Skip to main content

Advertisement

Log in

A three-marker signature identifies senescence in human breast cancer exposed to neoadjuvant chemotherapy

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Despite the beneficial effects of chemotherapy, therapy-induced senescence (TIS) manifests itself as an undesirable byproduct. Preclinical evidence suggests that tumor cells undergoing TIS can re-emerge as more aggressive divergents and contribute to recurrence, and thus, senolytics were proposed as adjuvant treatment to eliminate senescent tumor cells. However, the identification of TIS in clinical samples is essential for the optimal use of senolytics in cancer therapy. In this study, we aimed to detect and quantify TIS using matched breast cancer samples collected pre- and post-exposure to neoadjuvant chemotherapy (NAC).

Methods

Detection of TIS was based on the change in gene and protein expression levels of three senescence-associated markers (downregulation of Lamin B1 and Ki-67 and upregulation of p16INK4a).

Results

Our analysis revealed that 23 of 72 (31%) of tumors had a shift in the protein expression of the three markers after exposure to NAC suggestive of TIS. Gene expression sets of two independent NAC-treated breast cancer samples showed consistent changes in the expression levels of LMNB1, MKI67 and CDKN2A.

Conclusions

Collectively, our study shows a more individualized approach to measure TIS hallmarks in matched breast cancer samples and provides an estimation of the extent of TIS in breast cancer clinically. Results from this work should be complemented with more comprehensive identification approaches of TIS in clinical samples in order to adopt a more careful implementation of senolytics in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The patients’ datasets generated during the current work are not publicly available due to patients’ privacy concerns of the institutional review board policies on human tissue data but are available upon request from the corresponding author. The data of the gene expression profiles that were utilized in support the findings of this work are available from the Gene Expression Omnibus (GEO) database (reference numbers: GSE28844 https://doi.org/10.1371/journal.pone.0053983 and GSE21974 https://doi.org/10.3892/or.2011.1392).

References

  1. Saleh T, Bloukh S, Carpenter VJ, Alwohoush E, Bakeer J, Darwish S, Azab B, Gewirtz DA (2020) Therapy-induced senescence: an “old” friend becomes the enemy. Cancers (Basel) 12:822. https://doi.org/10.3390/cancers12040822

    Article  CAS  PubMed  Google Scholar 

  2. Wang B, Kohli J, Demaria M (2020) Senescent cells in cancer therapy: friends or foes? Trends Cancer 6:838–857. https://doi.org/10.1016/j.trecan.2020.05.004

    Article  CAS  PubMed  Google Scholar 

  3. Beck J, Horikawa I, Harris C (2020) Cellular senescence: mechanisms, morphology, and mouse models. Vet Pathol 57:747–757. https://doi.org/10.1177/0300985820943841

    Article  CAS  PubMed  Google Scholar 

  4. Wang X, Tsao S-W, Wong Y-C, Cheung A (2003) Induction of senescent-like growth arrest as a new target in anticancer treatment. Curr Cancer Drug Targets 3:153–159. https://doi.org/10.2174/1568009033482001

    Article  CAS  PubMed  Google Scholar 

  5. Robles SJ, Adami GR (1998) Agents that cause DNA double strand breaks lead to P16INK4a enrichment and the premature senescence of normal fibrolasts. Oncogene 16:1113–1123. https://doi.org/10.1038/sj.onc.1201862

    Article  CAS  PubMed  Google Scholar 

  6. Chang BD, Broude EV, Dokmanovic M, Zhu H, Ruth A, Xuan Y, Kandel ES, Lausch E, Christov K, Roninson IB (1999) A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 59:3761–3767. https://doi.org/10.1038/nrc2961

    Article  CAS  PubMed  Google Scholar 

  7. Rodier F, Muñoz DP, Teachenor R, Chu V, Le O, Bhaumik D, Coppé JP, Campeau E, Beauséjour CM, Kim SH et al (2011) DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J Cell Sci 124:68–81. https://doi.org/10.1242/jcs.071340

    Article  CAS  PubMed  Google Scholar 

  8. Rodier F, Coppé J, Patil CK, Hoeijmakers WAM, Muñoz DP, Raza SR, Freund A, Campeau E, Davalos AR, Campisi J (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11:973–979. https://doi.org/10.1038/ncb1909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hsu CH, Altschuler SJ, Wu LF (2019) Patterns of early P21 dynamics determine proliferation-senescence cell fate after chemotherapy. Cell 178:361-373.e12. https://doi.org/10.1016/J.CELL.2019.05.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brenner AJ, Stampfer MR, Aldaz CM (1998) Increased P16 expression with first senescence arrest in human mammary epithelial cells and extended growth capacity with P16 inactivation. Oncogene 17:199–205. https://doi.org/10.1038/sj.onc.1201919

    Article  CAS  PubMed  Google Scholar 

  11. Saleh T, Carpenter VJ, Bloukh S, Gewirtz DA (2022) Targeting tumor cell senescence and polyploidy as potential therapeutic strategies. Semin Cancer Biol 81:37–47. https://doi.org/10.1016/J.SEMCANCER.2020.12.010

    Article  CAS  PubMed  Google Scholar 

  12. Mosieniak G, Sliwinska MA, Alster O, Strzeszewska A, Sunderland P, Piechota M, Was H, Sikora E (2015) Polyploidy formation in doxorubicin-treated cancer cells can favor escape from senescence. Neoplasia 17:882–893. https://doi.org/10.1016/j.neo.2015.11.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskensi M, Rubelj I, Pereira-Smith O et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci 92:9363–9367. https://doi.org/10.1073/pnas.92.20.9363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kurz DJDJ, Decary S, Hong Y, Erusalimsky JDJD (2000) Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 113:3613–3622. https://doi.org/10.1242/jcs.113.20.3613

    Article  CAS  PubMed  Google Scholar 

  15. Casella G, Munk R, Kim KM, Piao Y, De S, Abdelmohsen K, Gorospe M (2019) Transcriptome signature of cellular senescence. Nucl Acids Res 47:7294–7305. https://doi.org/10.1093/nar/gkz555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hernandez-Segura A, de Jong TV, Melov S, Guryev V, Campisi J, Demaria M (2017) Unmasking transcriptional heterogeneity in senescent cells. Curr Biol 27:2652–2660. https://doi.org/10.1016/j.cub.2017.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schleich K, Kase J, Dörr JR, Trescher S, Bhattacharya A, Yu Y, Wailes EM, Fan DNY, Lohneis P, Milanovic M et al (2020) H3K9me3-mediated epigenetic regulation of senescence in mice predicts outcome of lymphoma patients. Nat Commun. https://doi.org/10.1038/s41467-020-17467-z

    Article  PubMed  PubMed Central  Google Scholar 

  18. Davalos AR, Coppe JP, Campisi J, Desprez PY (2010) Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev 29:273–283. https://doi.org/10.1007/s10555-010-9220-9

    Article  PubMed  PubMed Central  Google Scholar 

  19. Saleh T, Tyutynuk-Massey L, Cudjoe EKEK, Idowu MOMO, Landry JWJW, Gewirtz DADA, Tyutyunyk-Massey L, Cudjoe EKEK, Idowu MOMO, Landry JWJW et al (2018) Non-cell autonomous effects of the senescence-associated secretory phenotype in cancer therapy. Front Oncol 8:1–14. https://doi.org/10.3389/fonc.2018.00164

    Article  Google Scholar 

  20. Sikora E, Mosieniak G, Alicja Sliwinska M (2016) Morphological and functional characteristic of senescent cancer cells. Curr Drug Targets 17:377–387. https://doi.org/10.2174/1389450116666151019094724

    Article  CAS  PubMed  Google Scholar 

  21. Elmore LW, Rehder CW, Di X, McChesney PA, Jackson-cook CK, Gewirtz DA, Holt SE (2002) Adriamycin-induced senescence in breast tumor cells involves functional P53 and telomere dysfunction. J Biol Chem 277:35509–35515. https://doi.org/10.1074/jbc.M205477200

    Article  CAS  PubMed  Google Scholar 

  22. Patel NH, Bloukh S, Alwohosh E, Alhesa A, Saleh T, Gewirtz DA (2021) Autophagy and senescence in cancer therapy. Adv Cancer Res 150:1–74. https://doi.org/10.1016/BS.ACR.2021.01.002

    Article  PubMed  Google Scholar 

  23. Zhang JW, Zhang SS, Song JR, Sun K, Zong C, Zhao QD, Liu WT, Li R, Wu MC, Wei LX (2014) Autophagy inhibition switches low-dose camptothecin-induced premature senescence to apoptosis in human colorectal cancer cells. Biochem Pharmacol 90:265–275. https://doi.org/10.1016/j.bcp.2014.05.009

    Article  CAS  PubMed  Google Scholar 

  24. Goehe RW, Di X, Sharma K, Bristol ML, Henderson SC, Valerie K, Rodier F, Davalos AR, Gewirtz DA (2012) The autophagy-senescence connection in chemotherapy: must tumor cells (self) eat before they sleep? J Pharmacol Exp Ther 343:763–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Saleh T, Tyutyunyk-Massey L, Murray GFGF, Alotaibi MRMRMR, Kawale ASASAS, Elsayed Z, Henderson SCSC, Yakovlev V, Elmore LWLWLW, Toor A et al (2019) Tumor cell escape from therapy-induced senescence. Biochem Pharmacol 162:202–212. https://doi.org/10.1016/j.bcp.2018.12.013

  26. Milanovic M, Yu Y, Schmitt CA (2018) The senescence-stemness alliance—a cancer-hijacked regeneration principle. Trends Cell Biol 28:1049–1061. https://doi.org/10.1016/j.tcb.2018.09.001

    Article  PubMed  Google Scholar 

  27. Yang L, Fang J, Chen J (2017) Tumor cell senescence response produces aggressive variants. Cell Death Discov 3:17049. https://doi.org/10.1038/cddiscovery.2017.49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Duy C, Li M, Teater M, Meydan C, Garrett-bakelman FE, Lee TC, Chin CR, Durmaz C, Kawabata KC, Dhimolea E et al (2021) Chemotherapy induces senescence-like resilient cells capable of initiating AML recurrence. Cancer Discov 11:candisc.1375.2020. https://doi.org/10.1158/2159-8290.CD-20-1375

  29. Demaria M, Leary MNO, Chang J, Shao L, Liu S, Alimirah F, Koenig K, Le C, Mitin N, Deal AM et al (2017) Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov 7:165–177. https://doi.org/10.1158/2159-8290.CD-16-0241

    Article  CAS  PubMed  Google Scholar 

  30. Bojko A, Czarnecka-Herok J, Charzynska A, Dabrowski M, Sikora E (2019) Diversity of the senescence phenotype of cancer cells treated with chemotherapeutic agents. Cells 8:1501. https://doi.org/10.3390/cells8121501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sharpless NE, Sherr CJ (2015) Forging a signature of in vivo senescence. Nat Rev Cancer 15:397–408. https://doi.org/10.1038/nrc3960

    Article  CAS  PubMed  Google Scholar 

  32. Chakradeo S, Elmore LW, Gewirtz DA (2016) Is senescence reversible? Curr Drug Targets 17:460–466. https://doi.org/10.2174/1389450116666150825113500

    Article  CAS  PubMed  Google Scholar 

  33. Litwiniec A, Gackowska L, Helmin-Basa A, Żuryń A, Grzanka A (2013) Low-dose etoposide-treatment induces endoreplication and cell death accompanied by cytoskeletal alterations in A549 cells: does the response involve senescence? the possible role of vimentin. Cancer Cell Int 13:9. https://doi.org/10.1186/1475-2867-13-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Palaniyappan A (2009) Cyclophosphamide induces premature senescence in normal human fibroblasts by activating MAP kinases. Biogerontology 10:677–682. https://doi.org/10.1007/s10522-009-9215-5

    Article  CAS  PubMed  Google Scholar 

  35. Vijayaraghavan S, Karakas C, Doostan I, Chen X, Bui T, Yi M, Raghavendra AS, Zhao Y, Bashour SI, Ibrahim NK et al (2017) CDK4/6 and autophagy inhibitors synergistically induce senescence in Rb positive cytoplasmic cyclin e negative cancers. Nat Commun 8:1–17. https://doi.org/10.1038/ncomms15916

    Article  CAS  Google Scholar 

  36. Fleury H, Malaquin N, Tu V, Gilbert S, Martinez A, Olivier MA, Sauriol A, Communal L, Leclerc-Desaulniers K, Carmona E et al (2019) Exploiting interconnected synthetic lethal interactions between PARP inhibition and cancer cell reversible senescence. Nat Commun 10:2556. https://doi.org/10.1038/s41467-019-10460-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ewald JA, Joshua AD, Church DR, Yang B, Hyang W, Laurila TA, Jarrard DF (2016) Androgen deprivation induces senescence characteristics in prostate cancer cells in vitro and in vivo. Prostate 73:337–345. https://doi.org/10.1002/pros.22571.Androgen

    Article  Google Scholar 

  38. Roberson RS, Kussick SJ, Vallieres E, Chen SYJ, Wu DY (2005) Escape from therapy-induced accelerated cellular senescence in P53-null lung cancer cells and in human lung cancers. Cancer Res 65:2795–2803. https://doi.org/10.1158/0008-5472.CAN-04-1270

    Article  CAS  PubMed  Google Scholar 

  39. Cotarelo CL, Schad A, Kirkpatrick CJ, Sleeman JP, Springer E, Schmidt M, Thaler S (2016) Detection of cellular senescence within human invasive breast carcinomas distinguishes different breast tumor subtypes. Oncotarget 7:74846–748597. https://doi.org/10.18632/oncotarget.12432

    Article  PubMed  PubMed Central  Google Scholar 

  40. Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP, te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP (2002) DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 62:1876–1883

    Google Scholar 

  41. Short S, Fielder E, Miwa S, von Zglinicki T (2019) Senolytics and senostatics as adjuvant tumour therapy. EBioMedicine 41:683–692. https://doi.org/10.1016/j.ebiom.2019.01.056

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, Palmer AK, Ikeno Y, Hubbard GB, Hara SPO et al (2015) The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14:644–658. https://doi.org/10.1111/acel.12344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Saleh T, Tyutyunyk-Massey L, Gewirtz DADA (2019) Tumor cell escape from therapy-induced senescence as a model of disease recurrence after dormancy. Cancer Res 79:1044–1046. https://doi.org/10.1158/0008-5472.CAN-18-3437

    Article  CAS  PubMed  Google Scholar 

  44. Saleh T, Gewirtz DA (2022) Considering therapy-induced senescence as a mechanism of tumour dormancy contributing to disease recurrence. Br J Cancer 126:1363–1365. https://doi.org/10.1038/S41416-022-01787-6

    Article  PubMed  PubMed Central  Google Scholar 

  45. DeLuca VJ, Saleh T (2023) Insights into the role of senescence in tumor dormancy: mechanisms and applications. Cancer Metastasis Rev. https://doi.org/10.1007/S10555-023-10082-6

    Article  PubMed  Google Scholar 

  46. Saleh T, Alhesa A, Al-Balas M, Abuelaish O, Mansour A, Awad H, El-Sadoni M, Carpenter VJ, Azab B (2021) Expression of therapy-induced senescence markers in breast cancer samples upon incomplete response to neoadjuvant chemotherapy. Biosci Rep 41:BSR20210079. 10. 1042/ bsr 2021 0079

  47. Saleh T, El-sadoni M, Alhesa A, Awad H, Jaradat M, Al-hazaimeh M, Dawoud R, Mryyian A, Azab B (2021) Expression of senescence and apoptosis biomarkers in synchronous bilateral breast cancer: a case report. Curr Oncol 28:3836. https://doi.org/10.3390/CURRONCOL28050327

    Article  PubMed  PubMed Central  Google Scholar 

  48. Saleh T, Alhesa A, El-Sadoni M, Shahin NA, Alsharaiah E, Shboul SA, Awad H, Bloukh S, Al-Balas M, Alsalem M et al (2022) The Expression of the senescence-associated biomarker lamin B1 in human breast cancer. Diagnostics (Basel, Switzerland) 12:609. https://doi.org/10.3390/DIAGNOSTICS12030609

    Article  CAS  PubMed  Google Scholar 

  49. Freund A, Laberge R-MRM, Demaria M, Campisi J (2012) Lamin B1 loss is a senescence-associated biomarker. Mol Biol Cell 23:2066–2075. https://doi.org/10.1091/mbc.E11-10-0884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shimi T, Butin-Israeli V, Adam SA, Hamanaka RB, Goldman AE, Lucas CA, Shumaker DK, Kosak ST, Chandel NS, Goldman RD (2011) The role of nuclear lamin B1 in cell proliferation and senescence. Genes Dev. https://doi.org/10.1101/gad.179515.111

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chandra T, Ewels PA, Schoenfelder S, Furlan-Magaril M, Wingett SW, Kirschner K, Thuret JY, Andrews S, Fraser P, Reik W (2015) Global reorganization of the nuclear landscape in senescent cells. Cell Rep 10:471–483. https://doi.org/10.1016/j.celrep.2014.12.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. González-Gualda E, Baker AG, Fruk L, Muñoz-Espín D (2020) A guide to assessing cellular senescence in vitro and in vivo. FEBS J. https://doi.org/10.1111/febs.15570

    Article  PubMed  Google Scholar 

  53. Radisky DC, Santisteban M, Berman HK, Gauthier ML, Frost MH, Reynolds CA, Vierkant RA, Pankratz VS, Visscher DW, Tlsty TD et al (2011) P16 INK4a expression and breast cancer risk in women with atypical hyperplasia. Cancer Prev Res. https://doi.org/10.1158/1940-6207.CAPR-11-0282

    Article  Google Scholar 

  54. Rayess H, Wang MB, Srivatsan ES (2012) Cellular senescence and tumor suppressor gene P16. Int J Cancer 130:1715–1725. https://doi.org/10.1002/ijc.27316

    Article  CAS  PubMed  Google Scholar 

  55. Shan M, Zhang X, Liu X, Qin Y, Liu T, Liu Y, Wang J, Zhong Z, Zhang Y, Geng J et al (2013) P16 and P53 play distinct roles in different subtypes of breast cancer. PLoS ONE 8:e76408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shin E, Jung W-H, Koo J-S (2015) Expression of P16 and PRB in invasive breast cancer. Int J Clin Exp Pathol 8:8209

    PubMed  PubMed Central  Google Scholar 

  57. Lee WJ, Škalamera D, Dahmer-Heath M, Shakhbazov K, Ranall MV, Fox C, Lambie D, Stevenson AJ, Yaswen P, Gonda TJ et al (2017) Genome-wide overexpression screen identifies genes able to bypass P16-mediated senescence in melanoma. SLAS Discovery 22:298–308. https://doi.org/10.1177/1087057116679592

    Article  CAS  PubMed  Google Scholar 

  58. Inwald EC, Klinkhammer-Schalke M, Hofstädter F, Zeman F, Koller M, Gerstenhauer M, Ortmann O (2013) Ki-67 is a prognostic parameter in breast cancer patients: results of a large population-based cohort of a cancer registry. Breast Cancer Res Treat 139:539. https://doi.org/10.1007/S10549-013-2560-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, Meyer L, Gress DM, Byrd DR, Winchester DP (2017) The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J Clin 67:93–99. https://doi.org/10.3322/CAAC.21388

    Article  PubMed  Google Scholar 

  60. Al Shboul S, Curran OE, Alfaro JA, Lickiss F, Nita E, Kowalski J, Naji F, Nenutil R, Ball KL, Krejcir R et al (2021) Kinomics platform using GBM tissue identifies BTK as being associated with higher patient survival. Life Sci Alliance 4:e202101054. https://doi.org/10.26508/LSA.202101054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucl Acids Res 30:207–210. https://doi.org/10.1093/NAR/30.1.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vera-Ramirez L, Sanchez-Rovira P, Ramirez-Tortosa CL, Quiles JL, Ramirez-Tortosa MC, Lorente JA (2013) Transcriptional shift identifies a set of genes driving breast cancer chemoresistance. PLoS ONE 8:e53983. https://doi.org/10.1371/JOURNAL.PONE.0053983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stickeler E, Pils D, Klar M, Orlowsk-Volk M, Zur Hausen A, Jäger M, Watermann D, Gitsch G, Zeillinger R, Tempfer CB (2011) Basal-like molecular subtype and HER4 up-regulation and response to neoadjuvant chemotherapy in breast cancer. Oncol Rep 26:1037–1045. https://doi.org/10.3892/OR.2011.1392

    Article  CAS  PubMed  Google Scholar 

  64. Radspieler MM, Schindeldecker M, Stenzel P, Försch S, Tagscherer KE, Herpel E, Hohenfellner M, Hatiboglu G, Roth W, Macher-Goeppinger S (2019) Lamin-B1 is a senescence-associated biomarker in clear-cell renal cell carcinoma. Oncol Lett. https://doi.org/10.3892/ol.2019.10593

    Article  PubMed  PubMed Central  Google Scholar 

  65. Galvis D, Walsh D, Harries LW, Latorre E, Rankin J (2019) A dynamical systems model for the measurement of cellular senescence. J R Soc Interface 16:20190311. https://doi.org/10.1098/rsif.2019.0311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zindy F, Quelle DE, Roussel MF, Sherr CJ (1997) Expression of the P16(INK4a) tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene 15:203–211

    Article  CAS  PubMed  Google Scholar 

  67. Takahashi A, Ohtani N, Hara E (2007) Irreversibility of cellular senescence: dual roles of P16INK4a/Rb-pathway in cell cycle control. Cell Div 2:1–5. https://doi.org/10.1186/1747-1028-2-10

    Article  CAS  Google Scholar 

  68. Liu JY, Souroullas GP, Diekman BO, Krishnamurthy J, Hall BM, Sorrentino JA, Parker JS, Sessions GA, Gudkov AV, Sharpless NE (2019) Cells exhibiting strong P16 INK4a promoter activation in vivo display features of senescence. Proc Natl Acad Sci USA 116:2603–2611. https://doi.org/10.1073/pnas.1818313116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Biran A, Zada L, Abou Karam P, Vadai E, Roitman L, Ovadya Y, Porat Z, Krizhanovsky V (2017) Quantitative identification of senescent cells in aging and disease. Aging Cell 16:661–671. https://doi.org/10.1111/acel.12592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang AS, Ong PF, Chojnowski A, Clavel C, Dreesen O (2017) Loss of lamin B1 is a biomarker to quantify cellular senescence in photoaged skin. Sci Rep 7:15678. https://doi.org/10.1038/S41598-017-15901-9

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wang B, Demaria M (2021) The quest to define and target cellular senescence in cancer. Cancer Res 81:6087–6089. https://doi.org/10.1158/0008-5472.CAN-21-2032

    Article  CAS  PubMed  Google Scholar 

  72. Troiani M, Colucci M, D’Ambrosio M, Guccini I, Pasquini E, Varesi A, Valdata A, Mosole S, Revandkar A, Attanasio G et al (2022) Single-cell transcriptomics identifies Mcl-1 as a target for senolytic therapy in cancer. Nat Commun 13:2177. https://doi.org/10.1038/S41467-022-29824-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Milanovic M, Fan DNY, Belenki D, Däbritz JHM, Zhao Z, Yu Y, Dörr JR, Dimitrova L, Lenze D, Monteiro Barbosa IA et al (2018) Senescence-associated reprogramming promotes cancer stemness. Nature 553:96–100. https://doi.org/10.1038/nature25167

    Article  CAS  PubMed  Google Scholar 

  74. Tonnessen-Murray CA, Frey WD, Rao SG, Shahbandi A, Ungerleider NA, Olayiwola JO, Murray LB, Vinson BT, Chrisey DB, Lord CJ et al (2019) Chemotherapy-induced senescent cancer cells engulf other cells to enhance their survival. J Cell Biol 218:3827–3844. https://doi.org/10.1083/jcb.201904051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sasaki M, Kumazaki T, Takano H, Nishiyama M, Mitsui Y (2001) Senescent cells are resistant to death despite low Bcl-2 level. Mech Ageing Dev 122:1695–1706. https://doi.org/10.1016/S0047-6374(01)00281-0

    Article  CAS  PubMed  Google Scholar 

  76. Hampel B, Wagner M, Teis D, Zwerschke W, Huber LA, Jansen-Dürr P (2005) Apoptosis resistance of senescent human fibroblasts is correlated with the absence of nuclear IGFBP-3. Aging Cell 4:325–330. https://doi.org/10.1111/j.1474-9726.2005.00180.x

    Article  CAS  PubMed  Google Scholar 

  77. Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O (2009) Protocols to detect senescence-associated beta-galactosidase (SA-Betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4:1798–1806. https://doi.org/10.1038/NPROT.2009.191

    Article  CAS  PubMed  Google Scholar 

  78. Noren Hooten N, Evans MK (2017) Techniques to induce and quantify cellular senescence. J Vis Exp. https://doi.org/10.3791/55533

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kohli J, Wang B, Brandenburg SM, Basisty N, Evangelou K, Varela-Eirin M, Campisi J, Schilling B, Gorgoulis V, Demaria M (2021) Algorithmic assessment of cellular senescence in experimental and clinical specimens. Nat Protoc 16:2471–2498. https://doi.org/10.1038/S41596-021-00505-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Park SS, Choi YW, Kim JH, Kim HS, Park TJ (2021) Senescent tumor cells: an overlooked adversary in the battle against cancer. Exp Mol Med 53:1834–1841. https://doi.org/10.1038/S12276-021-00717-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Georgakopoulou EA, Tsimaratou K, Evangelou K, Fernandez-Marcos PJ, Zoumpourlis V, Trougakos IP, Kletsas D, Bartek J, Serrano M, Gorgoulis VG (2013) Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence a method applicable in cryo-preserved and archival tissues. Aging (Albany NY) 5:37–50. https://doi.org/10.18632/aging.100527

    Article  CAS  PubMed  Google Scholar 

  82. Yang N, Hu M (2005) The limitations and validities of senescence associated-b-galactosidase activity as an aging marker for human foreskin fibroblast Hs68 cells. Exp Gerontol 40:813–819. https://doi.org/10.1016/j.exger.2005.07.011

    Article  CAS  PubMed  Google Scholar 

  83. Jannone G, Rozzi M, Najimi M, Decottignies A, Sokal EM (2020) An optimized protocol for histochemical detection of senescence-associated beta-galactosidase activity in cryopreserved liver tissue. J Histochem Cytochem 68:269–278. https://doi.org/10.1369/0022155420913534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wagner J, Damaschke N, Yang B, Truong M, Guenther C (2015) Overexpression of the novel senescence marker β-galactosidase (GLB1) in prostate cancer predicts reduced PSA recurrence. PLOS Biol 10:1–15. https://doi.org/10.1371/journal.pone.0124366

    Article  CAS  Google Scholar 

  85. Tran SL, Haferkamp S, Scurr LL, Gowrishankar K, Becker TM, Desilva C, Thompson JF, Scolyer RA, Kefford RF, Rizos H (2012) Absence of distinguishing senescence traits in human melanocytic Nevi. J Investig Dermatol 132:2226–2234. https://doi.org/10.1038/jid.2012.126

    Article  CAS  PubMed  Google Scholar 

  86. Shah PP, Donahue G, Otte GL, Capell BC, Nelson DM, Cao K, Aggarwala V, Cruickshanks HA, Rai TS, McBryan T et al (2013) Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev 27:1787–1799. https://doi.org/10.1101/gad.223834.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sliwinska MA, Mosieniak G, Wolanin K, Babik A, Piwocka K, Magalska A, Szczepanowska J, Fronk J, Sikora E (2009) Induction of senescence with doxorubicin leads to increased genomic instability of HCT116 cells. Mech Ageing Dev 130:24–32. https://doi.org/10.1016/j.mad.2008.04.011

    Article  CAS  PubMed  Google Scholar 

  88. Sobecki M, Mrouj K, Colinge J, Gerbe F, Jay P, Krasinska L, Dulic V, Fisher D (2017) Cell-cycle regulation accounts for variability in Ki-67 expression levels. Cancer Res 77:2722–2734. https://doi.org/10.1158/0008-5472.CAN-16-0707

    Article  CAS  PubMed  Google Scholar 

  89. Dowsett M, Dunbier AK (2008) Emerging biomarkers and new understanding of traditional markers in personalized therapy for breast cancer. Clinical 14:8019–8026. https://doi.org/10.1158/1078-0432.CCR-08-0974

    Article  CAS  Google Scholar 

  90. Haugstetter AM, Loddenkemper C, Lenze D, Gröne J, Standfu C, Petersen I, Dörken B, Schmitt CA, Standfuß C, Petersen I et al (2010) Cellular senescence predicts treatment outcome in metastasised colorectal cancer. Br J Cancer 103:505–509. https://doi.org/10.1038/sj.bjc.6605784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic Ras provokes premature cell senescence associated with accumulation of P53 and P16INK4a. Cell 88:593–602. https://doi.org/10.1016/S0092-8674(00)81902-9

    Article  CAS  PubMed  Google Scholar 

  92. Lin AW, Barradas M, Stone JC, Van Aelst L, SerranoLowe MSW (1998) Premature senescence involving P53 and P16 is activated in response to constitutive MEK/MAPK mitogenic signaling. GENES Dev 12:3008–3019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Carpenter VJ, Patel BB, Autorino R, Smith SC, Gewirtz DA, Saleh T (2020) Senescence and castration resistance in prostate cancer: a review of experimental evidence and clinical implications. Biochim Biophys Acta Rev Cancer 1874:188424. https://doi.org/10.1016/J.BBCAN.2020.188424

    Article  CAS  PubMed  Google Scholar 

  94. Okamoto A, Demetrick DJ, Spillare EA, Hagiwara K, Hussain SP, Bennett WP, Forrester K, Gerwin B, Serrano M, Beach DH (1994) Mutations and altered expression of P16INK4 in human cancer. Proc Natl Acad Sci 91:11045–11049. https://doi.org/10.1073/pnas.91.23.11045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Giatromanolaki A, Kouroupi M, Balaska K, Koukourakis MI (2020) Immunohistochemical detection of senescence markers in human sarcomas. Pathol Res Pract 216:152800. https://doi.org/10.1016/J.PRP.2019.152800

    Article  CAS  PubMed  Google Scholar 

  96. Evangelou K, Gorgoulis VG, Sudan Black B (2017) The specific histochemical stain for lipofuscin: a novel method to detect senescent cells. Methods Mol Biol 1534:111–119. https://doi.org/10.1007/978-1-4939-6670-7_10

    Article  CAS  PubMed  Google Scholar 

  97. Sirinian C, Peroukidis S, Kriegsmann K, Chaniotis D, Koutras A, Kriegsmann M, Papanastasiou AD (2022) Cellular senescence in normal mammary gland and breast cancer. Implications for cancer therapy. Genes (Basel) 13:994. https://doi.org/10.3390/GENES13060994

    Article  CAS  PubMed  Google Scholar 

  98. Hoenicke L, Zender L (2012) Immune surveillance of senescent cells—biological significance in cancer- and non-cancer pathologies. Carcinogenesis 33:1123–1126. https://doi.org/10.1093/carcin/bgs124

    Article  CAS  PubMed  Google Scholar 

  99. Park MH, Choi JE, Kim JR, Bae YK (2021) Immunohistochemical expressions of senescence-associated secretory phenotype and its association with immune microenvironments and clinicopathological factors in invasive breast cancer. Pathol Oncol Res 27:1609795. https://doi.org/10.3389/PORE.2021.1609795

    Article  PubMed  PubMed Central  Google Scholar 

  100. Milde-Langosch K, Bamberger AM, Rieck G, Kelp B, Löning T (2001) Overexpression of the P16 cell cycle inhibitor in breast cancer is associated with a more malignant phenotype. Breast Cancer Res Treat 67:61–70. https://doi.org/10.1023/A:1010623308275

    Article  CAS  PubMed  Google Scholar 

  101. Nielsen TO, Leung SCY, Rimm DL, Dodson A, Acs B, Badve S, Denkert C, Ellis MJ, Fineberg S, Flowers M et al (2020) Assessment of Ki67 in breast cancer: updated recommendations from the international Ki67 in Breast Cancer Working Group. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djaa201

    Article  PubMed  PubMed Central  Google Scholar 

  102. Penault-Llorca F, André F, Sagan C, Lacroix-Triki M, Denoux Y, Verriele V, Jacquemier J, Baranzelli MC, Bibeau F, Antoine M et al (2009) Ki67 expression and docetaxel efficacy in patients with estrogen receptor-positive breast cancer. J Clin Oncol 27:2809–2815. https://doi.org/10.1200/JCO.2008.18.2808

    Article  CAS  PubMed  Google Scholar 

  103. Viale G, Regan MM, Mastropasqua MG, Maffini F, Maiorano E, Colleoni M, Price KN, Golouh R, Perin T, Brown RW et al (2008) Predictive value of tumor Ki-67 expression in two randomized trials of adjuvant chemoendocrine therapy for node-negative breast cancer. J Natl Cancer Inst 100:207–212. https://doi.org/10.1093/JNCI/DJM289

    Article  CAS  PubMed  Google Scholar 

  104. Wazir U, Ahmed MH, Bridger JM, Harvey A, Jiang WG, Sharma AK, Mokbel K (2013) The Clinicopathological significance of lamin A/C, lamin B1 and lamin B receptor MRNA expression in human breast cancer. Cell Mol Biol Lett 18:595–611. https://doi.org/10.2478/s11658-013-0109-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pereira BI, Devine OP, Vukmanovic-Stejic M, Chambers ES, Subramanian P, Patel N, Virasami A, Sebire NJ, Kinsler V, Valdovinos A et al (2019) Senescent cells evade immune clearance via HLA-E-mediated NK and CD8+ T cell inhibition. Nat Commun 10:2387. https://doi.org/10.1038/s41467-019-10335-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Carpenter VJ, Saleh T, Gewirtz DA (2021) Senolytics for cancer therapy: is all that glitters really gold? Cancers (Basel) 13:723. https://doi.org/10.3390/cancers13040723

    Article  CAS  PubMed  Google Scholar 

  107. Chen W, Wang X, Wei G, Huang Y, Shi Y, Li D, Qiu S, Zhou B, Cao J, Chen M et al (2020) Single-cell transcriptome analysis reveals six subpopulations reflecting distinct cellular fates in senescent mouse embryonic fibroblasts. Front Genet 11:867. https://doi.org/10.3389/fgene.2020.00867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Almanzar N, Antony J, Baghel AS, Bakerman I, Bansal I, Barres BA, Beachy PA, Berdnik D, Bilen B, Brownfield D et al (2020) A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 583:590–595. https://doi.org/10.1038/s41586-020-2496-1

    Article  CAS  Google Scholar 

  109. Althubiti M, Lezina L, Carrera S, Jukes-Jones R, Giblett SM, Antonov A, Barlev N, Saldanha GS, Pritchard CA, Cain K et al (2014) Characterization of novel markers of senescence and their prognostic potential in cancer. Cell Death Dis. https://doi.org/10.1038/cddis.2014.489

    Article  PubMed  PubMed Central  Google Scholar 

  110. Abramovitz M, Barwick BG, Willis S, Young B, Catzavelos C, Li Z, Kodani M, Tang W, Bouzyk M, Moreno CS et al (2011) Molecular characterisation of formalin-fixed paraffin-embedded (FFPE) breast tumour specimens using a custom 512-gene breast cancer bead array-based platform. Br J Cancer 105:1574–1581. https://doi.org/10.1038/BJC.2011.355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Fridman AL, Tainsky MA (2008) Critical pathways in cellular senescence and immortalization revealed by gene expression profiling. Oncogene 27:5975–5987. https://doi.org/10.1038/onc.2008.213

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Cell Therapy Center (University of Jordan) for granting access to the use of the microscopic imaging facility. The authors would also like to thank Dr. AbdelKader Battah and Dr. Heyam Awad (The School of Medicine, The University of Jordan) for their kind assistance and directions throughout this project. This work was funded by the Master Student Funding Program by The Deanship of Scientific Research, The University of Jordan (Grant no. 26/2020-2021). Work in Dr. Tareq Saleh’s laboratory is supported by Deanship of Scientific Research, The Hashemite University (Grants no. 465/83/2019 and 418/84/2019). All authors are highly thankful to the Researchers Supporting Project number (RSPD-2023R786), King Saud University, Riyadh, Saudi Arabia.

Funding

This work was funded by the Master Student Funding Program by The Deanship of Scientific Research, The University of Jordan (Grant no. 26/2020–2021). Work in Dr. Tareq Saleh’s laboratory is supported by Deanship of Scientific Research, The Hashemite University (Grants no. 465/83/2019 and 418/84/2019). All authors are highly thankful to the Researchers Supporting Project number (RSPD-2023R786), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

ME-S and AA collected patients’ samples and performed all laboratory experiments including tissue processing and immunostaining. SAS performed data analysis, designed tables and figures, and contributed to the writing. NAS and EA performed pathological assessment including diagnosis and evaluation of protein marker expression. MAI and NAA performed microscopic procedures. Manuscript was revised and edited by BA and MRA. TS was responsible for the experimental design, supervised the work, and wrote the manuscript.

Corresponding author

Correspondence to Tareq Saleh.

Ethics declarations

Conflict of interest

The authors declare that all research activities were conducted in the absence of any commercial or financial conflicts of interest.

Ethics approval and consent to participate

All experimental procedures were approved by the Institutional Review Board (IRB) committees at both JRMS (6/2021), the Hashemite University (no. 3/5/2018/2019), and The University of Jordan (no. 237/2021) in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments. Obtaining informed consents for this work was waived by both IRB protocols since all the samples used for this study were surplus (archived) tumor tissue samples, and that patients undergoing surgery or biopsy collection provide informed consent to donate any excess tissue (i.e., beyond that needed for clinical purposes).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 174 KB)

Supplementary file2 (PDF 123 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sadoni, M., Shboul, S.A., Alhesa, A. et al. A three-marker signature identifies senescence in human breast cancer exposed to neoadjuvant chemotherapy. Cancer Chemother Pharmacol 91, 345–360 (2023). https://doi.org/10.1007/s00280-023-04523-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-023-04523-w

Keywords

Navigation