Skip to main content

Advertisement

Log in

Absorption, distribution, metabolism, and excretion of [14C]Mefuparib (CVL218), a novel PARP1/2 inhibitor, in rats

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Introduction

Mefuparib (CVL218) is a novel second-generation poly-ADP-ribose polymerase (PARP) inhibitor for cancer treatment. CVL218 can easily enter the brain. However, the transport mechanism by which CVL218 crosses the blood–brain barrier (BBB) is unknown.

Methods

(1) [14C] CVL218 metabolism in rats was traced by a liquid scintillation counter and oxidative combustion. (2) Metabolic profiles and metabolites were identified by UHPLC-β-RAM/UHPLC-Fraction Collector and UHPLC-Q Exactive Plus MS. (3) The partition coefficient Kp,uu,brain value was simulated by two strategies. One strategy was using ACD and GastroPlus Software based on the results of intravenous administration pharmacokinetics and plasma protein-binding studies. The reliability was confirmed by comparison with another strategy (brain/plasma distribution study).

Results

(1) Rapid drug elimination was observed 24 h after intragastric administration. The total cumulative excretion in urine and feces within 168 h accounted for 97.15% of the dose. The cumulative radioactive dose recovery in bile was 41.87% within 72 h. The drug-related substances were extensively distributed to the tissues within 48 h. (2) M8 was the major metabolite in plasma, urine, feces and bile. (3) CVL218 exhibited high brain protein-binding rate (88.16%). The Kp,uu,brain value (8.42) simulated by the simple software strategy was similar to that of the brain/plasma distribution study (7.01).

Conclusions

CVL218 is a fast-metabolizing drug and is mainly excreted in feces. The B/P ratio prediction and observation data for CVL218 were consistent. Furthermore, the Kp,uu,brain value indicated that penetration through the BBB might be mediated by uptake transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article/supplementary material; further inquiries can be directed to the corresponding author.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Chiec L, Kumthekar P (2022) Targeting HER2+ breast cancer brain metastases: a review of brain-directed HER2-directed therapies. CNS Drugs 36(2):167–179. https://doi.org/10.1007/s40263-021-00894-x

    Article  CAS  PubMed  Google Scholar 

  3. Sanchez-Covarrubias L, Slosky LM, Thompson BJ, Davis TP, Ronaldson PT (2014) Transporters at CNS barrier sites: obstacles or opportunities for drug delivery? Curr Pharm Des 20(10):1422–1449. https://doi.org/10.2174/13816128113199990463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pearl LH, Schierz AC, Ward SE, Al-Lazikani B, Pearl FM (2015) Therapeutic opportunities within the DNA damage response. Nat Rev Cancer 15(3):166–180. https://doi.org/10.1038/nrc3891

    Article  CAS  PubMed  Google Scholar 

  5. Wu L, Zhu J, Yin R, Wu X, Lou G, Wang J, Gao Y, Kong B, Lu X, Zhou Q, Wang Y, Chen Y, Lu W, Li W, Cheng Y, Liu J, Ma X, Zhang J (2021) Olaparib maintenance therapy in patients with newly diagnosed advanced ovarian cancer and a BRCA1 and/or BRCA2 mutation: SOLO1 China cohort. Gynecol Oncol 160(1):175–181. https://doi.org/10.1016/j.ygyno.2020.10.005

    Article  CAS  PubMed  Google Scholar 

  6. Wang XW, Hu N, Cui L, Si Y, Yue J, Zheng F, Kang Y, Yuan P (2022) Durable disease-free survival in a patient with metastatic triple-negative breast cancer treated with olaparib monotherapy. Curr Cancer Drug Targets. https://doi.org/10.2174/1568009622666220214092207

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang L, Wang J, Cui LZ, Wang K, Yuan MM, Chen RR, Zhang LJ (2021) Successful treatment of refractory lung adenocarcinoma harboring a germline BRCA2 mutation with olaparib: a case report. World J Clin Cases 9(25):7498–7503. https://doi.org/10.12998/wjcc.v9.i25.7498

    Article  PubMed  PubMed Central  Google Scholar 

  8. He JX, Wang M, Huan XJ, Chen CH, Song SS, Wang YQ, Liao XM, Tan C, He Q, Tong LJ, Wang YT, Li XH, Su Y, Shen YY, Sun YM, Yang XY, Chen Y, Gao ZW, Chen XY, Xiong B, Lu XL, Ding J, Yang CH, Miao ZH (2017) Novel PARP1/2 inhibitor Mefuparib hydrochloride elicits potent in vitro and in vivo anticancer activity, characteristic of high tissue distribution. Oncotarget 8(3):4156–4168. https://doi.org/10.18632/oncotarget.13749

    Article  PubMed  Google Scholar 

  9. Nie D, Dai Z, Li J, Yang Y, Xi Z, Wang J, Zhang W, Qian K, Guo S, Zhu C, Wang R, Li Y, Yu M, Zhang X, Shi X, Gan Y (2020) Cancer-cell-membrane-coated nanoparticles with a yolk-shell structure augment cancer chemotherapy. Nano Lett 20(2):936–946. https://doi.org/10.1021/acs.nanolett.9b03817

    Article  CAS  PubMed  Google Scholar 

  10. Langen UH, Ayloo S, Gu C (2019) Development and cell biology of the blood-brain barrier. Annu Rev Cell Dev Biol 35:591–613. https://doi.org/10.1146/annurev-cellbio-100617-062608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gupta A, Chatelain P, Massingham R, Jonsson EN, Hammarlund-Udenaes M (2006) Brain distribution of cetirizine enantiomers: comparison of three different tissue-to-plasma partition coefficients: K(p), K(p, u), and K(p, uu). Drug Metab Dispos 34(2):318–323. https://doi.org/10.1124/dmd.105.007211

    Article  CAS  PubMed  Google Scholar 

  12. Hammarlund-Udenaes M, Paalzow LK, de Lange EC (1997) Drug equilibration across the blood-brain barrier–pharmacokinetic considerations based on the microdialysis method. Pharm Res 14(2):128–134. https://doi.org/10.1023/a:1012080106490

    Article  CAS  PubMed  Google Scholar 

  13. Hussain A, Altamimi MA, Afzal O, Altamimi ASA, Ali A, Ali A, Martinez F, Mohd Siddique MU, Acree WE Jr, Jouyban A (2022) Preferential solvation study of the synthesized aldose reductase inhibitor (SE415) in the PEG 400 (1) + water (2) cosolvent mixture and gastroplus-based prediction. ACS Omega 7(1):1197–1210. https://doi.org/10.1021/acsomega.1c05788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheng H, Yu J, Yang C, Zhang N, Fan Z, Zhang X, Wang J, Wang Z, Zhong DF, He JX, Yan S, Diao X (2022) Absorption, distribution, metabolism, and excretion of [(14)C]TPN729 after oral administration to rats. Xenobiotica 52(1):79–90. https://doi.org/10.1080/00498254.2022.2030504

    Article  CAS  PubMed  Google Scholar 

  15. Tian J, Lei P, He Y, Zhang N, Ge X, Luo L, Yan S, Diao X (2021) Absorption, distribution, metabolism, and excretion of [(14)C]NBP (3-n-butylphthalide) in rats. J Chromatogr B Analyt Technol Biomed Life Sci 1181:122915. https://doi.org/10.1016/j.jchromb.2021.122915

    Article  CAS  PubMed  Google Scholar 

  16. Zheng Y, Zhang H, Liu M, Li G, Ma S, Zhang Z, Lin H, Zhan Y, Chen Z, Zhong D, Miao L, Diao X (2021) Pharmacokinetics, mass balance, and metabolism of the novel URAT1 inhibitor [(14)C]HR011303 in humans: metabolism is mediated predominantly by UDP-glucuronosyltransferase. Drug Metab Dispos 50(6):798–808. https://doi.org/10.1124/dmd.121.000581

    Article  CAS  PubMed  Google Scholar 

  17. Poulin P, Theil FP (2000) A priori prediction of tissue:plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discovery. J Pharm Sci 89(1):16–35. https://doi.org/10.1002/(SICI)1520-6017(200001)89:1%3c16::AID-JPS3%3e3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

  18. Poulin P, Theil FP (2002) Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-based prediction of volume of distribution. J Pharm Sci 91(1):129–156. https://doi.org/10.1002/jps.10005

    Article  CAS  PubMed  Google Scholar 

  19. Poulin P, Theil FP (2002) Prediction of pharmacokinetics prior to in vivo studies II generic physiologically based pharmacokinetic models of drug disposition. J Pharm Sci 91(5):1358–1370. https://doi.org/10.1002/jps.10128

    Article  CAS  PubMed  Google Scholar 

  20. Diao XX, Zhong K, Li XL, Zhong DF, Chen XY (2015) Isomer-selective distribution of 3-n-butylphthalide (NBP) hydroxylated metabolites, 3-hydroxy-NBP and 10-hydroxy-NBP, across the rat blood-brain barrier. Acta Pharmacol Sin 36(12):1520–1527. https://doi.org/10.1038/aps.2015.64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu J, Zhang H, Zhang Y, Zhan Y, Ma S, Hu T, Zhang N, Lou Y, Bao H, Xu Z, Zhong D, Miao L, Diao X (2022) Absorption, metabolism, and excretion of [(14)C]YY-20394, a highly selective PI3K-Delta inhibitor in humans. Xenobiotica 52(3):254–264. https://doi.org/10.1080/00498254.2022.2062581

    Article  CAS  PubMed  Google Scholar 

  22. Zhou X, Sedarati F, Faller DV, Zhao D, Faessel HM, Chowdhury S, Bolleddula J, Li Y, Venkatakrishnan K, Papai Z (2021) Phase I study assessing the mass balance, pharmacokinetics, and excretion of [(14)C]-pevonedistat, a NEDD8-activating enzyme inhibitor in patients with advanced solid tumors. Invest New Drugs 39(2):488–498. https://doi.org/10.1007/s10637-020-01017-x

    Article  CAS  PubMed  Google Scholar 

  23. Steensma DP, Wermke M, Klimek VM, Greenberg PL, Font P, Komrokji RS, Yang J, Brunner AM, Carraway HE, Ades L, Al-Kali A, Alonso-Dominguez JM, Alfonso-Pierola A, Coombs CC, Deeg HJ, Flinn I, Foran JM, Garcia-Manero G, Maris MB, McMasters M, Micol JB, De Oteyza JP, Thol F, Wang ES, Watts JM, Taylor J, Stone R, Gourineni V, Marino AJ, Yao H, Destenaves B, Yuan X, Yu K, Dar S, Ohanjanian L, Kuida K, Xiao J, Scholz C, Gualberto A, Platzbecker U (2021) Phase I first-in-human dose escalation study of the oral SF3B1 modulator H3B–8800 in myeloid neoplasms. Leukemia 35(12):3542–3550. https://doi.org/10.1038/s41375-021-01328-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zheng YD, Zhang H, Zhan Y, Bian YC, Ma S, Gan HX, Lai XJ, Liu YQ, Gong YC, Liu XF, Sun HB, Li YG, Zhong DF, Miao LY, Diao XX (2021) Pharmacokinetics, mass balance, and metabolism of [(14)C]vicagrel, a novel irreversible P2Y12 inhibitor in humans. Acta Pharmacol Sin 42(9):1535–1546. https://doi.org/10.1038/s41401-020-00547-7

    Article  CAS  PubMed  Google Scholar 

  25. Loryan I, Reichel A, Feng B, Bundgaard C, Shaffer C, Kalvass C, Bednarczyk D, Morrison D, Lesuisse D, Hoppe E, Terstappen GC, Fischer H, Di L, Colclough N, Summerfield S, Buckley ST, Maurer TS, Friden M (2022) Unbound brain-to-plasma partition coefficient, Kp, uu, brain-a game changing parameter for CNS drug discovery and development. Pharm Res 39(7):1321–1341. https://doi.org/10.1007/s11095-022-03246-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kalvass JC, Maurer TS (2002) Influence of nonspecific brain and plasma binding on CNS exposure: implications for rational drug discovery. Biopharm Drug Dispos 23(8):327–338. https://doi.org/10.1002/bdd.325

    Article  CAS  PubMed  Google Scholar 

  27. Wan H, Rehngren M, Giordanetto F, Bergstrom F, Tunek A (2007) High-throughput screening of drug–brain tissue binding and in silico prediction for assessment of central nervous system drug delivery. J Med Chem 50(19):4606–4615. https://doi.org/10.1021/jm070375w

    Article  CAS  PubMed  Google Scholar 

  28. Jusko WJ, Molins EAG, Ayyar VS (2020) Seeking nonspecific binding: assessing the reliability of tissue dilutions for calculating fraction unbound. Drug Metab Dispos 48(10):894–902. https://doi.org/10.1124/dmd.120.000118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Strazielle N, Ghersi-Egea JF (2013) Physiology of blood–brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol Pharm 10(5):1473–1491. https://doi.org/10.1021/mp300518e

    Article  CAS  PubMed  Google Scholar 

  30. Budiman T, Bamberg E, Koepsell H, Nagel G (2000) Mechanism of electrogenic cation transport by the cloned organic cation transporter 2 from rat. J Biol Chem 275(38):29413–29420. https://doi.org/10.1074/jbc.M004645200

    Article  CAS  PubMed  Google Scholar 

  31. Tega Y, Yamazaki Y, Akanuma SI, Kubo Y, Hosoya KI (2018) Impact of nicotine transport across the blood-brain barrier: carrier-mediated transport of nicotine and interaction with central nervous system drugs. Biol Pharm Bull 41(9):1330–1336. https://doi.org/10.1248/bpb.b18-00134

    Article  CAS  PubMed  Google Scholar 

  32. Foster CH, Dave P, Sherman JH (2020) Chemotherapy for the management of cerebral metastases. Neurosurg Clin N Am 31(4):603–611. https://doi.org/10.1016/j.nec.2020.06.009

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (No. 81903701, No. 82104275). Thanks to all the colleagues and professors from Yunnan Provincial Key Laboratory of Pharmacology, Shanghai Center for Drug Metabolism and Pharmacokinetics, and Fuwai Yunnan Cardiovascular Hospital for their support and encouragement.

Funding

Innovative Research Group Project of the National Natural Science Foundation of China, No. 81903701, XingXing Diao, No. 82104275, Yuan-dong Zheng.

Author information

Authors and Affiliations

Authors

Contributions

XL: designed the study, performed the assays, and wrote the paper; YZ: designed the study and performed the assays; YZ and ML: analyzed the data; XH: designed the pharmacological studies; XS and CY: contributed new reagents and partial financial support; XD: reviewed the manuscript.

Corresponding author

Correspondence to Xing-xing Diao.

Ethics declarations

Conflict of interest

This research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The manuscript has no associated data.

Ethical approval

The study protocol was approved by the Animal Ethics Committee of the Shanghai Institute of Materia Medica, Chinese Academy of Science (Shanghai, China).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32 KB)

Supplementary file2 (TIF 167 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Xm., Zheng, Yd., Zhang, Yf. et al. Absorption, distribution, metabolism, and excretion of [14C]Mefuparib (CVL218), a novel PARP1/2 inhibitor, in rats. Cancer Chemother Pharmacol 90, 499–510 (2022). https://doi.org/10.1007/s00280-022-04485-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-022-04485-5

Keywords

Navigation