Skip to main content

Advertisement

Log in

Effects of splicing-regulatory polymorphisms in ABCC2, ABCG2, and ABCB1 on methotrexate exposure in Chinese children with acute lymphoblastic leukemia

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Adenosine triphosphate (ATP)-binding cassette (ABC) transporters play an important role in the response to methotrexate (MTX). In this study, we investigated the frequency distribution of three splicing-regulatory polymorphisms in ABC transporters (ABCC2 rs2273697 G>A, ABCG2 rs2231142 G>T, and ABCB1 rs1128503 A>G) and their effects on MTX concentrations and the clinical outcome in a Chinese pediatric population with acute lymphoblastic leukemia (ALL).

Methods

A fluorescence polarization immunoassay was used to measure the serum MTX concentrations in 24 h (C24h) and 42 h (C42h). The Sequenom MassARRAY system was used for single-nucleotide polymorphism (SNP) genotyping.

Results

The study population had significantly lower frequencies of ABCC2 rs2273697 A, ABCG2 rs2231142 G, and ABCB1 rs1128503 G than African and European samples (P < 0.05). The dose-normalized MTX concentrations after 24 h and the proportion of C42h > 0.5 µmol/L were significantly lower in patients with the ABCG2 rs2231142 GG genotype than in patients with the GT or TT genotype (P = 0.01 and 0.006, respectively). No significant effects on MTX pharmacokinetics were observed for ABCC2 rs2273697 and ABCB1 rs1128503 polymorphisms. Bioinformatics analysis suggested that the three SNPs overlapped with the putative binding sites of several splicing factors.

Conclusion

In conclusion, our study confirmed the ethnicity-based differences in the distribution of the three investigated SNPs. The ABCG2 rs2231142 polymorphism exerted a significant effect on the level of MTX exposure. These findings may help explain the variability in MTX responses and optimize MTX treatment in pediatric patients with ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and material

Available from the corresponding author upon reasonable request.

References

  1. Zhu Y, Yang R, Cai J, Yu J, Tang Y, Chen Y, Wang N, He H, Wu X, Cheng FWT, Sun L, He Y, Ju X, Tian X, Hu Q, Jin R, Pan K, Fang Y, Zhai X, Jiang H, Li CK (2020) Septicemia after chemotherapy for childhood acute lymphoblastic leukemia in China: a multicenter study CCCG-ALL-2015. Cancer Med 9(6):2113–2121. https://doi.org/10.1002/cam4.2889

    Article  CAS  Google Scholar 

  2. Hunger SP, Mullighan CG (2015) Acute lymphoblastic leukemia in children. N Engl J Med 373(16):1541–1552. https://doi.org/10.1056/NEJMra1400972

    Article  CAS  Google Scholar 

  3. Pui CH (1997) Acute lymphoblastic leukemia. Pediatr Clin North Am 44(4):831–846. https://doi.org/10.1016/s0031-3955(05)70532-0

    Article  CAS  Google Scholar 

  4. Wu C, Li W (2018) Genomics and pharmacogenomics of pediatric acute lymphoblastic leukemia. Crit Rev Oncol Hematol 126:100–111. https://doi.org/10.1016/j.critrevonc.2018.04.002

    Article  Google Scholar 

  5. Mantadakis E, Cole PD, Kamen BA (2005) High-dose methotrexate in acute lymphoblastic leukemia: where is the evidence for its continued use? Pharmacotherapy 25(5):748–755. https://doi.org/10.1592/phco.25.5.748.63584

    Article  CAS  Google Scholar 

  6. Al-Mahayri ZN, Patrinos GP, Ali BR (2017) Pharmacogenomics in pediatric acute lymphoblastic leukemia: promises and limitations. Pharmacogenomics 18(7):687–699. https://doi.org/10.2217/pgs-2017-0005

    Article  CAS  Google Scholar 

  7. Lian LJ, Lin B, Cui X, He J, Wang Z, Lin XD, Ye WJ, Chen RJ, Sun W (2020) Development and validation of UHPLC-MS/MS assay for therapeutic drug monitoring of high-dose methotrexate in children with acute lymphoblastic leukemia. Drug Des Devel Ther 14:4835–4843. https://doi.org/10.2147/DDDT.S271568

    Article  CAS  Google Scholar 

  8. Hu YH, Zhou L, Wang SS, Jing X, Guo HL, Sun F, Zhang Y, Chen F, Xu J, Ji X (2019) Methotrexate disposition in pediatric patients with acute lymphoblastic leukemia: what have we learnt from the genetic variants of drug transporters. Curr Pharm Des 25(6):627–634. https://doi.org/10.2174/1381612825666190329141003

    Article  CAS  Google Scholar 

  9. Imanishi H, Okamura N, Yagi M, Noro Y, Moriya Y, Nakamura T, Hayakawa A, Takeshima Y, Sakaeda T, Matsuo M, Okumura K (2007) Genetic polymorphisms associated with adverse events and elimination of methotrexate in childhood acute lymphoblastic leukemia and malignant lymphoma. J Hum Genet 52(2):166–171. https://doi.org/10.1007/s10038-006-0096-z

    Article  CAS  Google Scholar 

  10. Jaramillo AC, Cloos J, Lemos C, Stam RW, Kaspers GJL, Jansen G, Peters GJ (2019) Ex vivo resistance in childhood acute lymphoblastic leukemia: correlations between BCRP, MRP1, MRP4 and MRP5 ABC transporter expression and intracellular methotrexate polyglutamate accumulation. Leuk Res 79:45–51. https://doi.org/10.1016/j.leukres.2019.02.008

    Article  CAS  Google Scholar 

  11. Li W, Zhang H, Assaraf YG, Zhao K, Xu X, Xie J, Yang DH, Chen ZS (2016) Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies. Drug Resist Updat 27:14–29. https://doi.org/10.1016/j.drup.2016.05.001

    Article  CAS  Google Scholar 

  12. Ito K, Oleschuk CJ, Westlake C, Vasa MZ, Deeley RG, Cole SP (2001) Mutation of Trp1254 in the multispecific organic anion transporter, multidrug resistance protein 2 (MRP2) (ABCC2), alters substrate specificity and results in loss of methotrexate transport activity. J Biol Chem 276(41):38108–38114. https://doi.org/10.1074/jbc.M105160200

    Article  CAS  Google Scholar 

  13. Volk EL, Farley KM, Wu Y, Li F, Robey RW, Schneider E (2002) Overexpression of wild-type breast cancer resistance protein mediates methotrexate resistance. Cancer Res 62(17):5035–5040

    CAS  Google Scholar 

  14. Jiang B, Yan LJ, Wu Q (2019) ABCB1 (C1236T) polymorphism affects P-glycoprotein-mediated transport of methotrexate, doxorubicin, actinomycin D, and etoposide. DNA Cell Biol 38(5):485–490. https://doi.org/10.1089/dna.2018.4583

    Article  CAS  Google Scholar 

  15. Bruckmueller H, Cascorbi I (2021) ABCB1, ABCG2, ABCC1, ABCC2, and ABCC3 drug transporter polymorphisms and their impact on drug bioavailability: what is our current understanding? Expert Opin Drug Metab Toxicol 17(4):369–396. https://doi.org/10.1080/17425255.2021.1876661

    Article  CAS  Google Scholar 

  16. Taylor ZL, Vang J, Lopez-Lopez E, Oosterom N, Mikkelsen T, Ramsey LB (2021) Systematic review of pharmacogenetic factors that influence high-dose methotrexate pharmacokinetics in pediatric malignancies. Cancers (Basel) 13(11):2837. https://doi.org/10.3390/cancers13112837

    Article  CAS  Google Scholar 

  17. ElSharawy A, Manaster C, Teuber M, Rosenstiel P, Kwiatkowski R, Huse K, Platzer M, Becker A, Nürnberg P, Schreiber S, Hampe J (2006) SNPSplicer: systematic analysis of SNP-dependent splicing in genotyped cDNAs. Hum Mutat 27(11):1129–1134. https://doi.org/10.1002/humu.20377

    Article  CAS  Google Scholar 

  18. Pan SS, Han Y, Farabaugh P, Xia H (2002) Implication of alternative splicing for expression of a variant NAD(P)H:quinone oxidoreductase-1 with a single nucleotide polymorphism at 465C>T. Pharmacogenetics 12(6):479–488. https://doi.org/10.1097/00008571-200208000-00009

    Article  CAS  Google Scholar 

  19. Grinfeld J, Gerrard G, Alikian M, Alonso-Dominguez J, Ale S, Valgañon M, Nteliopoulos G, White D, Marin D, Hedgley C, O’Brien S, Clark R, Goldman JM, Milojkovic D, Apperley JF, Foroni L (2013) A common novel splice variant of SLC22A1 (OCT1) is associated with impaired responses to imatinib in patients with chronic myeloid leukaemia. Br J Haematol 163(5):631–639. https://doi.org/10.1111/bjh.12591

    Article  CAS  Google Scholar 

  20. Zhang S, Wang J, Zhang A, Zhang X, You T, Xie D, Yang W, Chen Y, Zhang X, Di C, Xie X (2020) A SNP involved in alternative splicing of ABCB1 is associated with clopidogrel resistance in coronary heart disease in Chinese population. Aging (Albany NY) 12(24):25684–25699. https://doi.org/10.18632/aging.104177

    Article  CAS  Google Scholar 

  21. Cui L, Li ZG, Chai YH, Yu J, Gao J, Zhu XF, Jin RM, Shi XD, Zhang LP, Gao YJ, Zhang RD, Zheng HY, Hu SY, Cui YH, Zhu YP, Zou Y, Ng MHL, Xiao Y, Li JH, Zhang YH, He HL, Xian Y, Wang TY, Li CK, Wu MY, Chinese Children Leukemia Group(CCLG) (2018) Outcome of children with newly diagnosed acute lymphoblastic leukemia treated with CCLG-ALL 2008: the first nation-wide prospective multicenter study in China. Am J Hematol 93(7):913–920. https://doi.org/10.1002/ajh.25124

    Article  Google Scholar 

  22. Wang SM, Sun LL, Zeng WX, Wu WS, Zhang GL (2014) Influence of genetic polymorphisms of FPGS, GGH, and MTHFR on serum methotrexate levels in Chinese children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol 74(2):283–289. https://doi.org/10.1007/s00280-014-2507-8

    Article  CAS  Google Scholar 

  23. Wang SM, Sun LL, Zeng WX, Wu WS, Zhang GL (2014) Effects of a microRNA binding site polymorphism in SLC19A1 on methotrexate concentrations in Chinese children with acute lymphoblastic leukemia. Med Oncol 31(7):62. https://doi.org/10.1007/s12032-014-0062-0

    Article  CAS  Google Scholar 

  24. Smith PJ, Zhang C, Wang J, Chew SL, Zhang MQ, Krainer AR (2006) An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum Mol Genet 15(16):2490–2508. https://doi.org/10.1093/hmg/ddl171

    Article  CAS  Google Scholar 

  25. Gervasini G, Mota-Zamorano S (2019) Clinical implications of methotrexate pharmacogenetics in childhood acute lymphoblastic leukaemia. Curr Drug Metab 20(4):313–330. https://doi.org/10.2174/1389200220666190130161758

    Article  CAS  Google Scholar 

  26. Lynch M, Ackerman MS, Gout JF, Long H, Sung W, Thomas WK, Foster PL (2016) Genetic drift, selection and the evolution of the mutation rate. Nat Rev Genet 17(11):704–714. https://doi.org/10.1038/nrg.2016.104

    Article  CAS  Google Scholar 

  27. Kukal S, Guin D, Rawat C, Bora S, Mishra MK, Sharma P, Paul PR, Kanojia N, Grewal GK, Kukreti S, Saso L, Kukreti R (2021) Multidrug efflux transporter ABCG2: expression and regulation. Cell Mol Life Sci 78(21–22):6887–6939. https://doi.org/10.1007/s00018-021-03901-y

    Article  CAS  Google Scholar 

  28. Robey RW, Polgar O, Deeken J, To KW, Bates SE (2007) ABCG2: determining its relevance in clinical drug resistance. Cancer Metastasis Rev 26(1):39–57. https://doi.org/10.1007/s10555-007-9042-6

    Article  CAS  Google Scholar 

  29. Keskitalo JE, Zolk O, Fromm MF, Kurkinen KJ, Neuvonen PJ, Niemi M (2009) ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther 86(2):197–203. https://doi.org/10.1038/clpt.2009.79

    Article  CAS  Google Scholar 

  30. El Mesallamy HO, Rashed WM, Hamdy NM, Hamdy N (2014) High-dose methotrexate in Egyptian pediatric acute lymphoblastic leukemia: the impact of ABCG2 C421A genetic polymorphism on plasma levels, what is next? J Cancer Res Clin Oncol 140(8):1359–1365. https://doi.org/10.1007/s00432-014-1670-y

    Article  CAS  Google Scholar 

  31. Nies AT, Keppler D (2007) The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Arch 453(5):643–659. https://doi.org/10.1007/s00424-006-0109-y

    Article  CAS  Google Scholar 

  32. Liu Y, Yin Y, Sheng Q, Lu X, Wang F, Lin Z, Tian H, Xu A, Zhang J (2014) Association of ABCC2 -24C>T polymorphism with high-dose methotrexate plasma concentrations and toxicities in childhood acute lymphoblastic leukemia. PLoS ONE 9(1):e82681. https://doi.org/10.1371/journal.pone.0082681

    Article  CAS  Google Scholar 

  33. Razali RH, Noorizhab MNF, Jamari H, James RJ, Teh KH, Ibrahim HM, Teh LK, Salleh MZ (2020) Association of ABCC2 with levels and toxicity of methotrexate in Malaysian childhood acute lymphoblastic leukemia (ALL). Pediatr Hematol Oncol 37(3):185–197. https://doi.org/10.1080/08880018.2019.1705949

    Article  CAS  Google Scholar 

  34. Wei D, Zhang H, Peng R, Huang C, Bai R (2017) ABCC2 (1249G>A) polymorphism implicates altered transport activity for sorafenib. Xenobiotica 47(11):1008–1014. https://doi.org/10.1080/00498254.2016.1262976

    Article  CAS  Google Scholar 

  35. Simon N, Marsot A, Villard E, Choquet S, Khe HX, Zahr N, Lechat P, Leblond V, Hulot JS (2013) Impact of ABCC2 polymorphisms on high-dose methotrexate pharmacokinetics in patients with lymphoid malignancy. Pharmacogenomics J 13(6):507–513. https://doi.org/10.1038/tpj.2012.37

    Article  CAS  Google Scholar 

  36. Ma CX, Sun YH, Wang HY (2015) ABCB1 polymorphisms correlate with susceptibility to adult acute leukemia and response to high-dose methotrexate. Tumour Biol 36(10):7599–7606. https://doi.org/10.1007/s13277-015-3403-5

    Article  CAS  Google Scholar 

  37. Zhai X, Wang H, Zhu X, Miao H, Qian X, Li J, Gao Y, Lu F, Wu Y (2012) Gene polymorphisms of ABC transporters are associated with clinical outcomes in children with acute lymphoblastic leukemia. Arch Med Sci 8(4):659–671. https://doi.org/10.5114/aoms.2012.30290

    Article  CAS  Google Scholar 

  38. Talaat RM, El-Kelliny M, El-Akhras BA, Bakry RM, Riad KF, Guirgis AA (2018) Association of C3435T, C1236T and C4125A Polymorphisms of the MDR-1 Gene in Egyptian children with acute lymphoblastic leukemia. Asian Pac J Cancer Prev 19(9):2535–2543. https://doi.org/10.22034/APJCP.2018.19.9.2535

    Article  CAS  Google Scholar 

  39. Shen CH, Zhang YX, Lu RY, Jin B, Wang S, Liu ZR, Tang YL, Ding MP (2016) Specific OCT1 and ABCG2 polymorphisms are associated with lamotrigine concentrations in Chinese patients with epilepsy. Epilepsy Res 127:186–190. https://doi.org/10.1016/j.eplepsyres.2016.09.004

    Article  CAS  Google Scholar 

  40. Bracco L, Kearsey J (2003) The relevance of alternative RNA splicing to pharmacogenomics. Trends Biotechnol 21(8):346–353. https://doi.org/10.1016/S0167-7799(03)00146-X

    Article  CAS  Google Scholar 

  41. Deng K, Yao J, Huang J, Ding Y, Zuo J (2021) Abnormal alternative splicing promotes tumor resistance in targeted therapy and immunotherapy. Transl Oncol 14(6):101077. https://doi.org/10.1016/j.tranon.2021.101077

    Article  CAS  Google Scholar 

  42. Veuger MJ, Heemskerk MH, Honders MW, Willemze R, Barge RM (2002) Functional role of alternatively spliced deoxycytidine kinase in sensitivity to cytarabine of acute myeloid leukemic cells. Blood 99(4):1373–1380. https://doi.org/10.1182/blood.v99.4.1373

    Article  CAS  Google Scholar 

  43. Wojtuszkiewicz A, Assaraf YG, Hoekstra M, Sciarrillo R, Jansen G, Peters GJ, Pieters R, Sonneveld E, Escherich G, Kaspers GJ, Cloos J (2016) The association of aberrant folylpolyglutamate synthetase splicing with ex vivo methotrexate resistance and clinical outcome in childhood acute lymphoblastic leukemia. Haematologica 101(7):e291–e294. https://doi.org/10.3324/haematol.2016.142794

    Article  Google Scholar 

Download references

Acknowledgements

We thank Bullet Edits Limited for proofreading the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (Grant numbers 81872926 and 81503135) and Beijing Municipal Administration of Hospitals’ Youth Program (Grant number QML20160703).

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in data analysis and manuscript writing.

Corresponding author

Correspondence to Shu-Mei Wang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Kong, XY. & Wang, SM. Effects of splicing-regulatory polymorphisms in ABCC2, ABCG2, and ABCB1 on methotrexate exposure in Chinese children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol 91, 77–87 (2023). https://doi.org/10.1007/s00280-022-04498-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-022-04498-0

Keywords

Navigation