Skip to main content

Advertisement

Log in

Liver architecture, cell function, and disease

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The liver is an organ consisting of the largest reticulo-endothelial cell network in the body and playing an important role in host defense against invading microorganisms. The organ is comprised of parenchymal cells and many different types of non-parenchymal cells, all of which play a significant role. Even biliary epithelial cells are not only the target in autoimmune liver diseases but also have central role in orchestrating several immune cells involved in both innate and acquired immunity. Tissue damage caused by various agents results in inflammation, necrosis, fibrosis, and, eventually, distortion of normal hepatic architecture, cirrhosis, and functional deterioration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AIH:

autoimmune hepatitis

aLMF:

activated liver myofibroblasts

APC:

antigen-presenting cell

BEC:

biliary epithelial cells

cDC:

conventional DC

CLEVER-1:

common lymphatic endothelial and vascular endothelial receptor-1

CNSDC:

chronic non-suppurative destructive cholangitis

DAMPs:

damage-associated molecular pattern

DC:

dendritic cells

ENA-78:

epithelial neutrophil chemoattractant-78

GRO:

growth-related oncoprotein

HSCs:

Hepatic stellate cells

ICAM-1:

intercellular adhesion molecule-1

IFN:

interferon

IL:

interleukin

HCC:

hepatocellular carcinoma

JNK:

jun N-terminal kinase

LPS:

lipopolysaccharide

LMNC:

liver-infiltrated mononuclear cells

LSEC:

liver sinusoidal endothelial cells

MBP:

myelin basic protein

MCD:

methionine/choline-deficient

MCP-1:

monocyte chemotactic protein-1

NASH:

non-alcoholic steatohepatitis

NOD:

nucleotide-binding oligomerization domain

PAMPs:

pathogen-associated molecular patterns

PBC:

primary biliary cirrhosis

pDC:

plasmatoid DC

PRRs:

pattern-recognition receptors

PSC:

primary sclerosing cholangitis

ROS:

reactive oxygen species

TLR:

toll-like receptor

TNF:

tumor necrosis factor

VCAM-1:

vascular cell adhesion molecule-1

References

  1. Afford SC, Ahmed-Choudhury J, Randhawa S, Russell C, Youster J, Crosby HA, Eliopoulos A, Hubscher SG, Young LS, Adams DH (2001) CD40 activation-induced, Fas-dependent apoptosis and NF-kappaB/AP-1 signaling in human intrahepatic biliary epithelial cells. FASEB J 15:2345–2354. doi:10.1096/fj.01-0088com S28

    Article  CAS  PubMed  Google Scholar 

  2. Berg PA, Klein R, Rocken M (1997) Cytokines in primary biliary cirrhosis. Semin Liver Dis 17:115–123. doi:10.1055/s-2007-1007189 S7

    Article  CAS  PubMed  Google Scholar 

  3. Bettelli E, Oukka M, Kuchroo VK (2007) T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol 8:345–350. doi:10.1038/ni0407-345 S6

    Article  CAS  PubMed  Google Scholar 

  4. Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354:610–621. doi:10.1056/NEJMra052723 S15

    Article  CAS  PubMed  Google Scholar 

  5. Chen XM, O’Hara SP, Nelson JB, Splinter PL, Small AJ, Tietz PS, Limper AH, LaRusso NF (2005) Multiple TLRs are expressed in human cholangiocytes and mediate host epithelial defense responses to Cryptosporidium parvum via activation of NF-kappa B. J Immunol 175:7447–7756 S23

    CAS  PubMed  Google Scholar 

  6. Diehl L, Schurich A, Grochtmann R, Hegenbarth S, Chen L, Knolle PA (2008) Tolerogenic maturation of liver sinusoidal endothelial cells promotes B7-homolog 1-dependent CD8+T cell tolerance. Hepatology 47:296–305. doi:10.1002/hep.21965 K4

    Article  CAS  PubMed  Google Scholar 

  7. Ge X, Uzunel M, Ericzon B-G, Sumitran-Holgersson S (2005) Biliary epithelial cell antibodies induce expression of toll-like receptor 2 and 3: a mechanism for post-liver transplantation cholangitis. Liver Transpl 11:911–921. doi:10.1002/lt.20420 N23

    Article  PubMed  Google Scholar 

  8. Gregory SH, Wing EJ (2002) Neutrophil-Kupffer cell interaction: a critical component of host defenses to systemic bacterial infections. J Leukoc Biol 72:239–248 M2

    CAS  PubMed  Google Scholar 

  9. Gumucio JJ (1989) Hepatocyte heterogeneity: the coming of age from the description of a biological curiosity to a partial understanding of its physiological meaning and regulation. Hepatology 9:154–160. doi:10.1002/hep.1840090124 I3

    Article  CAS  PubMed  Google Scholar 

  10. Gumucio JJ, Berkovitz CM, Webster ST, Thornton AJ (1996) Structural and functional organization of the liver. In: Kaplowitz N (ed) Liver and biliary diseases, 2nd edn. Williams & Wilkins, Baltimore, pp 3–19 [I1]

    Google Scholar 

  11. Guo J, Loke J, Zheng F, Hong F, Yea S, Fukata M et al (2009) Functional linkage of cirrhosis-predictive single nucleotide polymorphisms of toll-like receptor 4 to hepatic stellate cell responses. Hepatology 49:960–968. doi:10.1002/hep.22697 N11

    Article  CAS  PubMed  Google Scholar 

  12. Gustot T, Lemmers A, Moreno C, Nagy N, Quertinmont E, Nicaise C et al (2006) Differential liver sensitization to toll-like receptor pathways in mice with alcoholic fatty liver. Hepatology 43:989–1000. doi:10.1002/hep.21138 N9

    Article  CAS  PubMed  Google Scholar 

  13. Harada K, Isse K, Nakanuma Y (2006) Interferon gamma accelerates NF-kappaB activation of biliary epithelial cells induced by Toll-like receptor and ligand interaction. J Clin Pathol 59:184–190. doi:10.1136/jcp.2004.023507 S1

    Article  CAS  PubMed  Google Scholar 

  14. Harada K, Ohira S, Isse K, Ozaki S, Zen Y, Sato Y et al (2003) Lipopolysaccharide activates nuclear factor-kappaB through toll-like receptors and related molecules in cultured biliary epithelial cells. Lab Invest 83:1657–1667. doi:10.1097/01.LAB.0000097190.56734.FE N16

    Article  CAS  PubMed  Google Scholar 

  15. Harada K, Ozaki S, Gershwin ME, Nakanuma Y (1997) Enhanced apoptosis relates to bile duct loss in primary biliary cirrhosis. Hepatology 26:1399–1405. doi:10.1002/hep.510260604 S5

    Article  CAS  PubMed  Google Scholar 

  16. Harada K, Van de Water J, Leung PS, Coppel RL, Ansari A, Nakanuma Y, Gershwin ME (1997) In situ nucleic acid hybridization of cytokines in primary biliary cirrhosis: predominance of the Th1 subset. Hepatology 25:791–796. doi:10.1002/hep.510250402 S10

    Article  CAS  PubMed  Google Scholar 

  17. Hendriks HF, Verhoofstad WA, Brouwer A, de Leeuw AM, Knook DL (1985) Perisinusoidal fat-storing cells are the main vitamin A storage sites in rat liver. Exp Cell Res 160:138–149. doi:10.1016/0014-4827(85)90243-5 I5

    Article  CAS  PubMed  Google Scholar 

  18. Holt AP, Haughton EL, Lalor PF, Flier A, Buckley CD, Adams DH (2008) Liver myofibroblasts regulate infiltration and positioning of lymphocytes in human liver. Gastroenterology 136:705–714. doi:10.1053/j.gastro.2008.10.020 K6

    Article  PubMed  Google Scholar 

  19. Hritz I, Velayudham A, Dolganiuc A, Kodys K, Mandrekar P, Kurt-Jones E et al (2008) Bone Marrow-derived immune cells mediate sensitization to liver injury in a myeloid differentiation factor 88-dependent fashion. Hepatology 48:1342–1347. doi:10.1002/hep.22557 N5

    Article  CAS  PubMed  Google Scholar 

  20. Isse K, Harada K, Sato Y, Nakanuma Y (2006) Characterization of biliary intra-epithelial lymphocytes at different anatomical levels of intrahepatic bile ducts under normal and pathological conditions: numbers of CD4+CD28− intra-epithelial lymphocytes are increased in primary biliary cirrhosis. Pathol Int 56:17–24 S11

    PubMed  Google Scholar 

  21. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216. doi:10.1146/annurev.immunol.20.083001.084359 M8

    Article  CAS  PubMed  Google Scholar 

  22. Kamihira T, Shimoda S, Harada K, Kawano A, Handa M, Baba E, Tsuneyama K, Nakamura M, Ishibashi H, Nakanuma Y, Gershwin ME, Harada M (2003) Distinct costimulation dependent and independent autoreactive T-cell clones in primary biliary cirrhosis. Gastroenterology 125:1379–1387. doi:10.1016/j.gastro.2003.07.013 S12

    Article  PubMed  Google Scholar 

  23. Kamihira T, Shimoda S, Nakamura M, Yokoyama T, Takii Y, Kawano A, Handa M, Ishibashi H, Gershwin ME, Harada M (2005) Biliary epithelial cells regulate autoreactive T cells: implications for biliary-specific diseases. Hepatology 41:151–159. doi:10.1002/hep.20494 S30

    Article  PubMed  Google Scholar 

  24. Karrar A, Broome U, Sodergren T, Jaksch M, Bergquist A, Bjornstedt M et al (2007) Biliary epithelial cell antibodies link adaptive and innate immune responses in primary sclerosing cholangitis. Gastroenterology 132:1504–1514. doi:10.1053/j.gastro.2007.01.039 N22

    Article  CAS  PubMed  Google Scholar 

  25. Kikuchi K, Lian Z-X, Yang G-X, Ansari AA, Ikehara S, Kaplan M et al (2005) Bacterial CpG induces hyper IgM production in CD27+ memory B cells in primary biliary cirrhosis. Gastroenterology 128:304–312. doi:10.1053/j.gastro.2004.11.005 N20

    Article  CAS  PubMed  Google Scholar 

  26. Kmieć Z (2001) Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol 161:III–XIII, 1–151. M16

    Google Scholar 

  27. Komori A, Nakamura M, Fujiwara S, Yano K, Fujioka H, Migita K, Yatsuhashi H, Ishibashi H (2007) Human intrahepatic biliary epithelial cells as a possible modulator of hepatic regeneration: potential role of biliary epithelial cell for hepatic remodeling in vivo. Hepatol Res 37(Suppl 3):S438–S443. doi:10.1111/j.1872-034X.2007.00237.x K8

    Article  CAS  PubMed  Google Scholar 

  28. Krams SM, Van de Water J, Coppel RL, Esquivel C, Roberts J, Ansari A, Gershwin ME (1990) Analysis of hepatic T lymphocyte and immunoglobulin deposits in patients with primary biliary cirrhosis. Hepatology 12:306–313. doi:10.1002/hep.1840120219 S3

    Article  CAS  PubMed  Google Scholar 

  29. Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, Yee H, Zender L, Lowe SW (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134:657–667. doi:10.1016/j.cell.2008.06.049 K7

    Article  CAS  PubMed  Google Scholar 

  30. Krutzik SR, Sieling PA, Modlin RL (2001) The role of Toll-like receptors in host defense against microbial infection. Curr Opin Immunol 13:104–108. doi:10.1016/S0952-7915(00)00189-8 S20

    Article  CAS  PubMed  Google Scholar 

  31. Kunkel SL, Godessart N (2002) Chemokines in autoimmunity: from pathology to therapeutics. Autoimmun Rev 1:313–320. doi:10.1016/S1568-9972(02)00085-X S18

    Article  CAS  PubMed  Google Scholar 

  32. Lan RY, Cheng C, Lian ZX, Tsuneyama K, Yang GX, Moritoki Y, Chuang YH, Nakamura T, Saito S, Shimoda S, Tanaka A, Bowlus CL, Takano Y, Ansari AA, Coppel RL, Gershwin ME (2006) Liver-targeted and peripheral blood alterations of regulatory T cells in primary biliary cirrhosis. Hepatology 43:729–737. doi:10.1002/hep.21123 S14

    Article  PubMed  Google Scholar 

  33. Lang KS, Georgiev P, Recher M, Navarini AA, Bergthaler A, Heikenwalder M et al (2006) Immunoprivileged status of the liver is controlled by toll-like receptor 3 signaling. J Clin Invest 116:2456–2463. doi:10.1172/JCI28349 N12

    Article  CAS  PubMed  Google Scholar 

  34. Lee MS, Kim Y-J (2007) Pattern-recognition receptor signaling initiated from extracellular, membrane, and cytoplasmic space. Mol Cells 23:1–10 N2

    CAS  PubMed  Google Scholar 

  35. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983. doi:10.1016/S0092-8674(00)80172-5 S19

    Article  CAS  PubMed  Google Scholar 

  36. Lenschow DJ, Herold KC, Rhee L, Patel B, Koons A, Qin HY, Fuchs E, Singh B, Thompson CB, Bluestone JA (1996) CD28/B7 regulation of Th1 and Th2 subsets in the development of autoimmune diabetes. Immunity 5:285–293. doi:10.1016/S1074-7613(00)80323-4 S13

    Article  CAS  PubMed  Google Scholar 

  37. Lohr HF, Schlaak JF, Gerken G, Fleischer B, Dienes HP, Meyer zum Büschenfelde KH (1994) Phenotypical analysis and cytokine release of liver-infiltrating and peripheral blood T lymphocytes from patients with chronic hepatitis of different etiology. Liver 14:161–166 S9

    CAS  PubMed  Google Scholar 

  38. Lűth S, Huber S, Schramm C, Buch T, Zander S, Stadelmann C, Brűk W, Wraith DC, Herkel J, Lohse AW (2008) Ectopic expression of neural autoantigen in mouse liver suppresses experimental autoimmune necroinflammation by antigen-specific Tregs. J Clin Invest 118:3403–3410 K2

    PubMed  Google Scholar 

  39. MacPhee PJ, Schmidt EE, Groom AC (1992) Evidence for Kupffer cell migration along liver sinusoids, from high-resolution in vivo microscopy. Am J Physiol 263:G17–G23 M1

    CAS  PubMed  Google Scholar 

  40. Mao TK, Lian Z-X, Selmi C, Ichiki Y, Ashwood P, Ansari AA et al (2005) Hepatology 42:802–808. doi:10.1002/hep.20859 N19

    Article  CAS  PubMed  Google Scholar 

  41. Martinez OM, Villanueva JC, Gershwin ME, Krams SM (1995) Cytokine patterns and cytotoxic mediators in primary biliary cirrhosis. Hepatology 21:113–119 S8

    CAS  PubMed  Google Scholar 

  42. Meylan E, Tschopp J, Karin M (2006) Intracellular pattern recognition receptors in the host response. Nature 442:39–44. doi:10.1038/nature04946 M10

    Article  CAS  PubMed  Google Scholar 

  43. Mora JR, von Andrian UH (2006) T-cell homing specificity and plasticity: new concepts and future challenges. Trends Immunol 27:235–243. doi:10.1016/j.it.2006.03.007 S17

    Article  CAS  PubMed  Google Scholar 

  44. Moritoki Y, Lian ZX, Wulff H, Yang G-X, Chuang Y-H, Lan RY et al (2007) AMA production in primary biliary cirrhosis is promoted by the TLR9 ligand CpG and suppressed by potassium channel blockers. Hepatology 45:314–322. doi:10.1002/hep.21522

    Article  CAS  PubMed  Google Scholar 

  45. Mrass P, Weninger W (2006) Immune cell migration as a means to control immune privilege: lessons from the CNS and tumors. Immunol Rev 213:195–212. doi:10.1111/j.1600-065X.2006.00433.x S16, N21

    Article  PubMed  Google Scholar 

  46. Naito M, Hasegawa G, Takahashi K (1997) Development, differentiation, and maturation of Kupffer cells. Microsc Res Tech 39:350–364. doi:10.1002/(SICI)1097-0029(19971115)39:4<350::AID-JEMT5>3.0.CO;2-L M4

    Article  CAS  PubMed  Google Scholar 

  47. Nakamura M, Funami K, Komori A, Yokoyama T, Aiba Y, Araki A et al (2008) Increased expression of Toll-like receptor 3 in intrahepatic biliary epithelial cells at sites of ductular reaction in diseased livers. Hepatol Int 2:222–230. doi:10.1007/s12072-008-9055-4 N15

    Article  PubMed  Google Scholar 

  48. Nakanuma Y, Kono N (1991) Expression of HLA-DR antigens on interlobular bile ducts in primary biliary cirrhosis and other hepatobiliary diseases: an immunohistochemical study. Hum Pathol 22:431–436. doi:10.1016/0046-8177(91)90127-B S27

    Article  CAS  PubMed  Google Scholar 

  49. Otte JM, Cario E, Podolsky DK (2004) Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology 126:1054–1070. doi:10.1053/j.gastro.2004.01.007 N6

    Article  CAS  PubMed  Google Scholar 

  50. Papadimitraki ED, Bertsias GK, Boumpas DT (2007) Toll like receptors and autoimmunity: a critical appraisal. J Autoimmun 29:310–318 N3

    CAS  PubMed  Google Scholar 

  51. Pariesak A, Schafer C, Schutz T, Bode JC, Bode C (2000) Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcoholic abuse in different stages of alcohol-induced liver disease. J Hepatol 32:742–747. doi:10.1016/S0168-8278(00)80242-1 N24

    Article  Google Scholar 

  52. Racanelli V, Rehermann B (2006) The liver as an immunological organ. Hepatology 43:S54–S62. doi:10.1002/hep.21060 M15

    Article  CAS  PubMed  Google Scholar 

  53. Rappaport AM, Borowy ZJ, Lougheed WM, Lotto WN (1954) Subdivision of hexagonal liver lobules into a structural and functional unit; role in hepatic physiology and pathology. Anat Rec 119:11–33. doi:10.1002/ar.1091190103 I2

    Article  CAS  PubMed  Google Scholar 

  54. Rivera CA, Adegboyega P, van Rooijen N, Tagalicud A, Allman M, Wallace M (2007) Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatol 47:571–579. doi:10.1016/j.jhep. 2007.04.019 N8

    Article  CAS  PubMed  Google Scholar 

  55. Roland CR, Walp L, Stack RM, Flye MW (1994) Outcome of Kupffer cell antigen presentation to a cloned murine Th1 lymphocyte depends on the inducibility of nitric oxide synthase by IFN-gamma. J Immunol 153:5453–5464 M14

    CAS  PubMed  Google Scholar 

  56. Schwabe RF, Seki E, Brenner DA (2006) Toll-like receptor signaling in the liver. Gastroenterology 130:1886–1900. doi:10.1053/j.gastro.2006.01.038 N1

    Article  CAS  PubMed  Google Scholar 

  57. Seki E, Brenner DA (2008) Toll-like receptors and adaptor molecules in liver disease: update. Hepatology 48:322–335. doi:10.1002/hep.22306 N4

    Article  CAS  PubMed  Google Scholar 

  58. Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA et al (2007) TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 13:1324–1332. doi:10.1038/nm1663 N7

    Article  CAS  PubMed  Google Scholar 

  59. Shetty S, Lalor PF, Adams DH (2008) Lymphocyte recruitment to the liver: molecular insights into the pathogenesis of liver injury and hepatitis. Toxicology 254:136–146. doi:10.1016/j.tox.2008.08.003 K3

    Article  CAS  PubMed  Google Scholar 

  60. Shimoda S, Harada K, Niiro H, Yoshizumi T, Soejima Y, Taketomi A, Maehara Y, Tsuneyama K, Nakamura M, Komori A, Migita K, Nakanuma Y, Ishibashi H, Selmi C, Gershwin ME (2008) Biliary epithelial cells and primary biliary cirrhosis: the role of liver-infiltrating mononuclear cells. Hepatology 47:958–965. doi:10.1002/hep.22102 S31

    Article  CAS  PubMed  Google Scholar 

  61. Tacke F, Luedde T, Trautwein C (2009) Inflammatory pathways in liver homeostasis and liver injury. Clin Rev Allergy Immunol 36:4–12. doi:10.1007/s12016-008-8091-0 M17

    Article  CAS  PubMed  Google Scholar 

  62. Takii Y, Nakamura M, Ito M, Yokoyama T, Komori A, Shimizu-Yoshida Y, Nakao R, Kusumoto K, Nagaoka S, Yano K, Abiru S, Ueki T, Matsumoto T, Daikoku M, Taniguchi K, Fujioka H, Migita K, Yatsuhashi H, Nakashima M, Harada M, Ishibashi H (2005) Enhanced expression of type I interferon and toll-like receptor-3 in primary biliary cirrhosis. Lab Invest 85:908–920. doi:10.1038/labinvest.3700285 N13, S25

    Article  CAS  PubMed  Google Scholar 

  63. Tsuneyama K, Harada K, Yasoshima M, Kaji K, Gershwin ME, Nakanuma Y (1998) Expression of co-stimulatory factor B7–2 on the intrahepatic bile ducts in primary biliary cirrhosis and primary sclerosing cholangitis: an immunohistochemical study. J Pathol 186:126–130. doi:10.1002/(SICI)1096-9896(1998100)186:2<126::AID-PATH167>3.0.CO;2-1 S29

    Article  CAS  PubMed  Google Scholar 

  64. Wang AP, Migita K, Ito M, Takii Y, Daikoku M, Yokoyama T, Komori A, Nakamura M, Yatsuhashi H, Ishibashi H (2005) Hepatic expression of toll-like receptor 4 in primary biliary cirrhosis. J Autoimmun 25:85–91. doi:10.1016/j.jaut.2005.05.003 N14, S26

    Article  PubMed  Google Scholar 

  65. Watanabe A, Hashmi A, Gomes DA, Town T, Badou A, Flavell RA et al (2007) Apoptotic hepatocyte DNA inhibits hepatic stellate cell chemotaxis via toll-like receptor 9. Hepatology 46:1509–1518. doi:10.1002/hep.21867 N10

    Article  CAS  PubMed  Google Scholar 

  66. Wick MJ, Leithäuser F, Reimann J (2002) The hepatic immune system. Crit Rev Immunol 22:47–103 M3

    CAS  PubMed  Google Scholar 

  67. Wiegaed C, Wolint P, Frenzel C, Cheruti U, Schmitt E, Oxenius A, Lohse AW, Herkel J (2007) Defective T helper response of hepatocyte-stimulated CD4 T cells impairs antiviral CD8 response and viral clearance. Gastroenterology 133:2010–2018. doi:10.1053/j.gastro.2007.09.007 K1

    Article  Google Scholar 

  68. Winau F, Quack C, Darmoise A, Kaufmann SHE (2008) Starring stellate cells in liver immunology. Curr Opin Immunol 20:68–74. doi:10.1016/j.coi.2007.10.006 K5

    Article  CAS  PubMed  Google Scholar 

  69. Wisse E, Braet F, Luo D, De Zanger R, Jans D, Crabbé E, Vermoesen A (1996) Structure and function of sinusoidal lining cells in the liver. Toxicol Pathol 24:100–111. doi:10.1177/019262339602400114 I4

    Article  CAS  PubMed  Google Scholar 

  70. van den Oord JJ, Fevery J, de Groote J, Desmet VJ (1984) Immunohistochemical characterization of inflammatory infiltrates in primary biliary cirrhosis. Liver 4:264–274 S2

    PubMed  Google Scholar 

  71. Yamada G, Hyodo I, Tobe K, Mizuno M, Nishihara T, Kobayashi T, Nagashima H (1986) Ultrastructural immunocytochemical analysis of lymphocytes infiltrating bile duct epithelia in primary biliary cirrhosis. Hepatology 6:385–391. doi:10.1002/hep.1840060309 S4

    Article  CAS  PubMed  Google Scholar 

  72. Yokoyama T, Komori A, Nakamura M, Takii Y, Kamihira T, Shimoda S, Mori T, Fujiwara S, Koyabu M, Taniguchi K, Fujioka H, Migita K, Yatsuhashi H, Ishibashi H (2006) Human intrahepatic biliary epithelial cells function in innate immunity by producing IL-6 and IL-8 via the TLR4-NF-kappaB and -MAPK signaling pathways. Liver Int 26:467–476. doi:10.1111/j.1478-3231.2006.01254.x N17, S24

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromi Ishibashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishibashi, H., Nakamura, M., Komori, A. et al. Liver architecture, cell function, and disease. Semin Immunopathol 31, 399–409 (2009). https://doi.org/10.1007/s00281-009-0155-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-009-0155-6

Keywords

Navigation