Skip to main content

Advertisement

Log in

Infection and glomerulonephritis

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Glomerular injury, occurring either as primary glomerular disease or as part of a systemic disease process, is usually a result of immune-mediated mechanisms. The morphologic reaction pattern has a diverse spectrum of appearance, ranging from normal by light microscopy in minimal change disease to crescentic forms of glomerulonephritis, with conspicuous disruption of the normal glomerular morphology. The mechanisms of glomerular immune deposit formation include trapping of circulating antigen–antibody complexes and the in situ formation of immune complexes within the glomerulus. While the majority of postinfectious immune-complex-mediated glomerulonephritides are believed to result from the deposition of circulating antigen–antibody complexes, preformed outside of the kidney and secondarily deposited in the kidney, the notion of forming in situ antigen–antibody complexes to either planted antigens or to integral structural components of the glomerulus, through “cross-reacting” autoimmune reactions, is gaining popularity in a variety of forms of glomerulonephritides. Patients with HIV infection may develop a spectrum of renal pathology, the glomerular manifestations of which include both antigen–antibody complex and nonimmune-complex-mediated pathogenetic mechanisms. Similarly, patients with Streptococcal infections, Hepatitis B virus, or Hepatitis C virus infection may develop a spectrum of glomerulonephritides, which are predominantly immune-complex-mediated. Therapy for glomerular diseases due to HIV, hepatitis B, or C virus infections remains a challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Krogstad P (2003) Molecular biology of the human immunodeficiency virus: current and future targets for intervention. Semin Pediatr Infect Dis 14(4):258–268

    PubMed  Google Scholar 

  2. Apetrei C, Marx PA, Smith SM (2004) The evolution of HIV and its consequences. Infect Dis Clin N Am 18:369–394

    Google Scholar 

  3. Sreepada Rao TK (2001) Human immunodeficiency virus infection and renal failure. Infect Dis Clin N Am 15(3):833–850

    Google Scholar 

  4. Kimmel P (2000) The nephropathies of HIV infection: pathogenesis and treatment. Curr Opin Nephrol Hypertens 9(2):117–122

    PubMed  CAS  Google Scholar 

  5. Di Belgiojoso GB, Ferrario F, Landriani N (2002) Virus-related glomerular diseases: histological and clinical aspects. J Nephrol 15:469–479

    PubMed  Google Scholar 

  6. Weiner NJ, Goodman JW, Kimmel PL (2003) The HIV-associated renal diseases: current insight into pathogenesis and treatment. Kidney Int 63:1618–1631

    PubMed  Google Scholar 

  7. Cohen AH, Nast CC (1988) HIV-associated nephropathy: a unique combined glomerular, tubular and interstitial lesion. Mod Pathol 1:87–97

    PubMed  CAS  Google Scholar 

  8. Ross MJ et al (2001) Microcyst formation and HIV-1 gene expression occur in multiple nephron segments in HIV-associated nephropathy. J Am Soc Nephrol 12:2645–2651

    PubMed  CAS  Google Scholar 

  9. Lai AS, Lai KN (2006) Viral nephropathy. Nat Clin Prac Nephrol 2(5):254–262

    Google Scholar 

  10. Kopp JB et al (1992) Progressive glomerulosclerosis and enhanced renal accumulation of basement membrane components in mice transgenic for human immunodeficiency virus type 1 genes. Proc Natl Acad Sci U S A 89:1577–1581

    PubMed  CAS  Google Scholar 

  11. Bruggeman LA et al (1997) Nephropathy in human immunodeficiency virus-1 transgenic mice is due to renal transgene expression. J Clin Invest 100:84–92

    Google Scholar 

  12. Cohen AH et al (1989) Demonstration of human immunodeficiency virus in renal epithelium in HIV-associated nephropathy. Mod Pathol 2:125–128

    Google Scholar 

  13. Kimmel PL et al (1993) Viral DNA in microdissected renal biopsy tissue from HIV infected patients with nephrotic syndrome. Kidney Int 43:1347–1352

    Google Scholar 

  14. Bruggeman LA et al (2000) Renal epithelium is a previously unrecognised site of HIV-1 infection. J Am Soc Nephrol 11:2079–2087

    Google Scholar 

  15. Dickie P et al (1991) HIV-associated nephropathy in transgenic mice expressing HIV-1 genes. Virology 185:109–119

    Google Scholar 

  16. Tanji N et al (2006) Detection and localization of HIV-1 DNA in renal tissues by in-situ polymerase chain reaction. Histol Histopathol 21:393–401

    Google Scholar 

  17. Eitner F et al (2000) Chemokine receptor CCR5 and CXCR4 expression in HIV-associated kidney disease. Immunol Pathol 11(5):856–867

    CAS  Google Scholar 

  18. Eitner F et al (1998) Chemokine receptor (CCR5) expression in human kidneys and in the HIV infected macaque. Kidney Int 54:1945–1954

    Google Scholar 

  19. Conaldi PG et al (1998) HIV-1 kills renal tubular epithelial cells in vitro by triggering an apoptotic pathway involving caspase activation and Fas upregulation. J Clin Invest 102:2041–2049

    Google Scholar 

  20. Huber TB et al (2002) Expression of functional CCR and CXCR chemokine receptors in podocytes. J Immunol 168:6244–6252

    PubMed  CAS  Google Scholar 

  21. Gerntholtz TE, Goetsch SJ, Katz I (2006) HIV-related nephropathy: a South African perspective. Kidney Int 69:1885–1891

    PubMed  CAS  Google Scholar 

  22. Singhal PC, Sharma P, Loona R (1998) Enhanced proliferation, apoptosis, and matrix accumultaion by mesangial cells derived from HIV-1 transgenic mice. J Investig Med 46:297–302

    PubMed  CAS  Google Scholar 

  23. Singhal PC, Sharma P, Reddy K (1997) HIV-1 gp160 envelope protein modulates proliferation and apoptosis in mesangial cells. Nephron 76:284–295

    PubMed  CAS  Google Scholar 

  24. Conaldi PG, Botelli A, Wade-Evans A (2000) HIV-persistent infection and cytokine induction in mesangial cells: a potent mechanism for HIV-associated glomerulosclerosis. AIDS 14:2045–2047

    PubMed  CAS  Google Scholar 

  25. Bodi I, Kimmel PL, Abraham AA (1997) Renal TGF-beta in HIV-associated kidney diseases. Kidney Int 51:1568–1577

    PubMed  CAS  Google Scholar 

  26. Hiramatsu N et al (2007) Angiotensin II type 1 receptor blockade inhibits the development and progression of HIV-associated nephropathy in a mouse model. J Am Soc Nephrol 18:515–527

    Google Scholar 

  27. Border WA, Noble NA (1994) Transforming growth-factor-beta in tissue fibrosis. N Engl J Med 331:1286–1292

    PubMed  CAS  Google Scholar 

  28. Wei A et al (2003) Long-term renal survival in HIV-associated nephropathy with angiotensin-converting enzyme inhibition. Kidney Int 64:1462–1471

    Google Scholar 

  29. Mongia A et al (2004) Protease inhibitors modulate apoptosis in mesangial cells derived from a mouse model of HIVAN. Kidney Int 65(3):860–870

    PubMed  CAS  Google Scholar 

  30. Husain M et al (2002) HIV-Nef induces proliferation and anchorage-independent growth in podocytes. J Am Soc Nephrol 13(12):2997–3004

    Google Scholar 

  31. Lu T, Klotman PE (2007) Podocytes in HIV-associated nephropathy. Nephron Clin Pract 106(2):c67–c71

    PubMed  CAS  Google Scholar 

  32. Schwartz EJ et al (2001) Human immunodeficiency virus-1 induces loss of contact inhibition in podocytes. J Am Soc Nephrol 12(8):1677–1684

    PubMed  CAS  Google Scholar 

  33. Doublier S et al (2007) HIV-1 Tat reduces nephrin in human podocytes: a potential mechanism for enhanced glomerular permeability in HIV-associated nephropathy. AIDS 21(4):423–432

    Google Scholar 

  34. Barisoni L et al (1999) The dysregulated podocyte phenotype: a novel concept in the pathogenesis of collapsing idiopathic focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol 10(1):51–61

    PubMed  CAS  Google Scholar 

  35. Kaufman L et al (2004) Side-kick-1 is upregulated in glomeruli in HIV-associated nephropathy. J Am Soc Nephrol 15(7):1721–1730

    Google Scholar 

  36. Kaufman L et al (2007) The homophilic adhesion molecule sidekick-1 contributes to augmented podocyte aggregation in HIV-associated nephropathy. FASEB J 21(7):1367–1375

    Google Scholar 

  37. Zhong J et al (2005) Expression of HIV-1 genes in podocytes alone can lead to the full spectrum of HIV-1-associated nephropathy. Kidney Int 68(3):1048–1060

    Google Scholar 

  38. D'Agati V et al (1989) Pathology of HIV-associated nephropathy: a detailed morphological and comparative study. Kidney Int 35:1358–1370

    Google Scholar 

  39. Tang P et al (2005) Fibroblast growth factor-2 increases the renal recruitment and attachment of HIV-infected mononuclear cells to renal tubular epithelial cells. Pediatr Nephrol 20:1708–1716

    Google Scholar 

  40. Ross MJ et al (2006) HIV-1 infection initiates an inflammatory cascade in human renal tubular epithelial cells. J Acquir Immune Defic Syndr 42:1–11

    Google Scholar 

  41. Eustace JA et al (2000) Cohort study of the treatment of severe HIV-associated nephropathy with corticosteroids. Kidney Int 58:1253–1260

    Google Scholar 

  42. Kimmel PL, Mishkin GJ, Umana WO (1996) Captopril and renal survival in patients with human immunodeficiency virus nephropathy. Am J Kidney Dis 28:202–208

    PubMed  CAS  Google Scholar 

  43. Burns GC et al (1997) Effect of angiotensin-converting enzyme inhibition in HIV-associated nephropathy. J Am Soc Nephrol 8(7):1140–1146

    Google Scholar 

  44. Gupta SK et al (2005) Guidelines for the management of chronic kidney disease in HIV-infected patients: recommendations of the HIV medicine association of the infectious diseases society of America. Clin Infect Dis 40:1559–1585

    Google Scholar 

  45. Ingulli E, Tejani A, Fikrig S (1991) Nephrotic syndrome associated with acquired immunodeficiency syndrome in children. J Pediatr 119(5):710–716

    PubMed  CAS  Google Scholar 

  46. Winston JA et al (2001) Nephropathy and establishment of a renal reservoir of HIV type 1 during Primary Infection. N Engl J Med 344(26):1979–1984

    Google Scholar 

  47. Szczech LA et al (2002) Protease inhibitors are associated with a slowed progression of HIV-related renal diseases. Clin Nephrol 57:336–341

    Google Scholar 

  48. Furtado MR et al (1999) Persistence of HIV-1 Transcription in Peripheral-Blood Mononuclear Cells in Pateints Receiving Potent Antiretroviral Treatment. N Engl J Med 340(21):1614–1622

    Google Scholar 

  49. Ross MJ, Klotman PE (2004) HIV-associated nephropathy. AIDS 18(8):1089–1099

    PubMed  Google Scholar 

  50. Mqhayi M et al (2006) Causes for defaulting antiretrovirals in an urban clinic. in 13th Conference on Retroviruses and Opportunistic Infections (CROI 2006). Denver, USA

  51. Cunningham MW (2000) Pathogenesis of group A streptococcal infections. Clin Microbiol Rev 13(3):470–511

    PubMed  CAS  Google Scholar 

  52. Fox EN (1974) M proteins of group A streptococci. Bacteriol Rev 38(1):57–86

    PubMed  CAS  Google Scholar 

  53. Lancefield RC (1969) Current problems in studies of streptococci. J Gen Microbiol 55(2):161–163

    PubMed  CAS  Google Scholar 

  54. Friedman J et al (1984) Immunological studies of post-streptococcal sequelae. Evidence for presence of streptococcal antigens in circulating immune complexes. J Clin Invest 74(3):1027–1034

    Google Scholar 

  55. Kefalides NA et al (1986) Antibodies to basement membrane collagen and to laminin are present in sera from patients with poststreptococcal glomerulonephritis. J Exp Med 163(3):588–602

    Google Scholar 

  56. Lange CF (1969) Chemistry of cross-reactive fragments of streptococcal cell membrane and human glomerular basement membrane. Transplant Proc 1(4):959–963

    PubMed  CAS  Google Scholar 

  57. Goroncy-Bermes P, Birkholz S (1988) Pathogenesis of glomerulonephritis following streptococcal infection. Immun Infekt 16(3):100–103

    PubMed  CAS  Google Scholar 

  58. Lange K, Seligson G, Cronin W (1983) Evidence for the in situ origin of poststreptococcal glomerulonephritis: glomerular localization of endostreptosin and the clinical significance of the subsequent antibody response. Clin Nephrol 19(1):3–10

    PubMed  CAS  Google Scholar 

  59. Lange K et al (1976) A hitherto unknown streptococcal antigen and its probable relation to acute poststreptococcal glomerulonephritis. Clin Nephrol 5(5):207–215

    Google Scholar 

  60. Cronin WJ, Lange K (1990) Immunologic evidence for the in situ deposition of a cytoplasmic streptococcal antigen (endostreptosin) on the glomerular basement membrane in rats. Clin Nephrol 34(4):143–146

    PubMed  CAS  Google Scholar 

  61. Poon-King R et al (1993) Identification of an extracellular plasmin binding protein from nephritogenic streptococci. J Exp Med 178(2):759–763

    Google Scholar 

  62. Cu GA et al (1998) Immunohistochemical and serological evidence for the role of streptococcal proteinase in acute post-streptococcal glomerulonephritis. Kidney Int 54(3):819–826

    Google Scholar 

  63. Nordstrand A et al (1998) Streptokinase as a mediator of acute post-streptococcal glomerulonephritis in an experimental mouse model. Infect Immun 66(1):315–321

    Google Scholar 

  64. Nordstrand A, Norgren M, Holm SE (1996) An experimental model for acute poststreptococcal glomerulonephritis in mice. Apmis 104(11):805–816

    Article  PubMed  CAS  Google Scholar 

  65. Glurich I et al (1991) Identification of Streptococcus pyogenes proteins that bind to rabbit kidney in vitro and in vivo. Microb Pathog 10(3):209–220

    Google Scholar 

  66. Couser WG (1999) Glomerulonephritis. Lancet 353(9163):1509–1515

    PubMed  CAS  Google Scholar 

  67. Han SH (2004) Extrahepatic manifestations of chronic hepatitis B. Clin Liver Dis 8(2):403–418

    PubMed  Google Scholar 

  68. Combes B et al (1971) Glomerulonephritis with deposition of Australia antigen–antibody complexes in glomerular basement membrane. Lancet 2(7718):234–237

    Google Scholar 

  69. Levy M, Chen N (1991) Worldwide perspective of hepatitis B-associated glomerulonephritis in the 80s. Kidney Int Suppl 35:S24–S33

    PubMed  CAS  Google Scholar 

  70. Okayasu T et al (1992) Inherited copper toxicity in Long-Evans cinnamon rats exhibiting spontaneous hepatitis: a model of Wilson’s disease. Pediatr Res 31(3):253–257

    Google Scholar 

  71. Takekoshi Y et al (1991) Immunopathogenetic mechanisms of hepatitis B virus-related glomerulopathy. Kidney Int Suppl 35:S34–S39

    Google Scholar 

  72. Ito H et al (1981) Hepatitis B e antigen-mediated membranous glomerulonephritis. Correlation of ultrastructural changes with HBeAg in the serum and glomeruli. Lab Invest 44(3):214–220

    Google Scholar 

  73. Lai KN, Lai FM, Tam JS (1989) Comparison of polyclonal and monoclonal antibodies in determination of glomerular deposits of hepatitis B virus antigens in hepatitis B virus-associated glomerulonephritides. Am J Clin Pathol 92(2):159–165

    PubMed  CAS  Google Scholar 

  74. Sasaki T, Hattori T, Mayumi M (1979) A large-scale survey on the prevalence of HBeAG and anti-HBe among asymptomatic carriers of HBV. Correlation with sex, age, HBsAG titre and s-GPT value. Vox Sang 37(4):216–221

    PubMed  CAS  Google Scholar 

  75. Ohba S et al (1997) Differential localization of s and e antigens in hepatitis B virus-associated glomerulonephritis. Clin Nephrol 48(1):44–47

    Google Scholar 

  76. Lai FM et al (1994) Primary glomerulonephritis with detectable glomerular hepatitis B virus antigens. Am J Surg Pathol 18(2):175–186

    Article  Google Scholar 

  77. Venkataseshan VS et al (1990) Hepatitis-B-associated glomerulonephritis: pathology, pathogenesis, and clinical course. Medicine (Baltimore) 69(4):200–216

    Google Scholar 

  78. Johnson RJ, Couser WG (1990) Hepatitis B infection and renal disease: clinical, immunopathogenetic and therapeutic considerations. Kidney Int 37(2):663–676

    PubMed  CAS  Google Scholar 

  79. Couser WG (1991) Mechanisms of glomerular injury: an overview. Semin Nephrol 11(3):254–258

    PubMed  CAS  Google Scholar 

  80. Couser WG et al (1978) Experimental glomerulonephritis in the isolated perfused rat kidney. J Clin Invest 62(6):1275–1287

    Google Scholar 

  81. Van Damme BJ et al (1978) Experimental glomerulonephritis in the rat induced by antibodies directed against tubular antigens. V. Fixed glomerular antigens in the pathogenesis of heterologous immune complex glomerulonephritis. Lab Invest 38(4):502–510

    Google Scholar 

  82. Nangaku M, Couser WG (2005) Mechanisms of immune-deposit formation and the mediation of immune renal injury. Clin Exp Nephrol 9(3):183–191

    PubMed  CAS  Google Scholar 

  83. Couser WG (1985) Mechanisms of glomerular injury in immune-complex disease. Kidney Int 28(3):569–583

    PubMed  CAS  Google Scholar 

  84. Horl WH, Kerjaschki D (2000) Membranous glomerulonephritis (MGN). J Nephrol 13(4):291–316

    PubMed  CAS  Google Scholar 

  85. Ronco P, Debiec H (2006) New insights into the pathogenesis of membranous glomerulonephritis. Curr Opin Nephrol Hypertens 15(3):258–263

    Article  PubMed  CAS  Google Scholar 

  86. Czaja AJ (1997) Extrahepatic immunologic features of chronic viral hepatitis. Dig Dis 15(3):125–144

    PubMed  CAS  Google Scholar 

  87. Nangaku M, Shankland SJ, Couser WG (2005) Cellular response to injury in membranous nephropathy. J Am Soc Nephrol 16(5):1195–1204

    PubMed  CAS  Google Scholar 

  88. Lai KN, Lo ST, Lai FM (1989) Immunohistochemical study of the membrane attack complex of complement and S-protein in idiopathic and secondary membranous nephropathy. Am J Pathol 135(3):469–476

    PubMed  CAS  Google Scholar 

  89. Akano N et al (1989) Immunoelectron microscopic localization of membrane attack complex and hepatitis B e antigen in membranous nephropathy. Virchows Arch A Pathol Anat Histopathol 414(4):325–330

    Google Scholar 

  90. Topham PS et al (1999) Complement-mediated injury reversibly disrupts glomerular epithelial cell actin microfilaments and focal adhesions. Kidney Int 55(5):1763–1775

    Google Scholar 

  91. Couser WG (1998) Pathogenesis of glomerular damage in glomerulonephritis. Nephrol Dial Transplant 13(Suppl 1):10–15

    PubMed  Google Scholar 

  92. Brandt J et al (1996) Role of the complement membrane attack complex (C5b-9) in mediating experimental mesangioproliferative glomerulonephritis. Kidney Int 49(2):335–343

    Google Scholar 

  93. Bhimma R, Coovadia HM, Adhikari M (1998) Hepatitis B virus-associated nephropathy in black South African children. Pediatr Nephrol 12(6):479–484

    PubMed  CAS  Google Scholar 

  94. Lai KN, Lai FM (1991) Clinical features and the natural course of hepatitis B virus-related glomerulopathy in adults. Kidney Int Suppl 35:S40–S45

    PubMed  CAS  Google Scholar 

  95. Lai KN et al (1991) Membranous nephropathy related to hepatitis B virus in adults. N Engl J Med 324(21):1457–1463

    Article  Google Scholar 

  96. Lai KN et al (1990) The therapeutic dilemma of the usage of corticosteroid in patients with membranous nephropathy and persistent hepatitis B virus surface antigenaemia. Nephron 54(1):12–17

    Article  Google Scholar 

  97. Sayarlioglu H et al (2005) Mycophenolate mofetil use in hepatitis B associated-membranous and membranoproliferative glomerulonephritis induces viral replication. Ann Pharmacother 39(3):573

    Google Scholar 

  98. Bhimma R et al (2002) Treatment of hepatitis B virus-associated nephropathy in black children. Pediatr Nephrol 17(6):393–389

    Google Scholar 

  99. Chung DR et al (1997) Treatment of hepatitis B virus associated glomerulonephritis with recombinant human alpha interferon. Am J Nephrol 17(2):112–117

    Google Scholar 

  100. Lin CY (1995) Treatment of hepatitis B virus-associated membranous nephropathy with recombinant alpha-interferon. Kidney Int 47(1):225–230

    PubMed  CAS  Google Scholar 

  101. Fabrizi F, Dixit V, Martin P (2006) Meta-analysis: anti-viral therapy of hepatitis B virus-associated glomerulonephritis. Aliment Pharmacol Ther 24(5):781–788

    PubMed  CAS  Google Scholar 

  102. Tang S et al (2005) Lamivudine in hepatitis B-associated membranous nephropathy. Kidney Int 68(4):1750–1758

    Google Scholar 

  103. Fabrizi F et al (2004) Lamivudine for the treatment of hepatitis B virus-related liver disease after renal transplantation: meta-analysis of clinical trials. Transplantation 77(6):859–864

    Google Scholar 

  104. Farrell GC, Teoh NC (2006) Management of chronic hepatitis B virus infection: a new era of disease control. Intern Med J 36(2):100–113

    PubMed  CAS  Google Scholar 

  105. Trepo C, Guillevin L (2001) Polyarteritis nodosa and extrahepatic manifestations of HBV infection: the case against autoimmune intervention in pathogenesis. J Autoimmun 16(3):269–274

    PubMed  CAS  Google Scholar 

  106. Wen YK, Chen ML (2006) Remission of hepatitis B virus-associated membranoproliferative glomerulonephritis in a cirrhotic patient after lamivudine therapy. Clin Nephrol 65(3):211–215

    PubMed  CAS  Google Scholar 

  107. Alter MJ et al (1992) The natural history of community-acquired hepatitis C in the United States. The Sentinel Counties Chronic non-A, non-B Hepatitis Study Team. N Engl J Med 327(27):1899–905

    Article  Google Scholar 

  108. Yamabe H et al (1995) Hepatitis C virus infection and membranoproliferative glomerulonephritis in Japan. J Am Soc Nephrol 6(2):220–223

    Google Scholar 

  109. Philipneri M, Bastani B (2001) Kidney disease in patients with chronic hepatitis C. Curr Gastroenterol Rep 3(1):79–83

    PubMed  CAS  Google Scholar 

  110. Roccatello D et al (2007) Multicenter study on hepatitis C virus-related cryoglobulinemic glomerulonephritis. Am J Kidney Dis 49(1):69–82

    Google Scholar 

  111. D’Amico G (1998) Renal involvement in hepatitis C infection: cryoglobulinemic glomerulonephritis. Kidney Int 54(2):650–671

    PubMed  CAS  Google Scholar 

  112. McGuire BM et al (2006) Brief communication: glomerulonephritis in patients with hepatitis C cirrhosis undergoing liver transplantation. Ann Intern Med 144(10):735–741

    Google Scholar 

  113. Arase Y et al (1998) Glomerulonephritis in autopsy cases with hepatitis C virus infection. Intern Med 37(10):836–840

    Google Scholar 

  114. Agnello V (1997) The etiology and pathophysiology of mixed cryoglobulinemia secondary to hepatitis C virus infection. Springer Semin Immunopathol 19(1):111–129

    PubMed  CAS  Google Scholar 

  115. Fabrizi F et al (2002) Kidney and liver involvement in cryoglobulinemia. Semin Nephrol 22(4):309–318

    Google Scholar 

  116. Sansonno D et al (1997) Hepatitis C virus-related proteins in kidney tissue from hepatitis C virus-infected patients with cryoglobulinemic membranoproliferative glomerulonephritis. Hepatology 25(5):1237–1244

    Google Scholar 

  117. Madala ND et al (2003) The pathogenesis of membranoproliferative glomerulonephritis in KwaZulu-Natal, South Africa is unrelated to hepatitis C virus infection. Clin Nephrol 60(2):69–73

    Google Scholar 

  118. Segerer S, Nelson PJ, Schlondorff D (2000) Chemokines, chemokine receptors, and renal disease: from basic science to pathophysiologic and therapeutic studies. J Am Soc Nephrol 11(1):152–176

    PubMed  CAS  Google Scholar 

  119. Johnson RJ et al (1987) New mechanism for glomerular injury. Myeloperoxidase-hydrogen peroxide-halide system. J Clin Invest 79(5):1379–1387

    Article  Google Scholar 

  120. Nikolic-Paterson DJ, Atkins RC (2001) The role of macrophages in glomerulonephritis. Nephrol Dial Transplant 16(Suppl 5):3–7

    PubMed  CAS  Google Scholar 

  121. Wornle M et al (2006) Novel role of toll-like receptor 3 in hepatitis C-associated glomerulonephritis. Am J Pathol 168(2):370–385

    Google Scholar 

  122. Peterson MC (2007) Elevated circulating transforming growth factor beta-1 may explain poorer renal survival in type II diabetics with chronic hepatitis C. Med Sci Monit 13(5):RA50–RA54

    Google Scholar 

  123. Ronco P, Debiec H (2005) Molecular pathomechanisms of membranous nephropathy: from Heymann nephritis to alloimmunization. J Am Soc Nephrol 16(5):1205–1213

    PubMed  CAS  Google Scholar 

  124. Davenport A et al (1994) Do mesangial immune complex deposits affect the renal prognosis in membranous glomerulonephritis. Clin Nephrol 41(5):271–276

    Google Scholar 

  125. Xie Y et al (2005) Predictive factors for sustained response to interferon treatment in patients with chronic hepatitis C: a randomized, open, and multi-center controlled trial. Hepatobiliary Pancreat Dis Int 4(2):213–219

    Google Scholar 

  126. Xu Zea (1998) Single dose safety (tolerability and pharmocokinetic/pharmacodynamics (PK/PD) following administration of ascending subcutanoeous doses of pegylated-interferon (PEG-INF) and interferon alpha-2a) to healthy subjects [abstract]. Hepatology 28:702A

    Google Scholar 

  127. Manns MP et al (2001) Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet 358(9286):958–965

    Google Scholar 

  128. Hadziyannis SJ et al (2004) Peginterferon-alpha2a and ribavirin combination therapy in chronic hepatitis C: a randomized study of treatment duration and ribavirin dose. Ann Intern Med 140(5):346–355

    Google Scholar 

  129. Sabry AA et al (2002) Effect of combination therapy (ribavirin and interferon) in HCV-related glomerulopathy. Nephrol Dial Transplant 17(11):1924–1930

    Google Scholar 

  130. Misiani R et al (1994) Interferon alfa-2a therapy in cryoglobulinemia associated with hepatitis C virus. N Engl J Med 330(11):751–756

    Google Scholar 

  131. Johnson RJ et al (1994) Hepatitis C virus-associated glomerulonephritis. Effect of alpha-interferon therapy. Kidney Int 46(6):1700–1704

    Google Scholar 

  132. Calleja JL et al (1999) Sustained response to interferon-alpha or to interferon-alpha plus ribavirin in hepatitis C virus-associated symptomatic mixed cryoglobulinaemia. Aliment Pharmacol Ther 13(9):1179–1186

    Google Scholar 

  133. Alric L et al (2004) Influence of antiviral therapy in hepatitis C virus-associated cryoglobulinemic MPGN. Am J Kidney Dis 43(4):617–623

    Google Scholar 

  134. Ohta S et al (1999) Exacerbation of glomerulonephritis in subjects with chronic hepatitis C virus infection after interferon therapy. Am J Kidney Dis 33(6):1040–1048

    Google Scholar 

  135. Madore F, Lazarus JM, Brady HR (1996) Therapeutic plasma exchange in renal diseases. J Am Soc Nephrol 7(3):367–386

    PubMed  CAS  Google Scholar 

  136. Quartuccio L et al (2006) Rituximab treatment for glomerulonephritis in HCV-associated mixed cryoglobulinaemia: efficacy and safety in the absence of steroids. Rheumatology (Oxford) 45(7):842–846

    Google Scholar 

  137. Kamar N, Rostaing L, Alric L (2006) Treatment of hepatitis C-virus-related glomerulonephritis. Kidney Int 69(3):436–439

    PubMed  CAS  Google Scholar 

  138. Garini G et al (2005) Hepatitis C virus-related cryoglobulinemia and glomerulonephritis: pathogenesis and therapeutic strategies. Ann Ital Med Int 20(2):71–80

    Google Scholar 

  139. Nutley N (2004) Copegus (ribavirin). Roche [product information]. Available at http://www.hivandhepatitis.com/hep_c/images/pi.pdf.

  140. Gentile I et al (2005) Hemolytic anemia during pegylated IFN-alpha2b plus ribavirin treatment for chronic hepatitis C: ribavirin is not always the culprit. J Interferon Cytokine Res 25(5):283–285

    Google Scholar 

  141. Afdhal NH et al (2004) Epoetin alfa maintains ribavirin dose in HCV-infected patients: a prospective, double-blind, randomized controlled study. Gastroenterology 126(5):1302–1311

    Google Scholar 

  142. Gish RG (2006) Treating HCV with ribavirin analogues and ribavirin-like molecules. J Antimicrob Chemother 57(1):8–13

    PubMed  CAS  Google Scholar 

  143. Russo MW et al (2003) Interferon monotherapy for dialysis patients with chronic hepatitis C: an analysis of the literature on efficacy and safety. Am J Gastroenterol 98(7):1610–1615

    Google Scholar 

  144. Pereira BJ, Levey AS (1997) Hepatitis C virus infection in dialysis and renal transplantation. Kidney Int 51(4):981–999

    PubMed  CAS  Google Scholar 

  145. Carbognin SJ et al (2006) Acute renal allograft rejection following pegylated IFN-alpha treatment for chronic HCV in a repeat allograft recipient on hemodialysis: a case report. Am J Transplant 6(7):1746–1751

    Google Scholar 

  146. Ozgur O et al (1995) Recombinant alpha-interferon in renal allograft recipients with chronic hepatitis C. Nephrol Dial Transplant 10(11):2104–2106

    Google Scholar 

  147. Shu KH et al (2004) Ultralow-dose alpha-interferon plus ribavirin for the treatment of active hepatitis C in renal transplant recipients. Transplantation 77(12):1894–1896

    Google Scholar 

  148. Cruzado JM et al (2003) Pretransplant interferon prevents hepatitis C virus-associated glomerulonephritis in renal allografts by HCV-RNA clearance. Am J Transplant 3(3):357–360

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saraladevi Naicker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naicker, S., Fabian, J., Naidoo, S. et al. Infection and glomerulonephritis. Semin Immunopathol 29, 397–414 (2007). https://doi.org/10.1007/s00281-007-0088-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-007-0088-x

Keywords

Navigation