Skip to main content

Advertisement

Log in

CRP and the risk of atherosclerotic events

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

A large body of literature supports the idea that inflammation plays a pivotal role in all phases of atherosclerosis, from the fatty streak lesion formation to the acute coronary event due to vulnerable plaque rupture. Indeed, vascular inflammation contributes to the pathogenesis of atherosclerosis, and later in the disease process, it is a major determinant for the acute coronary syndromes. There are various inflammatory markers that have been shown to predict cardiovascular events. These include high-sensitivity C-reactive protein (hs-CRP), a simple downstream marker of inflammation, recently emerged as a major cardiovascular risk factor. Elevated baseline concentrations of hs-CRP are associated with the risk of atherosclerotic events in general populations and show a predictive value even in terms of secondary prevention, both in patients with chronic stable angina and acute coronary syndromes. In recent year, a lot of concerns have emerged about the experimental models used to study the role of CRP in atherosclerosis; moreover, the results of trials evaluating the clinical association between this molecules and outcome are still controversial. In this paper, we attempt to review the pathophysiological evidences about the link between CRP and atherosclerosis and, most notably, about its utility as a marker and risk predictor in various clinical settings. The identification of specific triggers and mechanisms of underlying inflammation and a better understanding of each step involved in this complex process might lead to new ways to manage patients with atherosclerosis, both in terms of primary and secondary prevention, and CRP still appears to be a suitable candidate for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105(9):1135–1143

    Article  CAS  PubMed  Google Scholar 

  2. Lloyd-Jones DM, Larson MG, Beiser A et al (1999) Lifetime risk of developing coronary heart disease. Lancet 353:89

    Article  CAS  PubMed  Google Scholar 

  3. Wilson PW (1994) Established risk factors and coronary artery disease: the Framingham Study. Am J Hypertens 7:7S

    CAS  PubMed  Google Scholar 

  4. Yusuf S, Hawken S, Ounpuu S et al (2004) Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 364:937

    Article  PubMed  Google Scholar 

  5. Lee AJ, Price JF, Russell MJ et al (2004) Improved prediction of fatal myocardial infarction using the ankle brachial index in addition to conventional risk factors: the Edinburgh Artery Study. Circulation 110:3075

    Article  CAS  PubMed  Google Scholar 

  6. Third report of the National Cholesterol Education Program (NCEP) (2002) Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). Circulation 106:3143

    Google Scholar 

  7. Chobanian AV, Bakris GL, Black HR, Cushman WC (2003) The seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: The JNC 7 report. JAMA 289:2560

    Article  CAS  PubMed  Google Scholar 

  8. UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837

    Article  Google Scholar 

  9. Hennekens CH (1998) Increasing burden of cardiovascular disease: current knowledge and future directions for research on risk factors. Circulation 97:1095

    CAS  PubMed  Google Scholar 

  10. Canto JG, Iskandrian AE (2003) Major risk factors for cardiovascular disease: debunking the “only 50%” myth. JAMA 290:947

    Article  PubMed  Google Scholar 

  11. Du Clos TW (2000) Function of C-reactive protein. Ann Med 32:274–278

    Article  PubMed  Google Scholar 

  12. Ockene IS, Matthews CE, Rifai N et al (2001) Variability and classification accuracy of serial high-sensitivity C-reactive protein measurements in healthy adults. Clin Chem 47(3):444–450

    CAS  PubMed  Google Scholar 

  13. Volanakis JE (2001) Human C-reactive protein: expression, structure, and function. Mol Immunol 38(2–3):189–197

    Article  CAS  PubMed  Google Scholar 

  14. Li SP, Goldman ND (1996) Regulation of human C-reactive protein gene expression by two synergistic IL-6 responsive elements. Biochemistry 35(28):9060–9068

    Article  CAS  PubMed  Google Scholar 

  15. Yasojima K, Schwab C, McGeer EG, McGeer PL (2001) Generation of C-reactive protein and complement components in atherosclerotic plaques. Am J Pathol 158:1039–1051

    CAS  PubMed  Google Scholar 

  16. Ouchi N, Kihara S, Funahashi T et al (2003) Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation 107:671–674

    Article  CAS  PubMed  Google Scholar 

  17. Torzewski J, Torzewski M, Bowyer DE et al (1998) C-reactive protein frequently colocalizes with the terminal complement complex in the intima of early atherosclerotic lesions of human coronary arteries. Arterioscler Thromb Vasc Biol 18(9):1386–1392

    CAS  PubMed  Google Scholar 

  18. Calabro P, Willerson JT, Yeh ET (2003) Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells. Circulation 108(16):1930–1932

    Article  CAS  PubMed  Google Scholar 

  19. Venugopal SK, Devaraj S, Jiala I (2005) Macrophage conditioned medium induces the expression of C-reactive protein in human aortic endothelial cells. Potential for paracrine/autocrine effects. Am J Pathol 166(4):1265–1271

    CAS  PubMed  Google Scholar 

  20. Calabro P, Yeh ET (2008) Intra-abdominal adiposity, inflammation, and cardiovascular risk: new insight into global cardiometabolic risk. Curr Hypertens Rep 10(1):32–38

    Article  PubMed  Google Scholar 

  21. Ouchi N, Kihara S, Funahashi T, Nakamura T, Nishida M, Kumada M, Okamoto Y, Ohashi K, Nagaretani H, Kishida K, Nishizawa H, Maeda N, Kobayashi H, Hiraoka H, Matsuzawa Y (2003) Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation 107:671–674

    Article  CAS  PubMed  Google Scholar 

  22. Calabro P, Chang DW, Willerson JT, Yeh ET (2004) Production of C-reactive protein in response to inflammatory cytokines by human adipocytes. Circulation 110(17, suppl III):116

    Google Scholar 

  23. Devaraj S, Torok N, Dasu MR, Samols D, Jialal I (2008) Adiponectin decreases C-reactive protein synthesis and secretion from endothelial cells. Evidence for an adipose tissue-vascular loop. Arterioscler Thromb Vasc Biol 28:1368

    Article  CAS  PubMed  Google Scholar 

  24. Singh P, Hoffmann M, Wolk R, Shamsuzzaman AS, Somers VK (2007) Leptin induces C-reactive protein expression in vascular endothelial cells. Arterioscler Thromb Vasc Biol 27(9):302–307

    Article  CAS  Google Scholar 

  25. Inoue T, Kato T, Uchida T, Sakuma M, Nakajima A, Shibazaki M, Imoto Y, Saito M, Hashimoto S, Hikichi Y, Node K (2006) Local release of C-reactive protein from vulnerable plaque or coronary arterial wall injured by stenting. J Am Coll Cardiol 47(8):1733–1734 author reply 1734

    Article  Google Scholar 

  26. Taskinen S, Kovanen PT, Jarva H, Meri S, Pentikainen MO (2002) Binding of C-reactive protein to modified low-density-lipoprotein particles: identification of cholesterol as a novel ligand for C-reactive protein. Biochem J 367:403–412

    Article  CAS  PubMed  Google Scholar 

  27. Bharadwaj D, Stein MP, Volzer M, Mold C, Du Clos TW (1999) The major receptor for C-reactive protein on leukocytes is fcgamma receptor II. J Exp Med 190(4):585–590

    Article  CAS  PubMed  Google Scholar 

  28. Stein MP, Edberg JC, Kimberly RP et al (2000) C-reactive protein binding to FcgammaRIIa on human monocytes and neutrophils is allele-specific. J Clin Invest 105(3):369–376

    Article  CAS  PubMed  Google Scholar 

  29. Stein MP, Mold C, Du Clos TW (2000) C-reactive protein binding to murine leukocytes requires Fc gamma receptors. J Immunol 164(3):1514–1520

    CAS  PubMed  Google Scholar 

  30. Tebo JM, Mortensen RF (1990) Characterization and isolation of a C-reactive protein receptor from the human monocytic cell line U-937. J Immunol 144(1):231–238

    CAS  PubMed  Google Scholar 

  31. Williams TN, Zhang CX, Game BA, He L, Huang Y (2004) C-reactive protein stimulates MMP-1 expression in U937 histiocytes through Fc[gamma]RII and extracellular signal-regulated kinase pathway: an implication of CRP involvement in plaque destabilization. Arterioscler Thromb Vasc Biol 24(1):61–66

    Article  CAS  PubMed  Google Scholar 

  32. Montero I, Orbe J, Varo N, Beloqui O, Monreal JI, Rodríguez JA, Díez J, Libby P, Páramo JA (2006) C-reactive protein induces matrix metalloproteinase-1 and -10 in human endothelial cells: implications for clinical and subclinical atherosclerosis. J Am Coll Cardiol 47(7):1369–1378

    Article  CAS  PubMed  Google Scholar 

  33. Bello G, Cailotto F, Hanriot D, Kolopp-Sarda MN, Latger-Cannard V, Hess K, Zannad F, Longrois D, Ropars A (200) C-reactive protein (CRP) increases VEGF-A expression in monocytic cells via a PI3-kinase and ERK 1/2 signaling dependent pathway. Atherosclerosis 200(2):286–293

    Article  CAS  Google Scholar 

  34. Wang Q, Zhu X, Xu Q, Ding X, Chen YE, Song Q (2005) Effect of C-reactive protein on gene expression in vascular endothelial cells. Am J Physiol Heart Circ Physiol 288(4):H1539–H1545

    Article  CAS  PubMed  Google Scholar 

  35. Cirillo P, Golino P, Calabrò P, Calì G, Ragni M, De Rosa S, Cimmino G, Pacileo M, De Palma R, Forte L, Gargiulo A, Corigliano FG, Angri V, Spagnuolo R, Nitsch L, Chiariello M (2005) C-reactive protein induces tissue factor expression and promotes smooth muscle and endothelial cell proliferation. Cardiovasc Res 68(1):47–55

    Article  CAS  PubMed  Google Scholar 

  36. Wu J, Stevenson MJ, Brown JM, Grunz EA, Strawn TL, Fay WP (2008) C-reactive protein enhances tissue factor expression by vascular smooth muscle cells: mechanisms and in vivo significance. Arterioscler Thromb Vasc Biol 28(4):698–704

    Article  CAS  PubMed  Google Scholar 

  37. Kaibuchi K, Kuroda S, Amano M (1999) Regulation of the cytoskeleton and cell adhesion by the Rho family GTPase in mammalian cells. Ann Rev Biochem. 68:459–486

    Article  CAS  PubMed  Google Scholar 

  38. Somlyo AP, Somlyo AV (2003) Ca2++ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83:1325–1358

    CAS  PubMed  Google Scholar 

  39. Nakakuki T, Ito M, Iwasaki H, Kureishi Y, Okamoto R, Moriki N, Kongo M, Kato S, Yamada N, Isaka N, Nakano T (2005) Rho/Rho-kinase pathway contributes to C-reactive protein-induced plasminogen activator inhibitor-1 expression in endothelial cells. Arterioscler Thromb Vasc Biol 25(10):2088–2093

    Article  CAS  PubMed  Google Scholar 

  40. Liuzzo G, Santamaria M, Biasucci LM, Narducci M, Colafrancesco V, Porto A, Brugaletta S, Pinnelli M, Rizzello V, Maseri A, Crea F (2007) Persistent activation of nuclear factor kappa-B signaling pathway in patients with unstable angina and elevated levels of C-reactive protein evidence for a direct proinflammatory effect of azide and lipopolysaccharide-free C-reactive protein on human monocytes via nuclear factor kappa-B activation. J Am Coll Cardiol 49(2):185–194

    Article  CAS  PubMed  Google Scholar 

  41. Verma S, Badiwala MV, Weisel RD et al (2003) C-reactive protein activates the nuclear factor-kappaB signal transduction pathway in saphenous vein endothelial cells: implications for atherosclerosis and restenosis. J Thorac Cardiovasc Surg 126:1886–1891

    Article  CAS  PubMed  Google Scholar 

  42. Bisoendial RJ, Kastelein JJ, Stroes ES (2007) C-reactive protein and atherogenesis: from fatty streak to clinical event. Atherosclerosis 195(2):e10–e18

    Article  CAS  PubMed  Google Scholar 

  43. Verma S, Wang CH, Li SH et al (2002) A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation 106(8):913–919

    Article  CAS  PubMed  Google Scholar 

  44. Hattori Y, Matsumura M, Kasai K (2003) Vascular smooth muscle cell activation by C-reactive protein. Cardiovasc Res 58(1):186–195

    Article  CAS  PubMed  Google Scholar 

  45. Pasceri V, Willerson JT, Yeh ET (2000) Direct proinflammatory effet of C-reactive protein on human endothelial cells. Circulation 102(18):2165–2168

    CAS  PubMed  Google Scholar 

  46. Devaraj S, Kumaresan PR, Jialal I (2004) Effect of C-reactive protein on chemokine expression in human aortic endothelial cells. J Mol Cell Cardiol 36:405–410

    Article  CAS  PubMed  Google Scholar 

  47. Zwaka TP, Hombach V, Torzewski J (2001) C-reactive protein-mediated low density lipoprotein uptake by macrophages: implications for atherosclerosis. Circulation 103(9):1194–1197

    CAS  PubMed  Google Scholar 

  48. Klouche M, Gottschling S, Gerl V, Hell W, Husmann M, Dorweiler B et al (1998) Atherogenic properties of enzymatically degraded LDL: selective induction of MCP-1 and cytotoxic effects on human macrophages. Arterioscler Thromb Vasc Biol 18:1376–1385

    CAS  PubMed  Google Scholar 

  49. Li L, Roumeliotis N, Sawamura T, Renier G (2004) C-reactive protein enhances LOX-1 expression in human aortic endothelial cells: relevance of LOX-1 to C-reactive protein-induced endothelial dysfunction. Circ Res 95:877–883

    Article  CAS  PubMed  Google Scholar 

  50. Wang CH, Li SH, Weisel RD et al (2003) C-reactive protein upregulates angiotensin type 1 receptors in vascular smooth muscle. Circulation 107(13):1783–1790

    Article  CAS  PubMed  Google Scholar 

  51. Devaraj S, Dasu MR, Singh U, Rao LV, Jialal I (2008) C-reactive protein stimulates superoxide anion release and tissue factor activity in vivo. Atherosclerosis 203(1):67–74

    Article  PubMed  CAS  Google Scholar 

  52. Wadham C, Albanese N, Roberts J, Wang L, Bagley CJ, Gamble JR et al (2004) High-density lipoproteins neutralize C-reactive protein proinflammatory activity. Circulation 109:2116–2122

    Article  CAS  PubMed  Google Scholar 

  53. Yamashita H, Shimada K, Seki E, Mokuno H, Daida H (2003) Concentrations of interleukins, interferon, and C-reactive protein in stable and unstable angina pectoris. Am J Cardiol 91:133–136

    Article  CAS  PubMed  Google Scholar 

  54. Kim SJ, Gershov D, Ma X, Brot N, Elkon KB (2003) Opsonization of apoptotic cells and its effect on macrophage and T cell immune responses. Ann N Y Acad Sci 987:68–78

    Article  CAS  PubMed  Google Scholar 

  55. Nakajima T, Schulte S, Warrington KJ, Kopecky SL, Frye RL, Goronzy JJ, Weyand CM (2002) T-cell-mediated lysis of endothelial cells in acute coronary syndromes. Circulation 105(5):570–575

    Article  CAS  PubMed  Google Scholar 

  56. Lin R, Liu J, Gan W, Yang G (2004) C-reactive protein-induced expression of CD40–CD40L and the effect of lovastatin and fenofibrate on it in human vascular endothelial cells. Biol Pharm Bull 27:1537–1543

    Article  CAS  PubMed  Google Scholar 

  57. Varo N, Vicent D, Libby P, Nuzzo R, Calle-Pascual AL, Bernal MR et al (2003) Elevated plasma levels of the atherogenic mediator soluble CD40 ligand in diabetic patients: a novel target of thiazolidinediones. Circulation 107:2664–2669

    Article  CAS  PubMed  Google Scholar 

  58. Szalai AJ, van Ginkel FW, Wang Y, McGhee JR, Volanakis JE (2000) Complement-dependent acute-phase expression of C-reactive protein and serum amyloid P-component. J Immunol 165:1030–1035

    CAS  PubMed  Google Scholar 

  59. Cermak J, Key NS, Bach RR, Balla J, Jacob HS, Vercellotti GM (1993) C-reactive protein induces human peripheral blood monocytes to synthesize tissue factor. Blood 82(2):513–520

    CAS  PubMed  Google Scholar 

  60. Singh U, Devaraj S, Jialal I (2005) C-Reactive protein decreases tissue plasminogen activator activity in human aortic endothelial cells. Evidence that c-reactive protein is a procoagulant. Arterioscler Thromb Vasc Biol 25(10):2216–2221

    Article  CAS  PubMed  Google Scholar 

  61. Verma S, Kuliszewski MA, Li SH, Szmitko PE, Zucco L, Wang CH, Badiwala MV, Mickle DA, Weisel RD, Fedak PW, Stewart DJ, Kutryk MJ (2004) C-reactive protein attenuates endothelial progenitor cell survival, differentiation, and function: further evidence of a mechanistic link between C-reactive protein and cardiovascular disease. Circulation 109(17):2058–2067

    Article  CAS  PubMed  Google Scholar 

  62. Khreiss T, József L, Potempa LA, Filep JG (2004) Conformational rearrangement in C-reactive protein is required for proinflammatory actions on human endothelial cells. Circulation 109:2016–2022

    Article  CAS  PubMed  Google Scholar 

  63. Khreiss T, József L, Potempa LA, Filep JG (2005) Loss of pentameric symmetry in C-reactive protein induces interleukin-8 secretion through peroxynitrite signaling in human neutrophils. Circ Res 97(7):690–697

    Article  CAS  PubMed  Google Scholar 

  64. Devaraj S, Venugopal S, Jialal I (2006) Native pentameric C-reactive protein displays more potent pro-atherogenic activities in human aortic endothelial cells than modified C-reactive protein. Atherosclerosis 184:48–52

    Article  CAS  PubMed  Google Scholar 

  65. Schwedler SB, Amann K, Wernicke K, Krebs A, Nauck M, Wanner C, Potempa LA, Galle J (2005) Native C-reactive protein increases whereas modified C-reactive protein reduces atherosclerosis in apolipoprotein E-knockout mice. Circulation 112:1016–1023

    Article  CAS  PubMed  Google Scholar 

  66. Taylor KE, van den Berg CW (2007) Structural and functional comparison of native pentameric, denatured monomeric and biotinylated C-reactive protein. Immunology 120(3):404–411

    Article  CAS  PubMed  Google Scholar 

  67. Oroszlán M, Herczenik E, Rugonfalvi-Kiss S, Roos A, Nauta AJ, Daha MR, Gombos I, Karádi I, Romics L, Prohászka Z, Füst G, Cervenak L (2006) Proinflammatory changes in human umbilical cord vein endothelial cells can be induced neither by native nor by modified CRP. Int Immunol 18(6):871–878

    Article  PubMed  CAS  Google Scholar 

  68. Schwedler SB, Kuhlencordt PJ, Ponnuswamy PP, Hatiboglu G, Quaschning T, Widder J, Wanner C, Potempa LA, Galle J (2007) Native C-reactive protein induces endothelial dysfunction in ApoE−/− mice: implications for iNOS and reactive oxygen species. Atherosclerosis 195(2):e76–e84

    Article  CAS  PubMed  Google Scholar 

  69. Molins B, Peña E, Vilahur G, Mendieta C, Slevin M, Badimon L (2008) C-reactive protein isoforms differ in their effects on thrombus growth. Arterioscler Thromb Vasc Biol 28(12):2239–2246

    Article  CAS  PubMed  Google Scholar 

  70. Vilahur G, Hernández-Vera R, Molins B, Casaní L, Duran X, Padró T, Badimon L (2008) Short-term myocardial ischemia induces cardiac mCRP expression and pro-inflammatory gene (Cox-2, MCP-1, and TF) up-regulation in peripheral blood mononuclear cells. J Thromb Haemost 7(3):485–493

    Article  CAS  Google Scholar 

  71. Liu C, Wang S, Deb A et al (2005) Proapoptotic, antimigratory, antiproliferative, and antiangiogenic effects of commercial C-reactive protein on various human endothelial cell types in vitro: implications of contaminating presence of sodium azide in commercial preparation. Circ Res 97(2):135–143

    Article  CAS  PubMed  Google Scholar 

  72. Taylor KE, Giddings JC, van den Berg CW (2005) C-reactive protein-induced in vitro endothelial cell activation is an artefact caused by azide and lipopolysaccharide. Arterioscler Thromb Vasc Biol 25(6):1225–1230

    Article  CAS  PubMed  Google Scholar 

  73. Pepys MB, Hawkins PN, Kahan MC et al (2005) Proinflammatory effects of bacterial recombinant human C-reactive protein are caused by contamination with bacterial products, not by C-reactive protein itself. Circ Res 97(11):e97–e103

    Article  CAS  PubMed  Google Scholar 

  74. Nabata A, Kuroki M, Ueba H, Hashimoto S, Umemoto T, Wada H, Yasu T, Saito M, Momomura S, Kawakami M (2008) C-reactive protein induces endothelial cell apoptosis and matrix metalloproteinase-9 production in human mononuclear cells: Implications for the destabilization of atherosclerotic plaque. Atherosclerosis 196(1):129–135

    Article  CAS  PubMed  Google Scholar 

  75. Danenberg HD, Szalai AJ, Swaminathan RV et al (2003) Increased thrombosis after arterial injury in human C-reactive protein-transgenic mice. Circulation 108(5):512–515

    Article  CAS  PubMed  Google Scholar 

  76. Paul A, Ko KW, Li L et al (2004) C-reactive protein accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Circulation 109(5):647–655

    Article  CAS  PubMed  Google Scholar 

  77. Bisoendial RJ, Kastelein JJ, Levels JH, Zwaginga JJ, van den Bogaard B, Reitsma PH, Meijers JC, Hartman D, Levi M, Stroes ES (2005) Activation of inflammation and coagulation after infusion of C-reactive protein in humans. Circ Res 96(7):714–716

    Article  CAS  PubMed  Google Scholar 

  78. Birjmohun RS, Bisoendial RJ, van Leuven SI, Ackermans M, Zwinderman A, Kastelein JJ, Stroes ES, Sauerwein HP (2007) A single bolus infusion of C-reactive protein increases gluconeogenesis and plasma glucose concentration in humans. Metabolism 56(11):1576–1582

    Article  CAS  PubMed  Google Scholar 

  79. Bisoendial RJ, Kastelein JJP, Peters SLM, Levels JHM, Birjmohun R, Rotmans JI, Hartman D, Meijers JCM, Levi M, Stroes ESG (2007) Effects of CRP-infusion on endothelial function and coagulation in normo- and hypercholesterolemic subjects. J Lipid Res 48(4):952–960

    Article  CAS  PubMed  Google Scholar 

  80. Yeh ET, Palusinski RP (2003) C-reactive protein: the pawn has been promoted to queen. Curr Atheroscler Rep 5(2):101–105

    Article  PubMed  Google Scholar 

  81. Ridker PM (2003) Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 107(3):363–369

    Article  PubMed  Google Scholar 

  82. Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH (1997) Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med 336(14):973–979

    Article  CAS  PubMed  Google Scholar 

  83. Ridker PM, Hennekens CH, Buring JE, Rifai N (2000) C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 342(12):836–884

    Article  CAS  PubMed  Google Scholar 

  84. National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (2002) Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). Final report. Circulation 106:3143–3421

    Google Scholar 

  85. Ballantyne CM, Hoogeveen RC, Bang H et al (2004) Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the Atherosclerosis Risk In Communities (ARIC) study. Circulation 109:837–842

    Article  CAS  PubMed  Google Scholar 

  86. Pai JK, Pischon T, Ma J et al (2004) Inflammatory markers and the risk of coronary heart disease in men and women. N Engl J Med 351:2599–2610

    Article  CAS  PubMed  Google Scholar 

  87. Koenig W, Sund M, Fröhlich M, Fischer HG, Löwel H, Döring A, Hutchinson WL, Pepys MB (1999) C-Reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992. Circulation 99(2):237–242

    CAS  PubMed  Google Scholar 

  88. Danesh J, Wheeler JG, Hirschfield GM et al (2004) C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 350:1387–1397

    Article  CAS  PubMed  Google Scholar 

  89. Cushman M, Arnold AM, Psaty BM et al (2005) C-reactive protein and the 10-year incidence of coronary heart disease in older men and women: the cardiovascular health study. Circulation 112:25–31

    Article  CAS  PubMed  Google Scholar 

  90. Ridker PM, Rifai N, Rose L, Buring JE, Cook NR (2002) Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 347(20):1557–1565

    Article  CAS  PubMed  Google Scholar 

  91. Ridker PM, Buring JE, Cook NR, Rifai N (2003) C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14, 719 initially healthy American women. Circulation 107(3):391–397

    Article  PubMed  Google Scholar 

  92. Pradhan AD, Ridker PM (2002) Do atherosclerosis and type 2 diabetes share a common inflammatory basis? Eur Heart J 23(11):831–834

    Article  CAS  PubMed  Google Scholar 

  93. Khot UN, Khot MB, Bajzer CT et al (2003) Prevalence of conventional risk factors in patients with coronary heart disease. JAMA 290:898–904

    Article  PubMed  Google Scholar 

  94. Greenland P, Knoll MD, Stamler J et al (2003) Major risk factors as antecedents of fatal and nonfatal coronary heart disease events. JAMA 290:891–897

    Article  PubMed  Google Scholar 

  95. Ridker PM, Buring JE, Rifai N, Cook NR (2007) Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds risk score. JAMA 297(6):611–619

    Article  CAS  PubMed  Google Scholar 

  96. Ridker PM, Paynter NP, Rifai N, Gaziano JM, Cook NR (2008) C-reactive protein and parental history improve global cardiovascular risk prediction: the Reynolds Risk Score for men. Circulation 118(22):2243–2251, 4p following 2251

    Article  CAS  PubMed  Google Scholar 

  97. Pearson TA, Mensah GA, Alexander RW et al (2003) Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107(3):499–511

    Article  PubMed  Google Scholar 

  98. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM Jr, Kastelein JJ, Koenig W, Libby P, Lorenzatti AJ, MacFadyen JG, Nordestgaard BG, Shepherd J, Willerson JT, Glynn RJ, JUPITER Study Group (2008) Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 359(21):2195–2207

    Article  CAS  PubMed  Google Scholar 

  99. Zebrack JS, Muhlestein JB, Horne BD, Anderson JL (2002) C-reactive protein and angiographic coronary artery disease: independent and additive predictors of risk in subjects with angina. J Am Coll Cardiol 39:632

    Article  CAS  PubMed  Google Scholar 

  100. Bogaty P, Poirier P, Simard S et al (2001) Biological profiles in subjects with recurrent acute coronary events compared with subjects with long-standing stable angina. Circulation 103:3062

    CAS  PubMed  Google Scholar 

  101. Haverkate F, Thompson SG, Pyke SD et al (1997) Production of C-reactive protein and risk of coronary events in stable and unstable angina. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. Lancet 349:462

    Article  CAS  PubMed  Google Scholar 

  102. Tomoda H, Aoki N (2000) Prognostic value of C-reactive protein levels within six hours after the onset of acute myocardial infarction. Am Heart J 140:324

    Article  CAS  PubMed  Google Scholar 

  103. Thompson SG, Kienast J, Pyke SDM et al (1995) Hemostatic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. N Engl J Med 332:635

    Article  CAS  PubMed  Google Scholar 

  104. Ridker PM, Rifai N, Pfeffer MA et al (1998) Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events (CARE) Investigators. Circulation 98:839

    CAS  PubMed  Google Scholar 

  105. Sabatine MS, Morrow DA, Jablonski KA et al (2007) Prognostic significance of the Centers for Disease Control/American Heart Association high-sensitivity C-reactive protein cut points for cardiovascular and other outcomes in patients with stable coronary artery disease. Circulation 115:1528

    Article  PubMed  Google Scholar 

  106. Khera A, de Lemos LA, Peshock RM et al (2006) Relationship between C-reactive protein and subclinical atherosclerosis: the Dallas Heart Study. Circulation 113:38

    Article  CAS  PubMed  Google Scholar 

  107. Kerner A, Gruberg L, Goldberg A, Roguin A, Lavie P, Lavie L, Markiewicz W, Beyar R, Aronson D (2007) Relation of C-reactive protein to coronary collaterals in patients with stable angina pectoris and coronary artery disease. Am J Cardiol 99(4):509–512

    Article  CAS  PubMed  Google Scholar 

  108. Sinning JM, Bickel C, Messow CM, Schnabel R, Lubos E et al (2006) Impact of C-reactive protein and fibrinogen on cardiovascular prognosis in patients with stable angina pectoris: the AtheroGene study. Eur Heart J 27:2962–2968

    Article  CAS  PubMed  Google Scholar 

  109. Arroyo-Espliguero R, Avanzas P, Quiles J, Kaski JC (2008) C-reactive protein predicts functional status and correlates with left ventricular ejection fraction in patients with chronic stable angina. Atherosclerosis (in press)

  110. Arroyo-Espliguero R, Avanzas P, Quiles J, Kaski JC (2008) Predictive value of coronary artery stenoses and C-reactive protein levels in patients with stable coronary artery disease. Atherosclerosis (in press)

  111. Worthley SG, Farouque HM, Cameron JD, Meredith IT (2006) Arterial remodeling correlates positively with serological evidence of inflammation in patients with chronic stable angina pectoris. J Invasive Cardiol 18(1):28–31

    PubMed  Google Scholar 

  112. Zouridakis E, Avanzas P, Arroyo-Espliguero R et al (2004) Markers of inflammation and rapid coronary artery disease progression in patients with stable angina pectoris. Circulation 110(13):1747–1753

    Article  CAS  PubMed  Google Scholar 

  113. Goldberg A, Gruberg L, Roguin A, Petcherski S, Rimer D, Markiewicz W, Beyar R, Aronson D (2006) Preprocedural C-reactive protein levels predict myocardial necrosis after successful coronary stenting in patients with stable angina. Am Heart J 151(6):1265–1270

    Article  CAS  PubMed  Google Scholar 

  114. Beattie MS, Shlipak MG, Liu H et al (2003) C-reactive protein and ischemia in users and nonusers of beta-blockers and statins: data from the Heart and Soul Study. Circulation 107:245

    Article  CAS  PubMed  Google Scholar 

  115. Liuzzo G, Biasucci LM, Gallimore JR et al (1994) The prognostic value of C-reactive protein and serum amyloid A protein in severe unstable angina. N Engl J Med 331:417

    Article  CAS  PubMed  Google Scholar 

  116. Mueller C, Buettner HJ, Hodgson JM et al (2002) Inflammation and long-term mortality after non-ST elevation acute coronary syndrome treated with a very early invasive strategy in 1042 consecutive patients. Circulation 105(12):1412–1415

    Article  PubMed  Google Scholar 

  117. James SK, Armstrong P, Barnathan E et al (2003) Troponin and C-reactive protein have different relations to subsequent mortality and myocardial infarction after acute coronary syndrome. A GUSTO-IV substudy. J Am Coll Cardiol 41:916

    Article  CAS  PubMed  Google Scholar 

  118. Morrow DA, Rifai N, Antman EM et al (1998) C-reactive protein is a potent predictor of mortality independently and in combination with troponin T in acute coronary syndromes: a TIMI 11A substudy. J Am Coll Cardiol 31:1460

    Article  CAS  PubMed  Google Scholar 

  119. Lindahl B, Toss H, Siegbahn A et al (2000) Markers of myocardial damage and inflammation in relation to long-term mortality in unstable coronary artery disease. FRISC Study Group. N Engl J Med 343:1139

    Article  CAS  PubMed  Google Scholar 

  120. Foussas SG, Zairis MN, Lyras AG, Patsourakos NG, Tsirimpis VG, Katsaros K, Beldekos DJ, Handanis SM, Mytas DZ, Karidis KS, Tselioti PG, Prekates AA, Ambrose JA (2005) Early prognostic usefulness of C-reactive protein added to the Thrombolysis In Myocardial Infarction risk score in acute coronary syndromes. Am J Cardiol 96(4):533–537

    Article  CAS  PubMed  Google Scholar 

  121. Smit JJ, Ottervanger JP, Slingerland RJ, Kolkman JJ, Suryapranata H, Hoorntje JC, Dambrink JH, Gosselink AT, de Boer MJ, Zijlstra F, van’t Hof AW, On-TIME Study Group (2008) Comparison of usefulness of C-reactive protein versus white blood cell count to predict outcome after primary percutaneous coronary intervention for ST elevation myocardial infarction. Am J Cardiol 101(4):446–451

    Article  CAS  PubMed  Google Scholar 

  122. Brunetti ND, Troccoli R, Correale M, Pellegrino PL, Di Biase M (2006) C-reactive protein in patients with acute coronary syndrome: correlation with diagnosis, myocardial damage, ejection fraction and angiographic findings. Int J Cardiol 109:248–256

    Article  PubMed  Google Scholar 

  123. Hoffmann R, Suliman H, Haager P, Christott P, Lepper W, Radke PW, Ortlepp J, Blindt R, Hanrath P, Weber C (2006) Association of C-reactive protein and myocardial perfusion in patients with ST-elevation acute myocardial infarction. Atherosclerosis 186:177–183

    Article  CAS  PubMed  Google Scholar 

  124. Nakachi T, Kosuge M, Hibi K, Ebina T, Hashiba K, Mitsuhashi T, Endo M, Umemura S, Kimura K (2008) C-reactive protein elevation and rapid angiographic progression of nonculprit lesion in patients with non-ST-segment elevation acute coronary syndrome. Circ J 72(12):1953–1959

    Article  CAS  PubMed  Google Scholar 

  125. Bogaty P, Boyer L, Simard S, Dauwe F, Dupuis R, Verret B, Huynh T, Bertrand F, Dagenais GR, Brophy JM (2008) Clinical utility of C-reactive protein measured at admission, hospital discharge, and 1 month later to predict outcome in patients with acute coronary disease. The RISCA (recurrence and inflammation in the acute coronary syndromes) study. J Am Coll Cardiol 51(24):2339–2346

    Article  CAS  PubMed  Google Scholar 

  126. Yeh ET, Willerson JT (2003) Coming of age of C-reactive protein: using inflammation markers in cardiology. Circulation 107(3):370–371

    Article  PubMed  Google Scholar 

  127. Ridker PM, Cannon CP, Morrow D et al (2005) C-reactive protein levels and outcomes after statin therapy. N Engl J Med 352(1):20–28

    Article  CAS  PubMed  Google Scholar 

  128. Morrow DA, de Lemos JA, Sabatine MS, Wiviott SD, Blazing MA, Shui A, Rifai N, Califf RM, Braunwald E (2006) Clinical relevance of C-reactive protein during follow-up of patients with acute coronary syndromes in the Aggrastat-to-Zocor Trial. Circulation 114(4):281–288

    Article  CAS  PubMed  Google Scholar 

  129. Ridker PM (2008) The time for cardiovascular inflammation reduction trials has arrived: how low to go for hsCRP? Arterioscler Thromb Vasc Biol 28:1222–1224

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Calabrò.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calabrò, P., Golia, E. & Yeh, E.T.H. CRP and the risk of atherosclerotic events. Semin Immunopathol 31, 79–94 (2009). https://doi.org/10.1007/s00281-009-0149-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-009-0149-4

Keywords

Navigation