Seminars in Immunopathology

, Volume 33, Issue 1, pp 9–21 | Cite as

Immunopathology of the human pancreas in type-I diabetes

  • Sarah J. Richardson
  • Abby Willcox
  • Adrian J. Bone
  • Noel G. Morgan
  • Alan K. Foulis
Review

Abstract

Type 1 diabetes is a chronic autoimmune disease characterised by the selective destruction of pancreatic beta (β) cells. The understanding of the aetiology of this disease has increased dramatically in recent years by the study of tissue recovered from patients, from analysis of the responses of isolated islet and β-cells in tissue culture and via the use of animal models. However, knowledge of the immunopathology of type 1 diabetes in humans is still relatively deficient due largely to the difficulty of accessing appropriate samples. Here we review the state of current knowledge in relation to the histopathological features of the disease in humans. We focus specifically on recent-onset type 1 diabetes cases since in such patients, evidence of the ongoing disease process is still present. We chart the progression of the disease by describing the characteristic features of the pancreas, consider the sequence of immune cell infiltration and discuss the abnormalities of MHC antigen expression. The possibility that these changes might derive from a persistent enteroviral infection of the islet beta cells is examined.

Keywords

Insulitis Beta-cell death Enterovirus Recent-onset type 1 diabetes MHC Chemokine Pancreatic histology 

References

  1. 1.
    Barnett AH, Eff C, Leslie RD, Pyke DA (1981) Diabetes in identical twins. A study of 200 pairs. Diabetologia 20:87–93PubMedCrossRefGoogle Scholar
  2. 2.
    Lo SS, Tun RY, Hawa M, Leslie RD (1991) Studies of diabetic twins. Diabetes Metab Rev 7:223–238PubMedCrossRefGoogle Scholar
  3. 3.
    Redondo MJ, Yu L, Hawa M et al (2001) Heterogeneity of type I diabetes: analysis of monozygotic twins in Great Britain and the United States. Diabetologia 44:354–362PubMedCrossRefGoogle Scholar
  4. 4.
    Knip M, Veijola R, Virtanen SM, Hyoty H, Vaarala O, Akerblom HK (2005) Environmental triggers and determinants of type 1 diabetes. Diabetes 54(Suppl 2):S125–136PubMedCrossRefGoogle Scholar
  5. 5.
    Lally F, Bone AJ (2003) Animal models of type 1 diabetes. Blackwell Science LtdGoogle Scholar
  6. 6.
    Gepts W (1965) Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes 14:619–633PubMedGoogle Scholar
  7. 7.
    Foulis AK, Liddle CN, Farquharson MA, Richmond JA, Weir RS (1986) The histopathology of the pancreas in type 1 (insulin-dependent) diabetes mellitus: a 25-year review of deaths in patients under 20 years of age in the United Kingdom. Diabetologia 29:267–274PubMedCrossRefGoogle Scholar
  8. 8.
    Foulis AK, Stewart JA (1984) The pancreas in recent-onset type 1 (insulin-dependent) diabetes mellitus: insulin content of islets, insulitis and associated changes in the exocrine acinar tissue. Diabetologia 26:456–461PubMedCrossRefGoogle Scholar
  9. 9.
    Gepts W, De Mey J (1978) Islet cell survival determined by morphology. An immunocytochemical study of the islets of Langerhans in juvenile diabetes mellitus. Diabetes 27(Suppl 1):251–261PubMedGoogle Scholar
  10. 10.
    Fraser PA, Henderson JR (1980) The arrangement of endocrine and exocrine pancreatic microcirculation observed in the living rabbit. Q J Exp Physiol Cogn Med Sci 65:151–158PubMedGoogle Scholar
  11. 11.
    Greenberg GR, Mitznegg P, Bloom SR (1977) Effect of pancreatic polypeptide on DNA-synthesis in the pancreas. Experientia 33:1332–1333PubMedCrossRefGoogle Scholar
  12. 12.
    Henderson JR, Daniel PM, Fraser PA (1981) The pancreas as a single organ: the influence of the endocrine upon the exocrine part of the gland. Gut 22:158–167PubMedCrossRefGoogle Scholar
  13. 13.
    Salter JM, Davidson IW, Best CH (1957) The pathologic effects of large amounts of glucagon. Diabetes 6:248–252, discussion, 252–245PubMedGoogle Scholar
  14. 14.
    Rahier J, Wallon J, Loozen S, Lefevre A, Gepts W, Haot J (1983) The pancreatic polypeptide cells in the human pancreas: the effects of age and diabetes. J Clin Endocrinol Metab 56:441–444PubMedCrossRefGoogle Scholar
  15. 15.
    Stansfield O, Warren S (1928) Inflammation involving the islands of Langerhans in diabetes; report on pathological findings. N Engl J Med 198:686–687CrossRefGoogle Scholar
  16. 16.
    Warren S, Root HF (1925) The pathology of diabetes, with special reference to pancreatic regeneration. Am J Pathol 1(415–430):411Google Scholar
  17. 17.
    Foulis AK, McGill M, Farquharson MA (1991) Insulitis in type 1 (insulin-dependent) diabetes mellitus in man—macrophages, lymphocytes, and interferon-gamma containing cells. J Pathol 165:97–103PubMedCrossRefGoogle Scholar
  18. 18.
    Somoza N, Vargas F, Roura-Mir C et al (1994) Pancreas in recent onset insulin-dependent diabetes mellitus. Changes in HLA, adhesion molecules and autoantigens, restricted T cell receptor V beta usage, and cytokine profile. J Immunol 153:1360–1377PubMedGoogle Scholar
  19. 19.
    Bottazzo GF, Dean BM, McNally JM, MacKay EH, Swift PG, Gamble DR (1985) In situ characterization of autoimmune phenomena and expression of HLA molecules in the pancreas in diabetic insulitis. N Engl J Med 313:353–360PubMedCrossRefGoogle Scholar
  20. 20.
    Itoh N, Hanafusa T, Miyazaki A et al (1993) Mononuclear cell infiltration and its relation to the expression of major histocompatibility complex antigens and adhesion molecules in pancreas biopsy specimens from newly diagnosed insulin-dependent diabetes mellitus patients. J Clin Invest 92:2313–2322PubMedCrossRefGoogle Scholar
  21. 21.
    Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG (2009) Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol 155:173–181PubMedCrossRefGoogle Scholar
  22. 22.
    Uno S, Imagawa A, Okita K et al (2007) Macrophages and dendritic cells infiltrating islets with or without beta cells produce tumour necrosis factor-alpha in patients with recent-onset type 1 diabetes. Diabetologia 50:596–601PubMedCrossRefGoogle Scholar
  23. 23.
    Dotta F, Censini S, van Halteren AG et al (2007) Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci USA 104:5115–5120PubMedCrossRefGoogle Scholar
  24. 24.
    Moriwaki M, Itoh N, Miyagawa J et al (1999) Fas and Fas ligand expression in inflamed islets in pancreas sections of patients with recent-onset Type I diabetes mellitus. Diabetologia 42:1332–1340PubMedCrossRefGoogle Scholar
  25. 25.
    Loweth AC, Williams GT, James RF, Scarpello JH, Morgan NG (1998) Human islets of Langerhans express Fas ligand and undergo apoptosis in response to interleukin-1beta and Fas ligation. Diabetes 47:727–732PubMedCrossRefGoogle Scholar
  26. 26.
    Brodie GM, Wallberg M, Santamaria P, Wong FS, Green EA (2008) B-cells promote intra-islet CD8+ cytotoxic T-cell survival to enhance type 1 diabetes. Diabetes 57:909–917PubMedCrossRefGoogle Scholar
  27. 27.
    Sia C (2005) Imbalance in Th cell polarization and its relevance in type 1 diabetes mellitus. Rev Diabet Stud 2:182–186PubMedCrossRefGoogle Scholar
  28. 28.
    Cooke A (2006) Th17 cells in inflammatory conditions. Rev Diabet Stud 3:72–75PubMedCrossRefGoogle Scholar
  29. 29.
    Brusko T, Wasserfall C, McGrail K et al (2007) No alterations in the frequency of FOXP3+ regulatory T-cells in type 1 diabetes. Diabetes 56:604–612PubMedCrossRefGoogle Scholar
  30. 30.
    Putnam AL, Vendrame F, Dotta F, Gottlieb PA (2005) CD4+CD25high regulatory T cells in human autoimmune diabetes. J Autoimmun 24:55–62PubMedCrossRefGoogle Scholar
  31. 31.
    Caligiuri MA (2008) Human natural killer cells. Blood 112:461–469PubMedCrossRefGoogle Scholar
  32. 32.
    Vivier E, Nunes JA, Vely F (2004) Natural killer cell signaling pathways. Science (New York, NY 306: 1517–1519Google Scholar
  33. 33.
    Keymeulen B, Walter M, Mathieu C, et al. Four-year metabolic outcome of a randomised controlled CD3-antibody trial in recent-onset type 1 diabetic patients depends on their age and baseline residual beta cell mass. DiabetologiaGoogle Scholar
  34. 34.
    Alejandro R, Shienvold FL, Hajek SV, Ryan U, Miller J, Mintz DH (1982) Immunocytochemical localization of HLA-DR in human islets of Langerhans. Diabetes 31(Suppl 4):17–22PubMedGoogle Scholar
  35. 35.
    Foulis AK, Farquharson MA, Hardman R (1987) Aberrant expression of class II major histocompatibility complex molecules by B cells and hyperexpression of class I major histocompatibility complex molecules by insulin containing islets in type 1 (insulin-dependent) diabetes mellitus. Diabetologia 30:333–343PubMedCrossRefGoogle Scholar
  36. 36.
    Imagawa A, Hanafusa T, Itoh N et al (1999) Immunological abnormalities in islets at diagnosis paralleled further deterioration of glycaemic control in patients with recent-onset Type I (insulin-dependent) diabetes mellitus. Diabetologia 42:574–578PubMedCrossRefGoogle Scholar
  37. 37.
    Gianani R, Campbell-Thompson M, Sarkar SA, et al. Dimorphic histopathology of long-standing childhood-onset diabetes. DiabetologiaGoogle Scholar
  38. 38.
    Tanaka S, Nishida Y, Aida K et al (2009) Enterovirus infection, CXC chemokine ligand 10 (CXCL10), and CXCR3 circuit: a mechanism of accelerated beta-cell failure in fulminant type 1 diabetes. Diabetes 58:2285–2291PubMedCrossRefGoogle Scholar
  39. 39.
    Lozanoska-Ochser B, Peakman M (2009) Level of major histocompatibility complex class I expression on endothelium in non-obese diabetic mice influences CD8 T cell adhesion and migration. Clin Exp Immunol 157:119–127PubMedCrossRefGoogle Scholar
  40. 40.
    Thomas HE, Parker JL, Schreiber RD, Kay TW (1998) IFN-gamma action on pancreatic beta cells causes class I MHC upregulation but not diabetes. J Clin Invest 102:1249–1257PubMedCrossRefGoogle Scholar
  41. 41.
    von Herrath MG, Oldstone MB (1997) Interferon-gamma is essential for destruction of beta cells and development of insulin-dependent diabetes mellitus. J Exp Med 185:531–539CrossRefGoogle Scholar
  42. 42.
    Foulis AK, Farquharson MA (1986) Aberrant expression of HLA-DR antigens by insulin-containing beta-cells in recent-onset type I diabetes mellitus. Diabetes 35:1215–1224PubMedCrossRefGoogle Scholar
  43. 43.
    Imagawa A, Hanafusa T, Itoh N et al (1996) Islet-infiltrating t lymphocytes in insulin-dependent diabetic patients express CD80 (B7-1) and CD86 (B7-2). J Autoimmun 9:391–396PubMedCrossRefGoogle Scholar
  44. 44.
    Hanninen A, Jalkanen S, Salmi M, Toikkanen S, Nikolakaros G, Simell O (1992) Macrophages, T cell receptor usage, and endothelial cell activation in the pancreas at the onset of insulin-dependent diabetes mellitus. J Clin Invest 90:1901–1910PubMedCrossRefGoogle Scholar
  45. 45.
    Lozanoska-Ochser B, Klein NJ, Huang GC, Alvarez RA, Peakman M (2008) Expression of CD86 on human islet endothelial cells facilitates T cell adhesion and migration. J Immunol 181:6109–6116PubMedGoogle Scholar
  46. 46.
    Pujol-Borrell R, Todd I, Doshi M, Gray D, Feldmann M, Bottazzo GF (1986) Differential expression and regulation of MHC products in the endocrine and exocrine cells of the human pancreas. Clin Exp Immunol 65:128–139PubMedGoogle Scholar
  47. 47.
    Foulis AK, Farquharson MA, Meager A (1987) Immunoreactive alpha-interferon in insulin-secreting beta cells in type 1 diabetes mellitus. Lancet 2:1423–1427PubMedCrossRefGoogle Scholar
  48. 48.
    Huang X, Yuang J, Goddard A et al (1995) Interferon expression in the pancreases of patients with type I diabetes. Diabetes 44:658–664PubMedCrossRefGoogle Scholar
  49. 49.
    Chehadeh W, Weill J, Vantyghem MC et al (2000) Increased level of interferon-alpha in blood of patients with insulin-dependent diabetes mellitus: relationship with coxsackievirus B infection. J Infect Dis 181:1929–1939PubMedCrossRefGoogle Scholar
  50. 50.
    Hultcrantz M, Huhn MH, Wolf M et al (2007) Interferons induce an antiviral state in human pancreatic islet cells. Virology 367:92–101PubMedCrossRefGoogle Scholar
  51. 51.
    Roep BO, Kleijwegt FS, van Halteren AG et al (2010) Islet inflammation and CXCL10 in recent-onset type 1 diabetes. Clin Exp Immunol 159:338–43Google Scholar
  52. 52.
    Richardson SJ, Willcox A, Bone AJ, Foulis AK, Morgan NG (2009) The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes. Diabetologia 52:1143–1151PubMedCrossRefGoogle Scholar
  53. 53.
    Flodstrom-Tullberg M, Hultcrantz M, Stotland A et al (2005) RNase L and double-stranded RNA-dependent protein kinase exert complementary roles in islet cell defense during coxsackievirus infection. J Immunol 174:1171–1177PubMedGoogle Scholar
  54. 54.
    Smyth DJ, Cooper JD, Bailey R et al (2006) A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet 38:617–619PubMedCrossRefGoogle Scholar
  55. 55.
    Nejentsev S, Walker N, Riches D, Egholm M, Todd JA (2009) Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science (New York, NY 324: 387–389Google Scholar
  56. 56.
    Campbell IL, Bizilj K, Colman PG, Tuch BE, Harrison LC (1986) Interferon-gamma induces the expression of HLA-A, B, C but not HLA-DR on human pancreatic beta-cells. J Clin Endocrinol Metab 62:1101–1109PubMedCrossRefGoogle Scholar
  57. 57.
    Pujol-Borrell R, Todd I, Doshi M et al (1987) HLA class II induction in human islet cells by interferon-gamma plus tumour necrosis factor or lymphotoxin. Nature 326:304–306PubMedCrossRefGoogle Scholar
  58. 58.
    Campbell IL, Oxbrow L, West J, Harrison LC (1988) Regulation of MHC protein expression in pancreatic beta-cells by interferon-gamma and tumor necrosis factor-alpha. Mol Endocrinol 2:101–107PubMedCrossRefGoogle Scholar
  59. 59.
    Rhode A, Pauza ME, Barral AM et al (2005) Islet-specific expression of CXCL10 causes spontaneous islet infiltration and accelerates diabetes development. J Immunol 175:3516–3524PubMedGoogle Scholar
  60. 60.
    Nicoletti F, Conget I, Di Mauro M et al (2002) Serum concentrations of the interferon-gamma-inducible chemokine IP-10/CXCL10 are augmented in both newly diagnosed Type I diabetes mellitus patients and subjects at risk of developing the disease. Diabetologia 45:1107–1110PubMedCrossRefGoogle Scholar
  61. 61.
    Rasschaert J, Liu D, Kutlu B et al (2003) Global profiling of double stranded RNA- and IFN-gamma-induced genes in rat pancreatic beta cells. Diabetologia 46:1641–1657PubMedCrossRefGoogle Scholar
  62. 62.
    Ylipaasto P, Kutlu B, Rasilainen S et al (2005) Global profiling of coxsackievirus- and cytokine-induced gene expression in human pancreatic islets. Diabetologia 48:1510–1522PubMedCrossRefGoogle Scholar
  63. 63.
    Andreoletti L, Hober D, Hober-Vandenberghe C et al (1997) Detection of coxsackie B virus RNA sequences in whole blood samples from adult patients at the onset of type I diabetes mellitus. J Med Virol 52:121–127PubMedCrossRefGoogle Scholar
  64. 64.
    Yoon JW, Austin M, Onodera T, Notkins AL (1979) Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med 300:1173–1179PubMedCrossRefGoogle Scholar
  65. 65.
    Hindersson M, Elshebani A, Orn A, Tuvemo T, Frisk G (2005) Simultaneous type 1 diabetes onset in mother and son coincident with an enteroviral infection. J Clin Virol 33:158–167PubMedCrossRefGoogle Scholar
  66. 66.
    Cabrera-Rode E, Sarmiento L, Molina G et al (2005) Islet cell related antibodies and type 1 diabetes associated with echovirus 30 epidemic: a case report. J Med Virol 76:373–377PubMedCrossRefGoogle Scholar
  67. 67.
    Otonkoski T, Roivainen M, Vaarala O et al (2000) Neonatal Type I diabetes associated with maternal echovirus 6 infection: a case report. Diabetologia 43:1235–1238PubMedCrossRefGoogle Scholar
  68. 68.
    Paananen A, Ylipaasto P, Rieder E, Hovi T, Galama J, Roivainen M (2003) Molecular and biological analysis of echovirus 9 strain isolated from a diabetic child. J Med Virol 69:529–537PubMedCrossRefGoogle Scholar
  69. 69.
    Diaz-Horta O, Bello M, Cabrera-Rode E et al (2001) Echovirus 4 and type 1 diabetes mellitus. Autoimmunity 34:275–281PubMedCrossRefGoogle Scholar
  70. 70.
    Cabrera-Rode E, Sarmiento L, Tiberti C et al (2003) Type 1 diabetes islet associated antibodies in subjects infected by echovirus 16. Diabetologia 46:1348–1353PubMedCrossRefGoogle Scholar
  71. 71.
    (2000) Enterovirus surveillance-United States, 1997–1999. MMWR Morb Mortal Wkly Rep 49: 913–916Google Scholar
  72. 72.
    (2006) Enterovirus surveillance-United States, 2002–2004. MMWR Morb Mortal Wkly Rep 55: 153–156Google Scholar
  73. 73.
    Palacios G, Oberste MS (2005) Enteroviruses as agents of emerging infectious diseases. J Neurovirol 11:424–433PubMedCrossRefGoogle Scholar
  74. 74.
    Gamble DR, Kinsley ML, FitzGerald MG, Bolton R, Taylor KW (1969) Viral antibodies in diabetes mellitus. Br Med J 3:627–630PubMedCrossRefGoogle Scholar
  75. 75.
    Gamble DR, Taylor KW (1969) Seasonal incidence of diabetes mellitus. Br Med J 3:631–633PubMedCrossRefGoogle Scholar
  76. 76.
    Elfaitouri A, Berg AK, Frisk G, Yin H, Tuvemo T, Blomberg J (2007) Recent enterovirus infection in type 1 diabetes: evidence with a novel IgM method. J Med Virol 79:1861–1867PubMedCrossRefGoogle Scholar
  77. 77.
    Yin H, Berg AK, Tuvemo T, Frisk G (2002) Enterovirus RNA is found in peripheral blood mononuclear cells in a majority of type 1 diabetic children at onset. Diabetes 51:1964–1971PubMedCrossRefGoogle Scholar
  78. 78.
    Clements GB, Galbraith DN, Taylor KW (1995) Coxsackie B virus infection and onset of childhood diabetes. Lancet 346:221–223PubMedCrossRefGoogle Scholar
  79. 79.
    Coutant R, Carel JC, Lebon P, Bougneres PF, Palmer P, Cantero-Aguilar L (2002) Detection of enterovirus RNA sequences in serum samples from autoantibody-positive subjects at risk for diabetes. Diabet Med 19:968–969PubMedCrossRefGoogle Scholar
  80. 80.
    Nairn C, Galbraith DN, Taylor KW, Clements GB (1999) Enterovirus variants in the serum of children at the onset of Type 1 diabetes mellitus. Diabet Med 16:509–513PubMedCrossRefGoogle Scholar
  81. 81.
    Moya-Suri V, Schlosser M, Zimmermann K, Rjasanowski I, Gurtler L, Mentel R (2005) Enterovirus RNA sequences in sera of schoolchildren in the general population and their association with type 1-diabetes-associated autoantibodies. J Med Microbiol 54:879–883PubMedCrossRefGoogle Scholar
  82. 82.
    Drescher KM, Tracy SM (2008) The CVB and etiology of type 1 diabetes. Curr Top Microbiol Immunol 323:259–274PubMedCrossRefGoogle Scholar
  83. 83.
    Oikarinen M, Tauriainen S, Honkanen T, et al (2008) Analysis of pancreas tissue in a child positive for islet cell antibodies. Diabetologia 51:1796–802Google Scholar
  84. 84.
    Ylipaasto P, Klingel K, Lindberg AM et al (2004) Enterovirus infection in human pancreatic islet cells, islet tropism in vivo and receptor involvement in cultured islet beta cells. Diabetologia 47:225–239PubMedCrossRefGoogle Scholar
  85. 85.
    Roivainen M (2006) Enteroviruses: new findings on the role of enteroviruses in type 1 diabetes. Int J Biochem Cell Biol 38:721–725PubMedCrossRefGoogle Scholar
  86. 86.
    Chehadeh W, Kerr-Conte J, Pattou F et al (2000) Persistent infection of human pancreatic islets by coxsackievirus B is associated with alpha interferon synthesis in beta cells. J Virol 74:10153–10164PubMedCrossRefGoogle Scholar
  87. 87.
    Campbell IL, Harrison LC, Ashcroft RG, Jack I (1988) Reovirus infection enhances expression of class I MHC proteins on human beta-cell and rat RINm5F cell. Diabetes 37:362–365PubMedCrossRefGoogle Scholar
  88. 88.
    von Herrath M, Holz A (1997) Pathological changes in the islet milieu precede infiltration of islets and destruction of beta-cells by autoreactive lymphocytes in a transgenic model of virus-induced IDDM. J Autoimmun 10:231–238CrossRefGoogle Scholar
  89. 89.
    Westerholm-Ormio M, Vaarala O, Pihkala P, Ilonen J, Savilahti E (2003) Immunologic activity in the small intestinal mucosa of pediatric patients with type 1 diabetes. Diabetes 52:2287–2295PubMedCrossRefGoogle Scholar
  90. 90.
    Oikarinen M, Tauriainen S, Honkanen T et al (2008) Detection of enteroviruses in the intestine of type 1 diabetic patients. Clin Exp Immunol 151:71–75PubMedCrossRefGoogle Scholar
  91. 91.
    Cunningham L, Bowles NE, Lane RJ, Dubowitz V, Archard LC (1990) Persistence of enteroviral RNA in chronic fatigue syndrome is associated with the abnormal production of equal amounts of positive and negative strands of enteroviral RNA. J Gen Virol 71(Pt 6):1399–1402PubMedCrossRefGoogle Scholar
  92. 92.
    Klingel K, Hohenadl C, Canu A et al (1992) Ongoing enterovirus-induced myocarditis is associated with persistent heart muscle infection: quantitative analysis of virus replication, tissue damage, and inflammation. Proc Natl Acad Sci USA 89:314–318PubMedCrossRefGoogle Scholar
  93. 93.
    Conaldi PG, Serra C, Mossa A et al (1997) Persistent infection of human vascular endothelial cells by group B coxsackieviruses. J Infect Dis 175:693–696PubMedCrossRefGoogle Scholar
  94. 94.
    Heim A, Canu A, Kirschner P et al (1992) Synergistic interaction of interferon-beta and interferon-gamma in coxsackievirus B3-infected carrier cultures of human myocardial fibroblasts. J Infect Dis 166:958–965PubMedCrossRefGoogle Scholar
  95. 95.
    Chia JK (2005) The role of enterovirus in chronic fatigue syndrome. J Clin Pathol 58:1126–1132PubMedCrossRefGoogle Scholar
  96. 96.
    Tam PE, Messner RP (1999) Molecular mechanisms of coxsackievirus persistence in chronic inflammatory myopathy: viral RNA persists through formation of a double-stranded complex without associated genomic mutations or evolution. J Virol 73:10113–10121PubMedGoogle Scholar
  97. 97.
    Kato H, Takeuchi O, Sato S et al (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–105PubMedCrossRefGoogle Scholar
  98. 98.
    Pichlmair A, Schulz O, Tan CP et al (2009) Activation of MDA5 requires higher-order RNA structures generated during virus infection. J Virol 83:10761–10769PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Sarah J. Richardson
    • 1
    • 5
  • Abby Willcox
    • 2
  • Adrian J. Bone
    • 3
  • Noel G. Morgan
    • 2
  • Alan K. Foulis
    • 4
  1. 1.Peninsula Medical SchoolUniversity of PlymouthPlymouthUK
  2. 2.Peninsula Medical SchoolUniversity of ExeterPlymouthUK
  3. 3.School of Pharmacy and Biomolecular SciencesUniversity of BrightonBrightonUK
  4. 4.Department of PathologyRoyal InfirmaryGlasgowUK
  5. 5.Institute of Biomedical and Clinical SciencesPeninsula Medical SchoolPlymouthUK

Personalised recommendations