–42

    PubMed  CAS  Google Scholar 

  13. da Silva ML, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26:2287–99

    Google Scholar 

  14. Haniffa MA, Wang XN, Holtick U et al (2007) Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells. J Immunol 179:1595–604

    PubMed  CAS  Google Scholar 

  15. Jones S, Horwood N, Cope A, Dazzi F (2007) The antiproliferative effect of mesenchymal stem cells is a fundamental property shared by all stromal cells. J Immunol 179:2824–31

    PubMed  CAS  Google Scholar 

  16. Haniffa MA, Collin MP, Buckley CD, Dazzi F (2009) Mesenchymal stem cells: the fibroblasts’ new clothes? Haematologica 94:258–63

    PubMed  CAS  Google Scholar 

  17. Reyes M, Lund T, Lenvik T et al (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98:2615–25

    PubMed  CAS  Google Scholar 

  18. D’Ippolito G, Diabira S, Howard GA et al (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117:2971–81

    PubMed  Google Scholar 

  19. Ratajczak MZ, Zuba-Surma EK, Machalinski B, Kucia M (2007) Bone-marrow-derived stem cells-our key to longevity? J Appl Genet 48:307–19

    PubMed  Google Scholar 

  20. Takashima Y, Era T, Nakao K et al (2007) Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell 129:1377–88

    PubMed  CAS  Google Scholar 

  21. Serafini M, Dylla SJ, Oki M et al (2007) Hematopoietic reconstitution by multipotent adult progenitor cells: precursors to long-term hematopoietic stem cells. J Exp Med 204:129–39

    PubMed  CAS  Google Scholar 

  22. Sacchetti B, Funari A, Michienzi S et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131:324–36

    PubMed  CAS  Google Scholar 

  23. Vodyanik MA, Yu J, Zhang X et al (2010) A mesoderm-derived precursor for mesenchymal stem and endothelial cells. Cell Stem Cell 7:718–29

    PubMed  CAS  Google Scholar 

  24. Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6:93–106

    PubMed  CAS  Google Scholar 

  25. Mendez-Ferrer S, Michurina TV, Ferraro F et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–34

    PubMed  CAS  Google Scholar 

  26. Tabruyn SP, Colton K, Morisada T et al (2010) Angiopoietin-2-driven vascular remodeling in airway inflammation. Am J Pathol 177:3233–43

    PubMed  CAS  Google Scholar 

  27. Diaz-Flores L, Gutierrez R, Madrid JF et al (2009) Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 24:909–69

    PubMed  CAS  Google Scholar 

  28. Au P, Tam J, Fukumura D, Jain RK (2008) Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 111:4551–8

    PubMed  CAS  Google Scholar 

  29. Krampera M, Glennie S, Dyson J et al (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101:3722–9

    PubMed  CAS  Google Scholar 

  30. Prigione I, Benvenuto F, Bocca P et al (2009) Reciprocal interactions between human mesenchymal stem cells and gammadelta T cells or invariant natural killer T cells. Stem Cells 27:693–702

    PubMed  CAS  Google Scholar 

  31. Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105:2821–7

    PubMed  CAS  Google Scholar 

  32. Di Nicola M, Carlo-Stella C, Magni M et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–43

    PubMed  Google Scholar 

  33. Augello A, Tasso R, Negrini SM et al (2005) Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol 35:1482–90

    PubMed  CAS  Google Scholar 

  34. Deng W, Han Q, Liao L et al (2005) Effects of allogeneic bone marrow-derived mesenchymal stem cells on T and B lymphocytes from BXSB mice. DNA Cell Biol 24:458–63

    PubMed  CAS  Google Scholar 

  35. Corcione A, Benvenuto F, Ferretti E et al (2005) Human mesenchymal stem cells modulate B cell functions. Blood 107:367–72

    PubMed  Google Scholar 

  36. Traggiai E, Volpi S, Schena F et al (2008) Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients. Stem Cells 26:562–9

    PubMed  CAS  Google Scholar 

  37. Moretta A (2002) Natural killer cells and dendritic cells: rendezvous in abused tissues. Nat Rev Immunol 2:957–64

    PubMed  CAS  Google Scholar 

  38. Krampera M, Cosmi L, Angeli R et al (2006) Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24:386–98

    PubMed  CAS  Google Scholar 

  39. Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M (2006) Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24:74–85

    PubMed  Google Scholar 

  40. Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L (2006) Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107:1484–90

    PubMed  CAS  Google Scholar 

  41. Jiang XX, Zhang Y, Liu B et al (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105:4120–6

    PubMed  CAS  Google Scholar 

  42. Ramasamy R, Fazekasova H, Lam EW et al (2007) Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation 83:71–6

    PubMed  Google Scholar 

  43. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–22

    PubMed  CAS  Google Scholar 

  44. Di Ianni M, Del Papa B, De Ioanni M et al (2008) Mesenchymal cells recruit and regulate T regulatory cells. Exp Hematol 36:309–18

    PubMed  Google Scholar 

  45. Prevosto C, Zancolli M, Canevali P, Zocchi MR, Poggi A (2007) Generation of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell-lymphocyte interaction. Haematologica 92:881–8

    PubMed  CAS  Google Scholar 

  46. Zappia E, Casazza S, Pedemonte E et al (2005) Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106:1755–61

    PubMed  CAS  Google Scholar 

  47. Gonzalez MA, Gonzalez-Rey E, Rico L, Buscher D, Delgado M (2009) Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum 60:1006–19

    PubMed  CAS  Google Scholar 

  48. Patel SA, Meyer JR, Greco SJ et al (2010) Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-beta. J Immunol 184:5885–94

    PubMed  CAS  Google Scholar 

  49. Nemeth K, Keane-Myers A, Brown JM et al (2010) Bone marrow stromal cells use TGF-beta to suppress allergic responses in a mouse model of ragweed-induced asthma. Proc Natl Acad Sci USA 107:5652–7

    PubMed  CAS  Google Scholar 

  50. Madec AM, Mallone R, Afonso G et al (2009) Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia 52:1391–9

    PubMed  CAS  Google Scholar 

  51. Casiraghi F, Azzollini N, Cassis P et al (2008) Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells. J Immunol 181:3933–46

    PubMed  CAS  Google Scholar 

  52. Parekkadan B, Upadhyay R, Dunham J et al (2011) Bone marrow stromal cell transplants prevent experimental enterocolitis and require host CD11b(+) splenocytes. Gastroenterology 140(966–975):e4

    Google Scholar 

  53. Maggini J, Mirkin G, Bognanni I et al (2010) Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS ONE 5:e9252

    PubMed  Google Scholar 

  54. Ren G, Zhang L, Zhao X et al (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2:141–50

    PubMed  CAS  Google Scholar 

  55. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57:11–20

    PubMed  Google Scholar 

  56. DelaRosa O, Lombardo E (2010) Modulation of adult mesenchymal stem cells activity by toll-like receptors: implications on therapeutic potential. Mediat Inflamm 2010:865601

    Google Scholar 

  57. Wright SD (1999) Toll, a new piece in the puzzle of innate immunity. J Exp Med 189:605–9

    PubMed  CAS  Google Scholar 

  58. West AP, Koblansky AA, Ghosh S (2006) Recognition and signaling by toll-like receptors. Annu Rev Cell Dev Biol 22:409–37

    PubMed  CAS  Google Scholar 

  59. Pevsner-Fischer M, Morad V, Cohen-Sfady M et al (2007) Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood 109:1422–32

    PubMed  CAS  Google Scholar 

  60. Liotta F, Angeli R, Cosmi L et al (2008) Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells 26:279–89

    PubMed  CAS  Google Scholar 

  61. Opitz CA, Litzenburger UM, Lutz C et al (2009) Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine-2,3-dioxygenase-1 via interferon-beta and protein kinase R. Stem Cells 27:909–19

    PubMed  CAS  Google Scholar 

  62. Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM (2010) A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS ONE 5:e10088

    PubMed  Google Scholar 

  63. Mantovani A, Sica A, Locati M (2005) Macrophage polarization comes of age. Immunity 23:344–6

    PubMed  CAS  Google Scholar 

  64. Chan JL, Tang KC, Patel AP et al (2006) Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-gamma. Blood 107:4817–24

    PubMed  CAS  Google Scholar 

  65. Nauta AJ, Westerhuis G, Kruisselbrink AB et al (2006) Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood 108:2114–20

    PubMed  CAS  Google Scholar 

  66. Sbano P, Cuccia A, Mazzanti B et al (2008) Use of donor bone marrow mesenchymal stem cells for treatment of skin allograft rejection in a preclinical rat model. Arch Dermatol Res 300:115–24

    PubMed  Google Scholar 

  67. Karp JM, Leng Teo GS (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4:206–16

    PubMed  CAS  Google Scholar 

  68. Quarto R, Mastrogiacomo M, Cancedda R et al (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344:385–6

    PubMed  CAS  Google Scholar 

  69. Kinnaird T, Stabile E, Burnett MS, Epstein SE (2004) Bone-marrow-derived cells for enhancing collateral development: mechanisms, animal data, and initial clinical experiences. Circ Res 95:354–63

    PubMed  CAS  Google Scholar 

  70. Togel F, Hu Z, Weiss K et al (2005) Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. AJP–Renal Physiol 289:F31–42

    Google Scholar 

  71. Shi Y, Hu G, Su J et al (2010) Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res 20:510–8

    PubMed  CAS  Google Scholar 

  72. Ortiz LA, Dutreil M, Fattman C et al (2007) Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA 104:11002–7

    PubMed  CAS  Google Scholar 

  73. Ruffell D, Mourkioti F, Gambardella A et al (2009) A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proc Natl Acad Sci USA 106:17475–80

    PubMed  CAS  Google Scholar 

  74. Meirelles Lda S, Fontes AM, Covas DT, Caplan AI (2009) Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 20:419–27

    PubMed  Google Scholar 

  75. Birnbaum T, Roider J, Schankin CJ et al (2007) Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines. J Neurooncol 83:241–7

    PubMed  CAS  Google Scholar 

  76. Schichor C, Birnbaum T, Etminan N et al (2006) Vascular endothelial growth factor A contributes to glioma-induced migration of human marrow stromal cells (hMSC). Exp Neurol 199:301–10

    PubMed  CAS  Google Scholar 

  77. Feng B, Chen L (2009) Review of mesenchymal stem cells and tumors: executioner or coconspirator? Cancer Biother Radiopharm 24:717–21

    PubMed  CAS  Google Scholar 

  78. Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F (2008) Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther 15:730–8

    PubMed  CAS  Google Scholar 

  79. Dwyer RM, Potter-Beirne SM, Harrington KA et al (2007) Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res 13:5020–7

    PubMed  CAS  Google Scholar 

  80. Rattigan Y, Hsu JM, Mishra PJ, Glod J, Banerjee D (2010) Interleukin 6 mediated recruitment of mesenchymal stem cells to the hypoxic tumor milieu. Exp Cell Res 316:3417–24

    PubMed  CAS  Google Scholar 

  81. Zhu W, Xu W, Jiang R et al (2006) Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp Mol Pathol 80:267–74

    PubMed  CAS  Google Scholar 

  82. Karnoub AE, Dash AB, Vo AP et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–63

    PubMed  CAS  Google Scholar 

  83. Burger JA, Kipps TJ (2002) Chemokine receptors and stromal cells in the homing and homeostasis of chronic lymphocytic leukemia B cells. Leuk Lymphoma 43:461–6

    PubMed  CAS  Google Scholar 

  84. Molloy AP, Martin FT, Dwyer RM et al (2009) Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells. Int J Cancer 124:326–32

    PubMed  CAS  Google Scholar 

  85. Urashima M, Chen BP, Chen S et al (1997) The development of a model for the homing of multiple myeloma cells to human bone marrow. Blood 90:754–65

    PubMed  CAS  Google Scholar 

  86. Michigami T, Shimizu N, Williams PJ et al (2000) Cell-cell contact between marrow stromal cells and myeloma cells via VCAM-1 and alpha(4)beta(1)-integrin enhances production of osteoclast-stimulating activity. Blood 96:1953–60

    PubMed  CAS  Google Scholar 

  87. Kakonen SM, Selander KS, Chirgwin JM et al (2002) Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. J Biol Chem 277:24571–8

    PubMed  CAS  Google Scholar 

  88. Guise TA (2000) Molecular mechanisms of osteolytic bone metastases. Cancer 88:2892–8

    PubMed  CAS  Google Scholar 

  89. Brocke-Heidrich K, Kretzschmar AK, Pfeifer G et al (2004) Interleukin-6-dependent gene expression profiles in multiple myeloma INA-6 cells reveal a Bcl-2 family-independent survival pathway closely associated with Stat3 activation. Blood 103:242–51

    PubMed  CAS  Google Scholar 

  90. Yamagiwa Y, Marienfeld C, Meng F, Holcik M, Patel T (2004) Translational regulation of x-linked inhibitor of apoptosis protein by interleukin-6: a novel mechanism of tumor cell survival. Cancer Res 64:1293–8

    PubMed  CAS  Google Scholar 

  91. Nishimoto N, Kishimoto T (2006) Interleukin 6: from bench to bedside. Nat Clin Pract Rheumatol 2:619–26

    PubMed  CAS  Google Scholar 

  92. Burger JA, Tsukada N, Burger M et al (2000) Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood 96:2655–63

    PubMed  CAS  Google Scholar 

  93. Konopleva M, Konoplev S, Hu W et al (2002) Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia 16:1713–24

    PubMed  CAS  Google Scholar 

  94. Vianello F, Villanova F, Tisato V et al (2010) Bone marrow mesenchymal stromal cells non-selectively protect chronic myeloid leukemia cells from imatinib-induced apoptosis via the CXCR4/CXCL12 axis. Haematologica 95:1081–9

    PubMed  CAS  Google Scholar 

  95. Zeng Z, Shi YX, Samudio IJ et al (2009) Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood 113:6215–24

    PubMed  CAS  Google Scholar 

  96. Kraman M, Bambrough PJ, Arnold JN et al (2010) Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science 330:827–30

    PubMed  CAS  Google Scholar 

  97. Fritz V, Jorgensen C (2008) Mesenchymal stem cells: an emerging tool for cancer targeting and therapy. Curr Stem Cell Res Ther 3:32–42

    PubMed  CAS  Google Scholar 

  98. Studeny M, Marini FC, Champlin RE et al (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 62:3603–8

    PubMed  CAS  Google Scholar 

  99. Komarova S, Kawakami Y, Stoff-Khalili MA, Curiel DT, Pereboeva L (2006) Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol Cancer Ther 5:755–66

    PubMed  CAS  Google Scholar 

  100. Sasportas LS, Kasmieh R, Wakimoto H et al (2009) Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci USA 106:4822–7

    PubMed  CAS  Google Scholar 

  101. Ning H, Yang F, Jiang M et al (2008) The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: outcome of a pilot clinical study. Leukemia 22:593–9

    PubMed  CAS  Google Scholar 

  102. Desmouliere A, Darby IA, Gabbiani G (2003) Normal and pathologic soft tissue remodeling: role of the myofibroblast, with special emphasis on liver and kidney fibrosis. Lab Invest 83:1689–707

    PubMed  Google Scholar 

  103. Pradier A, Passweg J, Villard J, Kindler V (2010) Human bone marrow stromal cells and skin fibroblasts inhibit natural killer cell proliferation and cytotoxic activity. Cell Transplant. doi:10.3727/096368910X536545

    PubMed  Google Scholar 

  104. Wynn TA (2004) Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol 4:583–94

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilaria Marigo.

Additional information

This article is published as part of the Special Issue on Immunopathology of Pluripotent Stem Cell Transplantation [33:6].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marigo, I., Dazzi, F. The immunomodulatory properties of mesenchymal stem cells. Semin Immunopathol 33, 593–602 (2011). https://doi.org/10.1007/s00281-011-0267-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-011-0267-7

Keywords

Navigation