Skip to main content

Advertisement

Log in

Costimulation of Th17 cells: adding fuel or putting out the fire in the inflamed gut?

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Inflammatory bowel disease, typified by Crohn’s disease and ulcerative colitis, is a common disorder characterized by recurrent and serious inflammation of the gastrointestinal tract. It is well documented that T cells play a pivotal role in the development of inflammatory bowel disease. Th17 cells are a unique T cell subpopulation implicated in inflammatory bowel disease and many other autoimmune/inflammatory diseases. However, the regulatory mechanism of Th17 activation and proliferation has not been defined completely. Recent studies have shown that the ligation of several costimulatory receptor–ligand pairs contributes to the activation, differentiation, and proliferation of T lymphocytes including the Th17 subset. In this review, we will discuss the emerging evidence on the role of Th17 cells in inflammatory bowel disease pathogenesis as well as the effect of costimulatory molecules on Th17 development and consider if the need for such costimulation of T lymphocytes provides a target for the development of novel therapeutic strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fiocchi C (1998) Inflammatory bowel disease: etiology and pathogenesis. Gastroenterol 115(1):182–205

    CAS  Google Scholar 

  2. Podolsky DK (2002) Inflammatory bowel disease. New Eng J Med 347(6):417–429

    CAS  PubMed  Google Scholar 

  3. Combe C, Saunders W (1813) A singular case of stricture and thickening of the ileum. Medical Transactions of the College of Physicians (London) 4:16–21

    Google Scholar 

  4. Abercrombie J (1828) Pathological and practical researches on diseases of the stomach and intestinal tract and other viscera of the abdomen. Waugh and Innes, Edinburgh, p 238

    Google Scholar 

  5. Crohn BB, Ginzburg I, Oppenheimer GD (1932) Regional ileitis: a pathologic and clinical entity. J Am Med Assoc 99:1323–1329

    Google Scholar 

  6. Schreiber S (2001) Monocytes or T cells in Crohn’s disease: does IL-16 allow both to play at that game? Gut 49:747–748

    CAS  PubMed  Google Scholar 

  7. Carpenter HA, Talley NJ (2000) The importance of clinicopathological correlation in the diagnosis of inflammatory conditions of the colon: histological patterns with clinical implications. Am J Gastroenterol 95:878–896

    CAS  PubMed  Google Scholar 

  8. Wilks S (1859) Lectures on pathological anatomy. Longman, Brown, Green, Longmans and Roberts, London

    Google Scholar 

  9. Sands BE (2007) Inflammatory bowel disease: past, present, and future. J Gastroenterol 42:16–25

    PubMed  Google Scholar 

  10. Loftus CG, Loftus EV Jr, Harmsen WS, Zinsmeister AR, Tremaine WJ, Melton LJ 3rd, Sandborn WJ (2007) Update on the incidence and prevalence of Crohn’s disease and ulcerative colitis in Olmsted County, Minnesota, 1940–2000. Inflamm Bowel Dis 13:254–261

    PubMed  Google Scholar 

  11. Herrinton LJ, Liu L, Lafata JE, Allison JE, Andrade SE, Korner EJ, Chan KA, Platt R, Hiatt D, O’Connor S (2007) Estimation of the period prevalence of inflammatory bowel disease among nine health plans using computerized diagnoses and outpatient pharmacy dispensings. Inflamm Bowel Dis 13:451–461

    PubMed  Google Scholar 

  12. de Silva HJ, de Silva NR, de Silva AP, Jewell DP (2008) Emergence of inflammatory bowel disease ‘beyond the West’: do prosperity and improved hygiene have a role? Trans R Soc Trop Med Hyg 102:857–860

    PubMed  Google Scholar 

  13. Aranda R, Sydora BC, McAllister PL, Binder SW, Yang HY, Targan SR, Kronenberg M (1997) Analysis of intestinal lymphocytes in mouse colitis mediated by transfer of CD4+, CD45RBhigh T cells to SCID recipients. J Immunol 158:3464–3473

    CAS  PubMed  Google Scholar 

  14. Vanderpool C, Yan F, Polk DB (2008) Mechanisms of probiotic action: implications for therapeutic applications in inflammatory bowel diseases. Inflamm Bowel Dis 14:1585–1596

    PubMed  Google Scholar 

  15. Isaacs K, Herfarth H (2008) Role of probiotic therapy in IBD. Inflamm Bowel Dis 14:1597–1605

    PubMed  Google Scholar 

  16. Linneberg A, Ostergaard C, Tvede M, Andersen LP, Nielsen NH, Madsen F, Frolund L, Dirksen A, Jorgensen T (2003) IgG antibodies against microorganisms and atopic disease in Danish adults: the Copenhagen Allergy Study. J Allergy Clin Immunol 111:847–853

    CAS  PubMed  Google Scholar 

  17. Waller S, Tremelling M, Bredin F, Godfrey L, Howson J, Parkes M (2006) Evidence for association of OCTN genes and IBD5 with ulcerative colitis. Gut 55:809–814

    CAS  PubMed  Google Scholar 

  18. Vermeire S, Pierik M, Hlavaty T, Claessens G, van Schuerbeeck N, Joossens S, Ferrante M, Henckaerts L, Bueno de Mesquita M, Vlietinck R, Rutgeerts P (2005) Association of organic cation transporter risk haplotype with perianal penetrating Crohn’s disease but not with susceptibility to IBD. Gastroenterology 129:1845–1853

    CAS  PubMed  Google Scholar 

  19. Cho JH (2008) The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol 8:458–466

    CAS  PubMed  Google Scholar 

  20. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirschner BS, Hanauer SB, Nunez G, Cho JH (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411:603–606

    CAS  PubMed  Google Scholar 

  21. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, Almer S, Tysk C, O’Morain CA, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel JF, Sahbatou M, Thomas G (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411:599–603

    CAS  PubMed  Google Scholar 

  22. Rubio CA, Hubbard GB (2002) Chronic colitis in Macaca fascicularis: similarities with chronic colitis in humans. In Vivo 16:191–195

    CAS  PubMed  Google Scholar 

  23. Sestak K, Merritt CK, Borda J, Saylor E, Schwamberger SR, Cogswell F, Didier ES, Didier PJ, Plauche G, Bohm RP, Aye PP, Alexa P, Ward RL, Lackner AA (2003) Infectious agent and immune response characteristics of chronic enterocolitis in captive rhesus macaques. Infect Immun 71:4079–4086

    CAS  PubMed  Google Scholar 

  24. King K, Sheikh MF, Cuthbert AP, Fisher SA, Onnie CM, Mirza MM, Pattni RC, Sanderson J, Forbes A, Mansfield J, Lewis CM, Roberts RG, Mathew CG (2006) Mutation, selection, and evolution of the Crohn disease susceptibility gene CARD15. Hum Mutat 27:44–54

    CAS  PubMed  Google Scholar 

  25. King K, Bagnall R, Fisher SA, Sheikh F, Cuthbert A, Tan S, Mundy NI, Rosenstiel P, Schreiber S, Mathew CG, Roberts RG (2007) Identification, evolution, and association study of a novel promoter and first exon of the human NOD2 (CARD15) gene. Genomics 90:493–501

    CAS  PubMed  Google Scholar 

  26. Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, Philpott DJ, Sansonetti PJ (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278:8869–8872

    CAS  PubMed  Google Scholar 

  27. Van Beelen AJ, Zelinkova Z, Taanman-Kueter EW, Muller FJ, Hommes DW, Zaat SA, Kapsenberg ML, de Jong EC (2007) Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity 27:660–669

    PubMed  Google Scholar 

  28. Strober W, Kitani A, Fuss I, Asano N, Watanabe T (2008) The molecular basis of NOD2 susceptibility mutations in Crohn’s disease. Mucosal Immunol 1(Suppl 1):S5–S9

    CAS  PubMed  Google Scholar 

  29. Franke A, Balschun T, Karlsen TH, Sventoraityte J, Nikolaus S, Mayr G, Domingues FS, Albrecht M, Nothnagel M, Ellinghaus D, Sina C, Onnie CM, Weersma RK, Stokkers PC, Wijmenga C, Gazouli M, Strachan D, McArdle WL, Vermeire S, Rutgeerts P, Rosenstiel P, Krawczak M, Vatn MH, IBSEN study group, Mathew CG, Schreiber S (2008) Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat Genet 40:1319–1323

    CAS  PubMed  Google Scholar 

  30. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant SR, Silverberg MS, Taylor KD, Barmada MM, Bitton A, Dassopoulos T, Datta LW, Green T, Griffiths AM, Kistner EO, Murtha MT, Regueiro MD, Rotter JI, Schumm LP, Steinhart AH, Targan SR, Xavier RJ, NIDDK IBD Genetics Consortium, Libioulle C, Sandor C, Lathrop M, Belaiche J, Dewit O, Gut I, Heath S, Laukens D, Mni M, Rutgeerts P, Van Gossum A, Zelenika D, Franchimont D, Hugot JP, de Vos M, Vermeire S, Louis E, Belgian-French IBD Consortium; Wellcome Trust Case Control Consortium, Cardon LR, Anderson CA, Drummond H, Nimmo E, Ahmad T, Prescott NJ, Onnie CM, Fisher SA, Marchini J, Ghori J, Bumpstead S, Gwilliam R, Tremelling M, Deloukas P, Mansfield J, Jewell D, Satsangi J, Mathew CG, Parkes M, Georges M, Daly MJ (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40:955–962

    CAS  PubMed  Google Scholar 

  31. Festen EA, Goyette P, Scott R, Annese V, Zhernakova A, Lian J, Lefèbvre C, Brant SR, Cho JH, Silverberg MS, Taylor KD, de Jong DJ, Stokkers PC, Mcgovern D, Palmieri O, Achkar JP, Xavier RJ, Daly MJ, Duerr RH, Wijmenga C, Weersma RK, Rioux JD (2009) Genetic variants in the region harbouring IL2/IL21 associated with ulcerative colitis. Gut 58:799–804

    CAS  PubMed  Google Scholar 

  32. Van Limbergen J, Wilson DC, Satsangi J (2009) The genetics of Crohn’s disease. Annu Rev Genomics Hum Genet 10:89–116

    PubMed  Google Scholar 

  33. Economou M, Trikalinos TA, Loizou KT, Tsianos EV, Ioannidis JP (2004) Differential effects of NOD2 variants on Crohn’s disease risk and phenotype in diverse populations: a metaanalysis. Am J Gastroenterol 99(12):2393–2404

    CAS  PubMed  Google Scholar 

  34. Wehkamp J, Salzman NH, Porter E, Nuding S, Weichenthal M, Petras RE, Shen B, Schaeffeler E, Schwab M, Linzmeier R, Feathers RW, Chu H, Lima H Jr, Fellermann K, Ganz T, Stange EF, Bevins CL (2005) Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci U S A 102(50):18129–18134

    CAS  PubMed  Google Scholar 

  35. Armuzzi A, Ahmad T, Ling KL, de Silva A, Cullen S, van Heel D, Orchard TR, Welsh KI, Marshall SE, Jewell DP (2003) Genotype–phenotype analysis of the Crohn’s disease susceptibility haplotype on chromosome 5q31. Gut 52(8):1133–1139

    CAS  PubMed  Google Scholar 

  36. Török HP, Glas J, Tonenchi L, Lohse P, Müller-Myhsok B, Limbersky O, Neugebauer C, Schnitzler F, Seiderer J, Tillack C, Brand S, Brünnler G, Jagiello P, Epplen JT, Griga T, Klein W, Schiemann U, Folwaczny M, Ochsenkühn T, Folwaczny C (2005) Polymorphisms in the DLG5 and OCTN cation transporter genes in Crohn’s disease. Gut 54(10):1421–1427

    PubMed  Google Scholar 

  37. Bouma G, Strober W (2003) The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 3:521–533

    CAS  PubMed  Google Scholar 

  38. Kappeler A, Mueller C (2000) The role of activated cytotoxic T cells in inflammatory bowel disease. Histol Histopathol 15:167–172

    CAS  PubMed  Google Scholar 

  39. Maerten P, Shen C, Colpaert S, Liu Z, Bullens DA, van Assche G, Penninckx F, Geboes K, Vanham G, Rutgeerts P, Ceuppens JL (2004) Involvement of interleukin 18 in Crohn’s disease: evidence from in vitro analysis of human gut inflammatory cells and from experimental colitis models. Clin Exp Immunol 135:310–317

    CAS  PubMed  Google Scholar 

  40. Singh B, Read S, Asseman C, Malmstrom V, Mottet C, Stephens LA, Stepankova R, Tlaskalova H, Powrie F (2001) Control of intestinal inflammation by regulatory T cells. Immunol Rev 182:190–200

    CAS  PubMed  Google Scholar 

  41. Hanauer SB (2006) Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm Bowel Dis 12(Suppl 1):S3–S9

    PubMed  Google Scholar 

  42. Shanahan F (2002) Crohn’s disease. Lancet 359:62–69

    CAS  PubMed  Google Scholar 

  43. Mannon PJ, Fuss IJ, Mayer L, Elson CO, Sandborn WJ, Present D, Dolin B, Goodman N, Groden C, Hornung RL, Quezado M, Yang Z, Neurath MF, Salfeld J, Veldman GM, Schwertschlag U, Strober W (2004) Anti-interleukin-12 antibody for active Crohn’s disease. N Engl J Med 351:2069–2079

    CAS  PubMed  Google Scholar 

  44. Agace WW (2008) T-cell recruitment to the intestinal mucosa. Trends Immunol 29:514–522

    CAS  PubMed  Google Scholar 

  45. Eksteen B, Grant AJ, Miles A, Curbishley SM, Lalor PF, Hubscher SG, Briskin M, Salmon M, Adams DH (2004) Hepatic endothelial CCL25 mediates the recruitment of CCR9+ gut-homing lymphocytes to the liver in primary sclerosing cholangitis. J Exp Med 200:1511–1517

    CAS  PubMed  Google Scholar 

  46. Adams DH, Eksteen B (2006) Aberrant homing of mucosal T cells and extra-intestinal manifestations of inflammatory bowel disease. Nat Rev Immunol 6:244–251

    CAS  PubMed  Google Scholar 

  47. Targan SR, Feagan BG, Fedorak RN, Lashner BA, Panaccione R, Present DH, Spehlmann ME, Rutgeerts PJ, Tulassay Z, Volfova M, Wolf DC, Hernandez C, Bornstein J, Sandborn WJ (2007) Natalizumab for the treatment of active Crohn’s disease: results of the ENCORE Trial. Gastroenterology 132:1672–1683

    CAS  PubMed  Google Scholar 

  48. Steinman L (2007) A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med 13:139–145

    CAS  PubMed  Google Scholar 

  49. Dong C (2006) Diversification of T-helper-cell lineages: finding the family root of IL-17-producing cells. Nat Rev Immunol 6:329–333

    CAS  PubMed  Google Scholar 

  50. Miossec P, Korn T, Kuchroo VK (2009) Interleukin-17 and type 17 helper T cells. N Engl J Med 361:888–898

    CAS  PubMed  Google Scholar 

  51. Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T, Levy DE, Leonard WJ, Littman DR (2007) IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 8:967–974

    CAS  PubMed  Google Scholar 

  52. Korn T, Bettelli E, Gao W, Awasthi A, Jager A, Strom TB, Oukka M, Kuchroo VK (2007) IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448:484–487

    CAS  PubMed  Google Scholar 

  53. Hirota K, Yoshitomi H, Hashimoto M, Maeda S, Teradaira S, Sugimoto N, Yamaguchi T, Nomura T, Ito H, Nakamura T, Sakaguchi N, Sakaguchi S (2007) Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J Exp Med 204:2803–2812

    CAS  PubMed  Google Scholar 

  54. Yamazaki T, Yang XO, Chung Y, Fukunaga A, Nurieva R, Pappu B, Martin-Orozco N, Kang HS, Ma L, Panopoulos AD, Craig S, Watowich SS, Jetten AM, Tian Q, Dong C (2008) CCR6 regulates the migration of inflammatory and regulatory T cells. J Immunol 181:8391–8401

    CAS  PubMed  Google Scholar 

  55. Marks BR, Nowyhed HN, Choi JY, Poholek AC, Odegard JM, Flavell RA, Craft J (2009) Thymic self-reactivity selects natural interleukin 17-producing T cells that can regulate peripheral inflammation. Nat Immunol 10:1125–1132

    CAS  PubMed  Google Scholar 

  56. Rouvier E, Luciani MF, Mattei MG, Denizot F, Golstein P (1993) CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol 150:5445–5456

    CAS  PubMed  Google Scholar 

  57. Laan M, Lotvall J, Chung KF, Linden A (2001) IL-17-induced cytokine release in human bronchial epithelial cells in vitro: role of mitogen-activated protein (MAP) kinases. Br J Pharmacol 133:200–206

    CAS  PubMed  Google Scholar 

  58. Laan M, Cui ZH, Hoshino H, Lotvall J, Sjostrand M, Gruenert DC, Skoogh BE, Linden A (1999) Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways. J Immunol 162:2347–2352

    CAS  PubMed  Google Scholar 

  59. Ye P, Garvey PB, Zhang P, Nelson S, Bagby G, Summer WR, Schwarzenberger P, Shellito JE, Kolls JK (2001) Interleukin-17 and lung host defense against Klebsiella pneumoniae infection. Am J Respir Cell Mol Biol 25:335–340

    CAS  PubMed  Google Scholar 

  60. Nakae S, Komiyama Y, Nambu A, Sudo K, Iwase M, Homma I, Sekikawa K, Asano M, Iwakura Y (2002) Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17:375–387

    CAS  PubMed  Google Scholar 

  61. Schwarzenberger P, Huang W, Ye P, Oliver P, Manuel M, Zhang Z, Bagby G, Nelson S, Kolls JK (2000) Requirement of endogenous stem cell factor and granulocyte-colony-stimulating factor for IL-17-mediated granulopoiesis. J Immunol 164:4783–4789

    CAS  PubMed  Google Scholar 

  62. Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y, Bamba T, Fujiyama Y (2003) Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52:65–70

    CAS  PubMed  Google Scholar 

  63. Nielsen OH, Kirman I, Rudiger N, Hendel J, Vainer B (2003) Upregulation of interleukin-12 and -17 in active inflammatory bowel disease. Scand J Gastroenterol 38:180–185

    CAS  PubMed  Google Scholar 

  64. Zhang Z, Zheng M, Bindas J, Schwarzenberger P, Kolls JK (2006) Critical role of IL-17 receptor signaling in acute TNBS-induced colitis. Inflamm Bowel Dis 12:382–388

    PubMed  Google Scholar 

  65. Schmidt C, Giese T, Ludwig B, Mueller-Molaian I, Marth T, Zeuzem S, Meuer SC, Stallmach A (2005) Expression of interleukin-12-related cytokine transcripts in inflammatory bowel disease: elevated interleukin-23p19 and interleukin-27p28 in Crohn’s disease but not in ulcerative colitis. Inflamm Bowel Dis 11:16–23

    PubMed  Google Scholar 

  66. Zhang Z, Andoh A, Inatomi O, Bamba S, Takayanagi A, Shimizu N, Fujiyama Y (2005) Interleukin-17 and lipopolysaccharides synergistically induce cyclooxygenase-2 expression in human intestinal myofibroblasts. J Gastroenterol Hepatol 20:619–627

    CAS  PubMed  Google Scholar 

  67. Andoh A, Hata K, Araki Y, Fujiyama Y, Bamba T (2002) Interleukin (IL)-4 and IL-17 synergistically stimulate IL-6 secretion in human colonic myofibroblasts. Int J Mol Med 10:631–634

    CAS  PubMed  Google Scholar 

  68. Hata K, Andoh A, Shimada M, Fujino S, Bamba S, Araki Y, Okuno T, Fujiyama Y, Bamba T (2002) IL-17 stimulates inflammatory responses via NF-kappaB and MAP kinase pathways in human colonic myofibroblasts. Am J Physiol Gastrointest Liver Physiol 282:G1035–G1044

    CAS  PubMed  Google Scholar 

  69. Lytle C, Tod TJ, Vo KT, Lee JW, Atkinson RD, Straus DS (2005) The peroxisome proliferator-activated receptor gamma ligand rosiglitazone delays the onset of inflammatory bowel disease in mice with interleukin 10 deficiency. Inflamm Bowel Dis 11:231–243

    PubMed  Google Scholar 

  70. Schnyder-Candrian S, Togbe D, Couillin I, Mercier I, Brombacher F, Quesniaux V, Fossiez F, Ryffel B, Schnyder B (2006) Interleukin-17 is a negative regulator of established allergic asthma. J Exp Med 203:2715–2725

    CAS  PubMed  Google Scholar 

  71. O’Connor W Jr, Kamanaka M, Booth CJ, Town T, Nakae S, Iwakura Y, Kolls JK, Flavell RA (2009) A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat Immunol 10:603–609

    PubMed  Google Scholar 

  72. Ogawa A, Andoh A, Araki Y, Bamba T, Fujiyama Y (2004) Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. Clin Immunol 110:55–62

    CAS  PubMed  Google Scholar 

  73. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, Steinhart AH, Abraham C, Regueiro M, Griffiths A, Dassopoulos T, Bitton A, Yang H, Targan S, Datta LW, Kistner EO, Schumm LP, Lee AT, Gregersen PK, Barmada MM, Rotter JI, Nicolae DL, Cho JH (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314:1461–1463

    CAS  PubMed  Google Scholar 

  74. Fuss IJ, Becker C, Yang Z, Groden C, Hornung RL, Heller F, Neurath MF, Strober W, Mannon PJ (2006) Both IL-12p70 and IL-23 are synthesized during active Crohn’s disease and are down-regulated by treatment with anti-IL-12 p40 monoclonal antibody. Inflamm Bowel Dis 12:9–15

    PubMed  Google Scholar 

  75. Podojil JR, Miller SD (2009) Molecular mechanisms of T-cell receptor and costimulatory molecule ligation/blockade in autoimmune disease therapy. Immunol Rev 229:337–355

    CAS  PubMed  Google Scholar 

  76. Goronzy JJ, Weyand CM (2008) T-cell co-stimulatory pathways in autoimmunity. Arthritis Res Ther 10(Suppl 1):S3

    PubMed  Google Scholar 

  77. Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ (2007) The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol 8:239–245

    CAS  PubMed  Google Scholar 

  78. Abbas AK, Sharpe AH (1999) T-cell stimulation: an abundance of B7s. Nat Med 5:1345–1346

    CAS  PubMed  Google Scholar 

  79. Alegre ML, Frauwirth KA, Thompson CB (2001) T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol 1:220–228

    CAS  PubMed  Google Scholar 

  80. Coyle AJ, Gutierrez-Ramos JC (2001) The expanding B7 superfamily: increasing complexity in costimulatory signals regulating T cell function. Nat Immunol 2:203–209

    CAS  PubMed  Google Scholar 

  81. Mueller DL (2000) T cells: a proliferation of costimulatory molecules. Curr Biol 10:R227–R230

    CAS  PubMed  Google Scholar 

  82. Hara T, Fu SM, Hansen JA (1985) Human T cell activation. II. A new activation pathway used by a major T cell population via a disulfide-bonded dimer of a 44 kilodalton polypeptide (9.3 antigen). J Exp Med 161:1513–1524

    CAS  PubMed  Google Scholar 

  83. Seed B, Aruffo A (1987) Molecular cloning of the CD2 antigen, the T-cell erythrocyte receptor, by a rapid immunoselection procedure. Proc Natl Acad Sci U S A 84:3365–3369

    CAS  PubMed  Google Scholar 

  84. Gross JA, St John T, Allison JP (1990) The murine homologue of the T lymphocyte antigen CD28. Molecular cloning and cell surface expression. J Immunol 144:3201–3210

    CAS  PubMed  Google Scholar 

  85. August A, Dupont B (1994) CD28 of T lymphocytes associates with phosphatidylinositol 3-kinase. Int Immunol 6:769–774

    CAS  PubMed  Google Scholar 

  86. Rudd CE, Janssen O, Cai YC, da Silva AJ, Raab M, Prasad KV (1994) Two-step TCR zeta/CD3-CD4 and CD28 signaling in T cells: SH2/SH3 domains, protein-tyrosine and lipid kinases. Immunol Today 15:225–234

    CAS  PubMed  Google Scholar 

  87. Kane LP, Lin J, Weiss A (2002) It’s all Rel-ative: NF-kappaB and CD28 costimulation of T-cell activation. Trends Immunol 23:413–420

    CAS  PubMed  Google Scholar 

  88. Michel F, Mangino G, Attal-Bonnefoy G, Tuosto L, Alcover A, Roumier A, Olive D, Acuto O (2000) CD28 utilizes Vav-1 to enhance TCR-proximal signaling and NF-AT activation. J Immunol 165:3820–3829

    CAS  PubMed  Google Scholar 

  89. Rincon M, Flavell RA (1994) AP-1 transcriptional activity requires both T-cell receptor-mediated and co-stimulatory signals in primary T lymphocytes. EMBO J 13:4370–4381

    CAS  PubMed  Google Scholar 

  90. Schmitz ML, Krappmann D (2006) Controlling NF-kappaB activation in T cells by costimulatory receptors. Cell Death Differ 13:834–842

    CAS  PubMed  Google Scholar 

  91. Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK, Ledbetter JA (1991) CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 174:561–569

    CAS  PubMed  Google Scholar 

  92. Brunet JF, Denizot F, Luciani MF, Roux-Dosseto M, Suzan M, Mattei MG, Golstein P (1987) A new member of the immunoglobulin superfamily—CTLA-4. Nature 328:267–270

    CAS  PubMed  Google Scholar 

  93. Brunet JF, Denizot F, Golstein P (1988) A differential molecular biology search for genes preferentially expressed in functional T lymphocytes: the CTLA genes. Immunol Rev 103:21–36

    CAS  PubMed  Google Scholar 

  94. Dariavach P, Mattei MG, Golstein P, Lefranc MP (1988) Human Ig superfamily CTLA-4 gene: chromosomal localization and identity of protein sequence between murine and human CTLA-4 cytoplasmic domains. Eur J Immunol 18:1901–1905

    CAS  PubMed  Google Scholar 

  95. Sharpe AH, Freeman GJ (2002) The B7-CD28 superfamily. Nat Rev Immunol 2:116–126

    CAS  PubMed  Google Scholar 

  96. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3:541–547

    CAS  PubMed  Google Scholar 

  97. Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, Thompson CB, Griesser H, Mak TW (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270:985–988

    CAS  PubMed  Google Scholar 

  98. Hutloff A, Dittrich AM, Beier KC, Eljaschewitsch B, Kraft R, Anagnostopoulos I, Kroczek RA (1999) ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397:263–266

    CAS  PubMed  Google Scholar 

  99. Mages HW, Hutloff A, Heuck C, Buchner K, Himmelbauer H, Oliveri F, Kroczek RA (2000) Molecular cloning and characterization of murine ICOS and identification of B7h as ICOS ligand. Eur J Immunol 30:1040–1047

    CAS  PubMed  Google Scholar 

  100. McAdam AJ, Chang TT, Lumelsky AE, Greenfield EA, Boussiotis VA, Duke-Cohan JS, Chernova T, Malenkovich N, Jabs C, Kuchroo VK, Ling V, Collins M, Sharpe AH, Freeman GJ (2000) Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J Immunol 165:5035–5040

    CAS  PubMed  Google Scholar 

  101. Aicher A, Hayden-Ledbetter M, Brady WA, Pezzutto A, Richter G, Magaletti D, Buckwalter S, Ledbetter JA, Clark EA (2000) Characterization of human inducible costimulator ligand expression and function. J Immunol 164:4689–4696

    CAS  PubMed  Google Scholar 

  102. Riley JL, Blair PJ, Musser JT, Abe R, Tezuka K, Tsuji T, June CH (2001) ICOS costimulation requires IL-2 and can be prevented by CTLA-4 engagement. J Immunol 166:4943–4948

    CAS  PubMed  Google Scholar 

  103. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q, Dong C (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141

    CAS  PubMed  Google Scholar 

  104. Bauquet AT, Jin H, Paterson AM, Mitsdoerffer M, Ho IC, Sharpe AH, Kuchroo VK (2009) The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat Immunol 10:167–175

    CAS  PubMed  Google Scholar 

  105. Nakae S, Iwakura Y, Suto H, Galli SJ (2007) Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17. J Leukoc Biol 81:1258–1268

    CAS  PubMed  Google Scholar 

  106. Babu S, Bhat SQ, Kumar NP, Jayantasri S, Rukmani S, Kumaran P, Gopi PG, Kolappan C, Kumaraswami V, Nutman TB (2009) Human type 1 and 17 responses in latent tuberculosis are modulated by coincident filarial infection through cytotoxic T lymphocyte antigen-4 and programmed death-1. J Infect Dis 200:288–298

    CAS  PubMed  Google Scholar 

  107. Bouguermouh S, Fortin G, Baba N, Rubio M, Sarfati M (2009) CD28 co-stimulation down regulates Th17 development. PLoS ONE 4:e5087

    PubMed  Google Scholar 

  108. Galicia G, Kasran A, Uyttenhove C, De Swert K, Van Snick J, Ceuppens JL (2009) ICOS deficiency results in exacerbated IL-17 mediated experimental autoimmune encephalomyelitis. J Clin Immunol 29:426–433

    CAS  PubMed  Google Scholar 

  109. Takahashi N, Matsumoto K, Saito H, Nanki T, Miyasaka N, Kobata T, Azuma M, Lee SK, Mizutani S, Morio T (2009) Impaired CD4 and CD8 effector function and decreased memory T cell populations in ICOS-deficient patients. J Immunol 182:5515–5527

    CAS  PubMed  Google Scholar 

  110. Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    CAS  PubMed  Google Scholar 

  111. Riley JL (2009) PD-1 signaling in primary T cells. Immunol Rev 229:114–125

    CAS  PubMed  Google Scholar 

  112. Nishimura H, Minato N, Nakano T, Honjo T (1998) Immunological studies on PD-1 deficient mice: implication of PD-1 as a negative regulator for B cell responses. Int Immunol 10:1563–1572

    CAS  PubMed  Google Scholar 

  113. Nishimura H, Nose M, Hiai H, Minato N, Honjo T (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11:141–151

    CAS  PubMed  Google Scholar 

  114. Okazaki T, Honjo T (2007) PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol 19:813–824

    CAS  PubMed  Google Scholar 

  115. Carter LL, Leach MW, Azoitei ML, Cui J, Pelker JW, Jussif J, Benoit S, Ireland G, Luxenberg D, Askew GR, Milarski KL, Groves C, Brown T, Carito BA, Percival K, Carreno BM, Collins M, Marusic S (2007) PD-1/PD-L1, but not PD-1/PD-L2, interactions regulate the severity of experimental autoimmune encephalomyelitis. J Neuroimmunol 182:124–134

    CAS  PubMed  Google Scholar 

  116. Wang C, Dehghani B, Li Y, Kaler LJ, Vandenbark AA, Offner H (2009) Oestrogen modulates experimental autoimmune encephalomyelitis and interleukin-17 production via programmed death 1. Immunology 126:329–335

    CAS  PubMed  Google Scholar 

  117. Totsuka T, Kanai T, Nemoto Y, Tomita T, Tsuchiya K, Sakamoto N, Okamoto R, Watanabe M (2008) Immunosenescent colitogenic CD4(+) T cells convert to regulatory cells and suppress colitis. Eur J Immunol 38:1275–1286

    CAS  PubMed  Google Scholar 

  118. Schreiner B, Bailey SL, Shin T, Chen L, Miller SD (2008) PD-1 ligands expressed on myeloid-derived APC in the CNS regulate T-cell responses in EAE. Eur J Immunol 38:2706–2717

    CAS  PubMed  Google Scholar 

  119. Chirmule N, McCloskey TW, Hu R, Kalyanaraman VS, Pahwa S (1995) HIV gp120 inhibits T cell activation by interfering with expression of costimulatory molecules CD40 ligand and CD80 (B71). J Immunol 155:917–924

    CAS  PubMed  Google Scholar 

  120. Roy M, Aruffo A, Ledbetter J, Linsley P, Kehry M, Noelle R (1995) Studies on the interdependence of gp39 and B7 expression and function during antigen-specific immune responses. Eur J Immunol 25:596–603

    CAS  PubMed  Google Scholar 

  121. Klaus SJ, Berberich I, Shu G, Clark EA (1994) CD40 and its ligand in the regulation of humoral immunity. Semin Immunol 6:279–286

    CAS  PubMed  Google Scholar 

  122. Perona-Wright G, Jenkins SJ, O’Connor RA, Zienkiewicz D, McSorley HJ, Maizels RM, Anderton SM, MacDonald AS (2009) A pivotal role for CD40-mediated IL-6 production by dendritic cells during IL-17 induction in vivo. J Immunol 182:2808–2815

    CAS  PubMed  Google Scholar 

  123. Iezzi G, Sonderegger I, Ampenberger F, Schmitz N, Marsland BJ, Kopf M (2009) CD40–CD40L cross-talk integrates strong antigenic signals and microbial stimuli to induce development of IL-17-producing CD4+ T cells. Proc Natl Acad Sci U S A 106:876–881

    PubMed  Google Scholar 

  124. Croft M (2009) The role of TNF superfamily members in T-cell function and diseases. Nat Rev Immunol 9:271–285

    CAS  PubMed  Google Scholar 

  125. Croft M, So T, Duan W, Soroosh P (2009) The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol Rev 229:173–191

    CAS  PubMed  Google Scholar 

  126. Weinberg AD, Wegmann KW, Funatake C, Whitham RH (1999) Blocking OX-40/OX-40 ligand interaction in vitro and in vivo leads to decreased T cell function and amelioration of experimental allergic encephalomyelitis. J Immunol 162:1818–1826

    CAS  PubMed  Google Scholar 

  127. Murata K, Ishii N, Takano H, Miura S, Ndhlovu LC, Nose M, Noda T, Sugamura K (2000) Impairment of antigen-presenting cell function in mice lacking expression of OX40 ligand. J Exp Med 191:365–374

    CAS  PubMed  Google Scholar 

  128. Higgins LM, McDonald SA, Whittle N, Crockett N, Shields JG, MacDonald TT (1999) Regulation of T cell activation in vitro and in vivo by targeting the OX40-OX40 ligand interaction: amelioration of ongoing inflammatory bowel disease with an OX40-IgG fusion protein, but not with an OX40 ligand-IgG fusion protein. J Immunol 162:486–493

    CAS  PubMed  Google Scholar 

  129. Sallusto F, Geginat J, Lanzavecchia A (2004) Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 22:745–763

    CAS  PubMed  Google Scholar 

  130. Salek-Ardakani S, Croft M (2006) Regulation of CD4 T cell memory by OX40 (CD134). Vaccine 24:872–883

    CAS  PubMed  Google Scholar 

  131. Gramaglia I, Jember A, Pippig SD, Weinberg AD, Killeen N, Croft M (2000) The OX40 costimulatory receptor determines the development of CD4 memory by regulating primary clonal expansion. J Immunol 165:3043–3050

    CAS  PubMed  Google Scholar 

  132. Soroosh P, Ine S, Sugamura K, Ishii N (2007) Differential requirements for OX40 signals on generation of effector and central memory CD4+ T cells. J Immunol 179:5014–5023

    CAS  PubMed  Google Scholar 

  133. Weinberg AD, Rivera MM, Prell R, Morris A, Ramstad T, Vetto JT, Urba WJ, Alvord G, Bunce C, Shields J (2000) Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J Immunol 164:2160–2169

    CAS  PubMed  Google Scholar 

  134. London CA, Lodge MP, Abbas AK (2000) Functional responses and costimulator dependence of memory CD4+ T cells. J Immunol 164:265–272

    CAS  PubMed  Google Scholar 

  135. Salek-Ardakani S, Song J, Halteman BS, Jember AG, Akiba H, Yagita H, Croft M (2003) OX40 (CD134) controls memory T helper 2 cells that drive lung inflammation. J Exp Med 198:315–324

    CAS  PubMed  Google Scholar 

  136. Ndhlovu LC, Ishii N, Murata K, Sato T, Sugamura K (2001) Critical involvement of OX40 ligand signals in the T cell priming events during experimental autoimmune encephalomyelitis. J Immunol 167:2991–2999

    CAS  PubMed  Google Scholar 

  137. Carboni S, Aboul-Enein F, Waltzinger C, Killeen N, Lassmann H, Pena-Rossi C (2003) CD134 plays a crucial role in the pathogenesis of EAE and is upregulated in the CNS of patients with multiple sclerosis. J Neuroimmunol 145:1–11

    CAS  PubMed  Google Scholar 

  138. Piconese S, Gri G, Tripodo C, Musio S, Gorzanelli A, Frossi B, Pedotti R, Pucillo CE, Colombo MP (2009) Mast cells counteract regulatory T-cell suppression through interleukin-6 and OX40/OX40L axis toward Th17-cell differentiation. Blood 114:2639–2648

    CAS  PubMed  Google Scholar 

  139. Rodriguez-Manzanet R, DeKruyff R, Kuchroo VK, Umetsu DT (2009) The costimulatory role of TIM molecules. Immunol Rev 229:259–270

    CAS  PubMed  Google Scholar 

  140. McIntire JJ, Umetsu SE, Macaubas C, Hoyte EG, Cinnioglu C, Cavalli-Sforza LL, Barsh GS, Hallmayer JF, Underhill PA, Risch NJ, Freeman GJ, DeKruyff RH, Umetsu DT (2003) Immunology: hepatitis A virus link to atopic disease. Nature 425:576

    CAS  PubMed  Google Scholar 

  141. Meyers JH, Chakravarti S, Schlesinger D, Illes Z, Waldner H, Umetsu SE, Kenny J, Zheng XX, Umetsu DT, DeKruyff RH, Strom TB, Kuchroo VK (2005) TIM-4 is the ligand for TIM-1, and the TIM-1-TIM-4 interaction regulates T cell proliferation. Nat Immunol 6:455–464

    CAS  PubMed  Google Scholar 

  142. Matricardi PM, Rosmini F, Riondino S, Fortini M, Ferrigno L, Rapicetta M, Bonini S (2000) Exposure to foodborne and orofecal microbes versus airborne viruses in relation to atopy and allergic asthma: epidemiological study. BMJ 320:412–417

    CAS  PubMed  Google Scholar 

  143. Matricardi PM, Rosmini F, Ferrigno L, Nisini R, Rapicetta M, Chionne P, Stroffolini T, Pasquini P, D’Amelio R (1997) Cross sectional retrospective study of prevalence of atopy among Italian military students with antibodies against hepatitis A virus. BMJ 314:999–1003

    CAS  PubMed  Google Scholar 

  144. Chae SC, Park YR, Song JH, Shim SC, Yoon KS, Chung HT (2005) The polymorphisms of Tim-1 promoter region are associated with rheumatoid arthritis in a Korean population. Immunogenetics 56:696–701

    CAS  PubMed  Google Scholar 

  145. Chae SC, Song JH, Shim SC, Yoon KS, Chung HT (2004) The exon 4 variations of Tim-1 gene are associated with rheumatoid arthritis in a Korean population. Biochem Biophys Res Commun 315:971–975

    CAS  PubMed  Google Scholar 

  146. Khademi M, Illes Z, Gielen AW, Marta M, Takazawa N, Baecher-Allan C, Brundin L, Hannerz J, Martin C, Harris RA, Hafler DA, Kuchroo VK, Olsson T, Piehl F, Wallstrom E (2004) T cell Ig- and mucin-domain-containing molecule-3 (TIM-3) and TIM-1 molecules are differentially expressed on human Th1 and Th2 cells and in cerebrospinal fluid-derived mononuclear cells in multiple sclerosis. J Immunol 172:7169–7176

    CAS  PubMed  Google Scholar 

  147. Degauque N, Mariat C, Kenny J, Zhang D, Gao W, Vu MD, Alexopoulos S, Oukka M, Umetsu DT, DeKruyff RH, Kuchroo V, Zheng XX, Strom TB (2008) Immunostimulatory Tim-1-specific antibody deprograms Tregs and prevents transplant tolerance in mice. J Clin Invest 118:735–741

    CAS  PubMed  Google Scholar 

  148. Xiao S, Najafian N, Reddy J, Albin M, Zhu C, Jensen E, Imitola J, Korn T, Anderson AC, Zhang Z, Gutierrez C, Moll T, Sobel RA, Umetsu DT, Yagita H, Akiba H, Strom T, Sayegh MH, DeKruyff RH, Khoury SJ, Kuchroo VK (2007) Differential engagement of Tim-1 during activation can positively or negatively costimulate T cell expansion and effector function. J Exp Med 204:1691–1702

    CAS  PubMed  Google Scholar 

  149. Hastings WD, Anderson DE, Kassam N, Koguchi K, Greenfield EA, Kent SC, Zheng XX, Strom TB, Hafler DA, Kuchroo VK (2009) TIM-3 is expressed on activated human CD4+ T cells and regulates Th1 and Th17 cytokines. Eur J Immunol 39:2492–2501

    CAS  PubMed  Google Scholar 

  150. Niwa H, Satoh T, Matsushima Y, Hosoya K, Saeki K, Niki T, Hirashima M, Yokozeki H (2009) Stable form of galectin-9, a Tim-3 ligand, inhibits contact hypersensitivity and psoriatic reactions: a potent therapeutic tool for Th1- and/or Th17-mediated skin inflammation. Clin Immunol 132:184–194

    CAS  PubMed  Google Scholar 

  151. Seki M, Oomizu S, Sakata KM, Sakata A, Arikawa T, Watanabe K, Ito K, Takeshita K, Niki T, Saita N, Nishi N, Yamauchi A, Katoh S, Matsukawa A, Kuchroo V, Hirashima M (2008) Galectin-9 suppresses the generation of Th17, promotes the induction of regulatory T cells, and regulates experimental autoimmune arthritis. Clin Immunol 127:78–88

    CAS  PubMed  Google Scholar 

  152. Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, Zheng XX, Strom TB, Kuchroo VK (2005) The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6:1245–1252

    CAS  PubMed  Google Scholar 

  153. Sabatos CA, Chakravarti S, Cha E, Schubart A, Sanchez-Fueyo A, Zheng XX, Coyle AJ, Strom TB, Freeman GJ, Kuchroo VK (2003) Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance. Nat Immunol 4:1102–1110

    CAS  PubMed  Google Scholar 

  154. Reddy JG, Loftus EV Jr (2006) Safety of infliximab and other biologic agents in the inflammatory bowel diseases. Gastroenterol Clin North Am 35:837–855

    PubMed  Google Scholar 

  155. Kwon JH, Farrell RJ (2005) The risk of lymphoma in the treatment of inflammatory bowel disease with immunosuppressive agents. Crit Rev Oncol Hematol 56:169–178

    PubMed  Google Scholar 

  156. Antoni C, Braun J (2002) Side effects of anti-TNF therapy: current knowledge. Clin Exp Rheumatol 20:S152–S157

    CAS  PubMed  Google Scholar 

  157. Jiang Y, Xia B, Jiang L, Lv M, Guo Q, Chen M, Li J, Xia HH, Wong BC (2006) Association of CTLA-4 gene microsatellite polymorphism with ulcerative colitis in Chinese patients. Inflamm Bowel Dis 12:369–373

    PubMed  Google Scholar 

  158. Machida H, Tsukamoto K, Wen CY, Narumi Y, Shikuwa S, Isomoto H, Takeshima F, Mizuta Y, Niikawa N, Murata I, Kohno S (2005) Association of polymorphic alleles of CTLA4 with inflammatory bowel disease in the Japanese. World J Gastroenterol 11:4188–4193

    CAS  PubMed  Google Scholar 

  159. Xia B, Crusius JB, Wu J, Zwiers A, van Bodegraven AA, Pena AS (2002) CTLA4 gene polymorphisms in Dutch and Chinese patients with inflammatory bowel disease. Scand J Gastroenterol 37:1296–1300

    CAS  PubMed  Google Scholar 

  160. Kim G, Schoenberger SP, Sharpe A, Kronenberg M (2006) Synergistic costimulation by both B7 molecules regulates colitis pathogenesis. Ann N Y Acad Sci 1072:233–241

    CAS  PubMed  Google Scholar 

  161. Izcue A, Coombes JL, Powrie F (2006) Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation. Immunol Rev 212:256–271

    CAS  PubMed  Google Scholar 

  162. Sakthivel P (2009) Bench to bedside of CTLA-4: a novel immuno-therapeutic agent for inflammatory disorders. Recent Pat Inflamm Allergy Drug Discov 3:84–95

    CAS  PubMed  Google Scholar 

  163. Goeb V, Buch MH, Vital EM, Emery P (2009) Costimulation blockade in rheumatic diseases: where we are? Curr Opin Rheumatol 21:244–250

    Article  PubMed  Google Scholar 

  164. Buch MH, Vital EM, Emery P (2008) Abatacept in the treatment of rheumatoid arthritis. Arthritis Res Ther 10(Suppl 1):S5

    PubMed  Google Scholar 

  165. Ruby CE, Yates MA, Hirschhorn-Cymerman D, Chlebeck P, Wolchok JD, Houghton AN, Offner H, Weinberg AD (2009) Cutting edge: OX40 agonists can drive regulatory T cell expansion if the cytokine milieu is right. J Immunol 183:4853–4857

    CAS  PubMed  Google Scholar 

  166. Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM (2006) Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 24:677–688

    CAS  PubMed  Google Scholar 

  167. Lee YK, Mukasa R, Hatton RD, Weaver CT (2009) Developmental plasticity of Th17 and Treg cells. Curr Opin Immunol 21:274–280

    CAS  PubMed  Google Scholar 

  168. Zhou L, Chong MM, Littman DR (2009) Plasticity of CD4+ T cell lineage differentiation. Immunity 30:646–655

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Judie McDonald for help in preparing the manuscript. This study was supported by National Institutes of Health Grants HD033703-10 (ZZ), EY016788 (ZZ), EY013093 (JTR), and EY006484 (JTR) as well as Child Digestive Health and Nutrition Foundation/CCFA Young Investigator Award (ZZ). JTR is a scholar supported by Research to Prevent Blindness. Funds from the Stan and Madelle Rosenfeld Family Trust and the Kuzell Family Arthritis Research Foundation also contributed to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zili Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Rosenbaum, J.T., Zhong, W. et al. Costimulation of Th17 cells: adding fuel or putting out the fire in the inflamed gut?. Semin Immunopathol 32, 55–70 (2010). https://doi.org/10.1007/s00281-009-0190-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-009-0190-3

Keywords

Navigation