Skip to main content
Log in

Immunopathology of the human pancreas in type-I diabetes

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Type 1 diabetes is a chronic autoimmune disease characterised by the selective destruction of pancreatic beta (β) cells. The understanding of the aetiology of this disease has increased dramatically in recent years by the study of tissue recovered from patients, from analysis of the responses of isolated islet and β-cells in tissue culture and via the use of animal models. However, knowledge of the immunopathology of type 1 diabetes in humans is still relatively deficient due largely to the difficulty of accessing appropriate samples. Here we review the state of current knowledge in relation to the histopathological features of the disease in humans. We focus specifically on recent-onset type 1 diabetes cases since in such patients, evidence of the ongoing disease process is still present. We chart the progression of the disease by describing the characteristic features of the pancreas, consider the sequence of immune cell infiltration and discuss the abnormalities of MHC antigen expression. The possibility that these changes might derive from a persistent enteroviral infection of the islet beta cells is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Barnett AH, Eff C, Leslie RD, Pyke DA (1981) Diabetes in identical twins. A study of 200 pairs. Diabetologia 20:87–93

    Article  PubMed  CAS  Google Scholar 

  2. Lo SS, Tun RY, Hawa M, Leslie RD (1991) Studies of diabetic twins. Diabetes Metab Rev 7:223–238

    Article  PubMed  CAS  Google Scholar 

  3. Redondo MJ, Yu L, Hawa M et al (2001) Heterogeneity of type I diabetes: analysis of monozygotic twins in Great Britain and the United States. Diabetologia 44:354–362

    Article  PubMed  CAS  Google Scholar 

  4. Knip M, Veijola R, Virtanen SM, Hyoty H, Vaarala O, Akerblom HK (2005) Environmental triggers and determinants of type 1 diabetes. Diabetes 54(Suppl 2):S125–136

    Article  PubMed  CAS  Google Scholar 

  5. Lally F, Bone AJ (2003) Animal models of type 1 diabetes. Blackwell Science Ltd

  6. Gepts W (1965) Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes 14:619–633

    PubMed  CAS  Google Scholar 

  7. Foulis AK, Liddle CN, Farquharson MA, Richmond JA, Weir RS (1986) The histopathology of the pancreas in type 1 (insulin-dependent) diabetes mellitus: a 25-year review of deaths in patients under 20 years of age in the United Kingdom. Diabetologia 29:267–274

    Article  PubMed  CAS  Google Scholar 

  8. Foulis AK, Stewart JA (1984) The pancreas in recent-onset type 1 (insulin-dependent) diabetes mellitus: insulin content of islets, insulitis and associated changes in the exocrine acinar tissue. Diabetologia 26:456–461

    Article  PubMed  CAS  Google Scholar 

  9. Gepts W, De Mey J (1978) Islet cell survival determined by morphology. An immunocytochemical study of the islets of Langerhans in juvenile diabetes mellitus. Diabetes 27(Suppl 1):251–261

    PubMed  Google Scholar 

  10. Fraser PA, Henderson JR (1980) The arrangement of endocrine and exocrine pancreatic microcirculation observed in the living rabbit. Q J Exp Physiol Cogn Med Sci 65:151–158

    PubMed  CAS  Google Scholar 

  11. Greenberg GR, Mitznegg P, Bloom SR (1977) Effect of pancreatic polypeptide on DNA-synthesis in the pancreas. Experientia 33:1332–1333

    Article  PubMed  CAS  Google Scholar 

  12. Henderson JR, Daniel PM, Fraser PA (1981) The pancreas as a single organ: the influence of the endocrine upon the exocrine part of the gland. Gut 22:158–167

    Article  PubMed  CAS  Google Scholar 

  13. Salter JM, Davidson IW, Best CH (1957) The pathologic effects of large amounts of glucagon. Diabetes 6:248–252, discussion, 252–245

    PubMed  CAS  Google Scholar 

  14. Rahier J, Wallon J, Loozen S, Lefevre A, Gepts W, Haot J (1983) The pancreatic polypeptide cells in the human pancreas: the effects of age and diabetes. J Clin Endocrinol Metab 56:441–444

    Article  PubMed  CAS  Google Scholar 

  15. Stansfield O, Warren S (1928) Inflammation involving the islands of Langerhans in diabetes; report on pathological findings. N Engl J Med 198:686–687

    Article  Google Scholar 

  16. Warren S, Root HF (1925) The pathology of diabetes, with special reference to pancreatic regeneration. Am J Pathol 1(415–430):411

    Google Scholar 

  17. Foulis AK, McGill M, Farquharson MA (1991) Insulitis in type 1 (insulin-dependent) diabetes mellitus in man—macrophages, lymphocytes, and interferon-gamma containing cells. J Pathol 165:97–103

    Article  PubMed  CAS  Google Scholar 

  18. Somoza N, Vargas F, Roura-Mir C et al (1994) Pancreas in recent onset insulin-dependent diabetes mellitus. Changes in HLA, adhesion molecules and autoantigens, restricted T cell receptor V beta usage, and cytokine profile. J Immunol 153:1360–1377

    PubMed  CAS  Google Scholar 

  19. Bottazzo GF, Dean BM, McNally JM, MacKay EH, Swift PG, Gamble DR (1985) In situ characterization of autoimmune phenomena and expression of HLA molecules in the pancreas in diabetic insulitis. N Engl J Med 313:353–360

    Article  PubMed  CAS  Google Scholar 

  20. Itoh N, Hanafusa T, Miyazaki A et al (1993) Mononuclear cell infiltration and its relation to the expression of major histocompatibility complex antigens and adhesion molecules in pancreas biopsy specimens from newly diagnosed insulin-dependent diabetes mellitus patients. J Clin Invest 92:2313–2322

    Article  PubMed  CAS  Google Scholar 

  21. Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG (2009) Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol 155:173–181

    Article  PubMed  CAS  Google Scholar 

  22. Uno S, Imagawa A, Okita K et al (2007) Macrophages and dendritic cells infiltrating islets with or without beta cells produce tumour necrosis factor-alpha in patients with recent-onset type 1 diabetes. Diabetologia 50:596–601

    Article  PubMed  CAS  Google Scholar 

  23. Dotta F, Censini S, van Halteren AG et al (2007) Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci USA 104:5115–5120

    Article  PubMed  CAS  Google Scholar 

  24. Moriwaki M, Itoh N, Miyagawa J et al (1999) Fas and Fas ligand expression in inflamed islets in pancreas sections of patients with recent-onset Type I diabetes mellitus. Diabetologia 42:1332–1340

    Article  PubMed  CAS  Google Scholar 

  25. Loweth AC, Williams GT, James RF, Scarpello JH, Morgan NG (1998) Human islets of Langerhans express Fas ligand and undergo apoptosis in response to interleukin-1beta and Fas ligation. Diabetes 47:727–732

    Article  PubMed  CAS  Google Scholar 

  26. Brodie GM, Wallberg M, Santamaria P, Wong FS, Green EA (2008) B-cells promote intra-islet CD8+ cytotoxic T-cell survival to enhance type 1 diabetes. Diabetes 57:909–917

    Article  PubMed  CAS  Google Scholar 

  27. Sia C (2005) Imbalance in Th cell polarization and its relevance in type 1 diabetes mellitus. Rev Diabet Stud 2:182–186

    Article  PubMed  Google Scholar 

  28. Cooke A (2006) Th17 cells in inflammatory conditions. Rev Diabet Stud 3:72–75

    Article  PubMed  Google Scholar 

  29. Brusko T, Wasserfall C, McGrail K et al (2007) No alterations in the frequency of FOXP3+ regulatory T-cells in type 1 diabetes. Diabetes 56:604–612

    Article  PubMed  CAS  Google Scholar 

  30. Putnam AL, Vendrame F, Dotta F, Gottlieb PA (2005) CD4+CD25high regulatory T cells in human autoimmune diabetes. J Autoimmun 24:55–62

    Article  PubMed  CAS  Google Scholar 

  31. Caligiuri MA (2008) Human natural killer cells. Blood 112:461–469

    Article  PubMed  CAS  Google Scholar 

  32. Vivier E, Nunes JA, Vely F (2004) Natural killer cell signaling pathways. Science (New York, NY 306: 1517–1519

  33. Keymeulen B, Walter M, Mathieu C, et al. Four-year metabolic outcome of a randomised controlled CD3-antibody trial in recent-onset type 1 diabetic patients depends on their age and baseline residual beta cell mass. Diabetologia

  34. Alejandro R, Shienvold FL, Hajek SV, Ryan U, Miller J, Mintz DH (1982) Immunocytochemical localization of HLA-DR in human islets of Langerhans. Diabetes 31(Suppl 4):17–22

    PubMed  Google Scholar 

  35. Foulis AK, Farquharson MA, Hardman R (1987) Aberrant expression of class II major histocompatibility complex molecules by B cells and hyperexpression of class I major histocompatibility complex molecules by insulin containing islets in type 1 (insulin-dependent) diabetes mellitus. Diabetologia 30:333–343

    Article  PubMed  CAS  Google Scholar 

  36. Imagawa A, Hanafusa T, Itoh N et al (1999) Immunological abnormalities in islets at diagnosis paralleled further deterioration of glycaemic control in patients with recent-onset Type I (insulin-dependent) diabetes mellitus. Diabetologia 42:574–578

    Article  PubMed  CAS  Google Scholar 

  37. Gianani R, Campbell-Thompson M, Sarkar SA, et al. Dimorphic histopathology of long-standing childhood-onset diabetes. Diabetologia

  38. Tanaka S, Nishida Y, Aida K et al (2009) Enterovirus infection, CXC chemokine ligand 10 (CXCL10), and CXCR3 circuit: a mechanism of accelerated beta-cell failure in fulminant type 1 diabetes. Diabetes 58:2285–2291

    Article  PubMed  CAS  Google Scholar 

  39. Lozanoska-Ochser B, Peakman M (2009) Level of major histocompatibility complex class I expression on endothelium in non-obese diabetic mice influences CD8 T cell adhesion and migration. Clin Exp Immunol 157:119–127

    Article  PubMed  CAS  Google Scholar 

  40. Thomas HE, Parker JL, Schreiber RD, Kay TW (1998) IFN-gamma action on pancreatic beta cells causes class I MHC upregulation but not diabetes. J Clin Invest 102:1249–1257

    Article  PubMed  CAS  Google Scholar 

  41. von Herrath MG, Oldstone MB (1997) Interferon-gamma is essential for destruction of beta cells and development of insulin-dependent diabetes mellitus. J Exp Med 185:531–539

    Article  Google Scholar 

  42. Foulis AK, Farquharson MA (1986) Aberrant expression of HLA-DR antigens by insulin-containing beta-cells in recent-onset type I diabetes mellitus. Diabetes 35:1215–1224

    Article  PubMed  CAS  Google Scholar 

  43. Imagawa A, Hanafusa T, Itoh N et al (1996) Islet-infiltrating t lymphocytes in insulin-dependent diabetic patients express CD80 (B7-1) and CD86 (B7-2). J Autoimmun 9:391–396

    Article  PubMed  CAS  Google Scholar 

  44. Hanninen A, Jalkanen S, Salmi M, Toikkanen S, Nikolakaros G, Simell O (1992) Macrophages, T cell receptor usage, and endothelial cell activation in the pancreas at the onset of insulin-dependent diabetes mellitus. J Clin Invest 90:1901–1910

    Article  PubMed  CAS  Google Scholar 

  45. Lozanoska-Ochser B, Klein NJ, Huang GC, Alvarez RA, Peakman M (2008) Expression of CD86 on human islet endothelial cells facilitates T cell adhesion and migration. J Immunol 181:6109–6116

    PubMed  CAS  Google Scholar 

  46. Pujol-Borrell R, Todd I, Doshi M, Gray D, Feldmann M, Bottazzo GF (1986) Differential expression and regulation of MHC products in the endocrine and exocrine cells of the human pancreas. Clin Exp Immunol 65:128–139

    PubMed  CAS  Google Scholar 

  47. Foulis AK, Farquharson MA, Meager A (1987) Immunoreactive alpha-interferon in insulin-secreting beta cells in type 1 diabetes mellitus. Lancet 2:1423–1427

    Article  PubMed  CAS  Google Scholar 

  48. Huang X, Yuang J, Goddard A et al (1995) Interferon expression in the pancreases of patients with type I diabetes. Diabetes 44:658–664

    Article  PubMed  CAS  Google Scholar 

  49. Chehadeh W, Weill J, Vantyghem MC et al (2000) Increased level of interferon-alpha in blood of patients with insulin-dependent diabetes mellitus: relationship with coxsackievirus B infection. J Infect Dis 181:1929–1939

    Article  PubMed  CAS  Google Scholar 

  50. Hultcrantz M, Huhn MH, Wolf M et al (2007) Interferons induce an antiviral state in human pancreatic islet cells. Virology 367:92–101

    Article  PubMed  CAS  Google Scholar 

  51. Roep BO, Kleijwegt FS, van Halteren AG et al (2010) Islet inflammation and CXCL10 in recent-onset type 1 diabetes. Clin Exp Immunol 159:338–43

    Google Scholar 

  52. Richardson SJ, Willcox A, Bone AJ, Foulis AK, Morgan NG (2009) The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes. Diabetologia 52:1143–1151

    Article  PubMed  CAS  Google Scholar 

  53. Flodstrom-Tullberg M, Hultcrantz M, Stotland A et al (2005) RNase L and double-stranded RNA-dependent protein kinase exert complementary roles in islet cell defense during coxsackievirus infection. J Immunol 174:1171–1177

    PubMed  Google Scholar 

  54. Smyth DJ, Cooper JD, Bailey R et al (2006) A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet 38:617–619

    Article  PubMed  CAS  Google Scholar 

  55. Nejentsev S, Walker N, Riches D, Egholm M, Todd JA (2009) Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science (New York, NY 324: 387–389

  56. Campbell IL, Bizilj K, Colman PG, Tuch BE, Harrison LC (1986) Interferon-gamma induces the expression of HLA-A, B, C but not HLA-DR on human pancreatic beta-cells. J Clin Endocrinol Metab 62:1101–1109

    Article  PubMed  CAS  Google Scholar 

  57. Pujol-Borrell R, Todd I, Doshi M et al (1987) HLA class II induction in human islet cells by interferon-gamma plus tumour necrosis factor or lymphotoxin. Nature 326:304–306

    Article  PubMed  CAS  Google Scholar 

  58. Campbell IL, Oxbrow L, West J, Harrison LC (1988) Regulation of MHC protein expression in pancreatic beta-cells by interferon-gamma and tumor necrosis factor-alpha. Mol Endocrinol 2:101–107

    Article  PubMed  CAS  Google Scholar 

  59. Rhode A, Pauza ME, Barral AM et al (2005) Islet-specific expression of CXCL10 causes spontaneous islet infiltration and accelerates diabetes development. J Immunol 175:3516–3524

    PubMed  CAS  Google Scholar 

  60. Nicoletti F, Conget I, Di Mauro M et al (2002) Serum concentrations of the interferon-gamma-inducible chemokine IP-10/CXCL10 are augmented in both newly diagnosed Type I diabetes mellitus patients and subjects at risk of developing the disease. Diabetologia 45:1107–1110

    Article  PubMed  CAS  Google Scholar 

  61. Rasschaert J, Liu D, Kutlu B et al (2003) Global profiling of double stranded RNA- and IFN-gamma-induced genes in rat pancreatic beta cells. Diabetologia 46:1641–1657

    Article  PubMed  CAS  Google Scholar 

  62. Ylipaasto P, Kutlu B, Rasilainen S et al (2005) Global profiling of coxsackievirus- and cytokine-induced gene expression in human pancreatic islets. Diabetologia 48:1510–1522

    Article  PubMed  CAS  Google Scholar 

  63. Andreoletti L, Hober D, Hober-Vandenberghe C et al (1997) Detection of coxsackie B virus RNA sequences in whole blood samples from adult patients at the onset of type I diabetes mellitus. J Med Virol 52:121–127

    Article  PubMed  CAS  Google Scholar 

  64. Yoon JW, Austin M, Onodera T, Notkins AL (1979) Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med 300:1173–1179

    Article  PubMed  CAS  Google Scholar 

  65. Hindersson M, Elshebani A, Orn A, Tuvemo T, Frisk G (2005) Simultaneous type 1 diabetes onset in mother and son coincident with an enteroviral infection. J Clin Virol 33:158–167

    Article  PubMed  Google Scholar 

  66. Cabrera-Rode E, Sarmiento L, Molina G et al (2005) Islet cell related antibodies and type 1 diabetes associated with echovirus 30 epidemic: a case report. J Med Virol 76:373–377

    Article  PubMed  CAS  Google Scholar 

  67. Otonkoski T, Roivainen M, Vaarala O et al (2000) Neonatal Type I diabetes associated with maternal echovirus 6 infection: a case report. Diabetologia 43:1235–1238

    Article  PubMed  CAS  Google Scholar 

  68. Paananen A, Ylipaasto P, Rieder E, Hovi T, Galama J, Roivainen M (2003) Molecular and biological analysis of echovirus 9 strain isolated from a diabetic child. J Med Virol 69:529–537

    Article  PubMed  CAS  Google Scholar 

  69. Diaz-Horta O, Bello M, Cabrera-Rode E et al (2001) Echovirus 4 and type 1 diabetes mellitus. Autoimmunity 34:275–281

    Article  PubMed  CAS  Google Scholar 

  70. Cabrera-Rode E, Sarmiento L, Tiberti C et al (2003) Type 1 diabetes islet associated antibodies in subjects infected by echovirus 16. Diabetologia 46:1348–1353

    Article  PubMed  CAS  Google Scholar 

  71. (2000) Enterovirus surveillance-United States, 1997–1999. MMWR Morb Mortal Wkly Rep 49: 913–916

  72. (2006) Enterovirus surveillance-United States, 2002–2004. MMWR Morb Mortal Wkly Rep 55: 153–156

  73. Palacios G, Oberste MS (2005) Enteroviruses as agents of emerging infectious diseases. J Neurovirol 11:424–433

    Article  PubMed  CAS  Google Scholar 

  74. Gamble DR, Kinsley ML, FitzGerald MG, Bolton R, Taylor KW (1969) Viral antibodies in diabetes mellitus. Br Med J 3:627–630

    Article  PubMed  CAS  Google Scholar 

  75. Gamble DR, Taylor KW (1969) Seasonal incidence of diabetes mellitus. Br Med J 3:631–633

    Article  PubMed  CAS  Google Scholar 

  76. Elfaitouri A, Berg AK, Frisk G, Yin H, Tuvemo T, Blomberg J (2007) Recent enterovirus infection in type 1 diabetes: evidence with a novel IgM method. J Med Virol 79:1861–1867

    Article  PubMed  CAS  Google Scholar 

  77. Yin H, Berg AK, Tuvemo T, Frisk G (2002) Enterovirus RNA is found in peripheral blood mononuclear cells in a majority of type 1 diabetic children at onset. Diabetes 51:1964–1971

    Article  PubMed  CAS  Google Scholar 

  78. Clements GB, Galbraith DN, Taylor KW (1995) Coxsackie B virus infection and onset of childhood diabetes. Lancet 346:221–223

    Article  PubMed  CAS  Google Scholar 

  79. Coutant R, Carel JC, Lebon P, Bougneres PF, Palmer P, Cantero-Aguilar L (2002) Detection of enterovirus RNA sequences in serum samples from autoantibody-positive subjects at risk for diabetes. Diabet Med 19:968–969

    Article  PubMed  CAS  Google Scholar 

  80. Nairn C, Galbraith DN, Taylor KW, Clements GB (1999) Enterovirus variants in the serum of children at the onset of Type 1 diabetes mellitus. Diabet Med 16:509–513

    Article  PubMed  CAS  Google Scholar 

  81. Moya-Suri V, Schlosser M, Zimmermann K, Rjasanowski I, Gurtler L, Mentel R (2005) Enterovirus RNA sequences in sera of schoolchildren in the general population and their association with type 1-diabetes-associated autoantibodies. J Med Microbiol 54:879–883

    Article  PubMed  CAS  Google Scholar 

  82. Drescher KM, Tracy SM (2008) The CVB and etiology of type 1 diabetes. Curr Top Microbiol Immunol 323:259–274

    Article  PubMed  CAS  Google Scholar 

  83. Oikarinen M, Tauriainen S, Honkanen T, et al (2008) Analysis of pancreas tissue in a child positive for islet cell antibodies. Diabetologia 51:1796–802

    Google Scholar 

  84. Ylipaasto P, Klingel K, Lindberg AM et al (2004) Enterovirus infection in human pancreatic islet cells, islet tropism in vivo and receptor involvement in cultured islet beta cells. Diabetologia 47:225–239

    Article  PubMed  CAS  Google Scholar 

  85. Roivainen M (2006) Enteroviruses: new findings on the role of enteroviruses in type 1 diabetes. Int J Biochem Cell Biol 38:721–725

    Article  PubMed  CAS  Google Scholar 

  86. Chehadeh W, Kerr-Conte J, Pattou F et al (2000) Persistent infection of human pancreatic islets by coxsackievirus B is associated with alpha interferon synthesis in beta cells. J Virol 74:10153–10164

    Article  PubMed  CAS  Google Scholar 

  87. Campbell IL, Harrison LC, Ashcroft RG, Jack I (1988) Reovirus infection enhances expression of class I MHC proteins on human beta-cell and rat RINm5F cell. Diabetes 37:362–365

    Article  PubMed  CAS  Google Scholar 

  88. von Herrath M, Holz A (1997) Pathological changes in the islet milieu precede infiltration of islets and destruction of beta-cells by autoreactive lymphocytes in a transgenic model of virus-induced IDDM. J Autoimmun 10:231–238

    Article  Google Scholar 

  89. Westerholm-Ormio M, Vaarala O, Pihkala P, Ilonen J, Savilahti E (2003) Immunologic activity in the small intestinal mucosa of pediatric patients with type 1 diabetes. Diabetes 52:2287–2295

    Article  PubMed  CAS  Google Scholar 

  90. Oikarinen M, Tauriainen S, Honkanen T et al (2008) Detection of enteroviruses in the intestine of type 1 diabetic patients. Clin Exp Immunol 151:71–75

    Article  PubMed  CAS  Google Scholar 

  91. Cunningham L, Bowles NE, Lane RJ, Dubowitz V, Archard LC (1990) Persistence of enteroviral RNA in chronic fatigue syndrome is associated with the abnormal production of equal amounts of positive and negative strands of enteroviral RNA. J Gen Virol 71(Pt 6):1399–1402

    Article  PubMed  Google Scholar 

  92. Klingel K, Hohenadl C, Canu A et al (1992) Ongoing enterovirus-induced myocarditis is associated with persistent heart muscle infection: quantitative analysis of virus replication, tissue damage, and inflammation. Proc Natl Acad Sci USA 89:314–318

    Article  PubMed  CAS  Google Scholar 

  93. Conaldi PG, Serra C, Mossa A et al (1997) Persistent infection of human vascular endothelial cells by group B coxsackieviruses. J Infect Dis 175:693–696

    Article  PubMed  CAS  Google Scholar 

  94. Heim A, Canu A, Kirschner P et al (1992) Synergistic interaction of interferon-beta and interferon-gamma in coxsackievirus B3-infected carrier cultures of human myocardial fibroblasts. J Infect Dis 166:958–965

    Article  PubMed  CAS  Google Scholar 

  95. Chia JK (2005) The role of enterovirus in chronic fatigue syndrome. J Clin Pathol 58:1126–1132

    Article  PubMed  CAS  Google Scholar 

  96. Tam PE, Messner RP (1999) Molecular mechanisms of coxsackievirus persistence in chronic inflammatory myopathy: viral RNA persists through formation of a double-stranded complex without associated genomic mutations or evolution. J Virol 73:10113–10121

    PubMed  CAS  Google Scholar 

  97. Kato H, Takeuchi O, Sato S et al (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–105

    Article  PubMed  CAS  Google Scholar 

  98. Pichlmair A, Schulz O, Tan CP et al (2009) Activation of MDA5 requires higher-order RNA structures generated during virus infection. J Virol 83:10761–10769

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank JDRF, Diabetes UK and a Coordinated Action of the European Union (TONECA) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah J. Richardson.

Additional information

This article is published as part of the Special Issue on Immunopathology of the pancreas in type 1 diabetes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richardson, S.J., Willcox, A., Bone, A.J. et al. Immunopathology of the human pancreas in type-I diabetes. Semin Immunopathol 33, 9–21 (2011). https://doi.org/10.1007/s00281-010-0205-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-010-0205-0

Keywords

Navigation