Skip to main content

Advertisement

Log in

Antitumor efficacy of CHMFL-KIT-110 solid dispersion in mouse xenograft models of human gastrointestinal stromal tumors

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

CHMFL-KIT-110, a selective c-KIT kinase inhibitor for gastrointestinal stromal tumors (GISTs), possesses a poorly water-soluble, limiting the further development of the drug. This study was to investigate the antitumor efficacy of CHMFL-KIT-110 and CHMFL-KIT-110 solid dispersion (laboratory code: HYGT-110 SD) in GIST tumor xenograft models and to explore the PK/PD relationship of HYGT-110 SD.

Methods

Plasma concentrations of HYGT-110 and HYGT-110 SD were determined by LC–MS/MS in KM mice. Antitumor activity was evaluated by measuring tumor volume and weight in c-KIT-dependent GIST xenograft models. PK/PD relationship was assessed by LC–MS/MS and Western Blot in the GIST-T1 xenografted mice.

Results

HYGT-110 exhibited a low oral bioavailability (10.91%) in KM mice. Compared with HYGT-110 treatment, the Cmax and AUC0-t of HYGT-110 SD in mice plasma were substantially increased by 18.81 and 6.76-fold, respectively. HYGT-110 SD (10, 30, and 100 mg/kg/day) also could dose-dependently decrease the tumor volume and weight in the GIST-882 cell-inoculated xenograft mouse models and show 86.35% tumor growth inhibition (TGI) at 28 days at a 25 mg/kg bid dosage in the GIST-T1 cell-inoculated xenograft mouse model. The free concentration of HYGT-110 in plasma was closely correlated with the inhibition of c-KIT phosphorylation levels in tumor tissues.

Conclusions

In comparison with the HPMC formulation, both improved PK and PD characteristics of the solid dispersion formulation of CHMFL-KIT-110 were observed in in vivo animal experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S, Kawano K, Hanada M, Kurata A, Takeda M, Muhammad Tunio G, Matsuzawa Y, Kanakura Y, Shinomura Y, Kitamura Y (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279(5350):577–580. https://doi.org/10.1126/science.279.5350.577

    Article  CAS  PubMed  Google Scholar 

  2. Von Mehren M, Joensuu H (2018) Gastrointestinal stromal tumors. J Clin Oncol 36(2):136–143. https://doi.org/10.1200/JCO.2017.74.9705

    Article  Google Scholar 

  3. Cassier PA, Dufresne A, Arifi S, El Sayadi H, Ray-Coquard I, Bringuier PP, Scoazec JY, Alberti L, Blay JY (2008) Novel approaches to gastrointestinal stromal tumors resistant to imatinib and sunitinib. Curr Gastroenterol Rep 10(6):555–561. https://doi.org/10.1007/s11894-008-0102-z

    Article  PubMed  Google Scholar 

  4. Martin-Broto J, Moura DS (2020) New drugs in gastrointestinal stromal tumors. Curr Opin Oncol 32(4):314–320. https://doi.org/10.1097/CCO.0000000000000642

    Article  CAS  PubMed  Google Scholar 

  5. George S, Wang Q, Heinrich MC, Corless CL, Zhu M, Butrynski JE, Morgan JA, Wagner AJ, Choy E, Tap WD, Yap JT, Van den Abbeele AD, Manola JB, Solomon SM, Fletcher JA, von Mehren M, Demetri GD (2012) Efficacy and safety of regorafenib in patients with metastatic and/or unresectable GI stromal tumor after failure of imatinib and sunitinib: a multicenter phase II trial. J Clin Oncol 30(19):2401–2407. https://doi.org/10.1200/JCO.2011.39.9394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gupta R, Maitland ML (2011) Sunitinib, hypertension, and heart failure: a model for kinase inhibitor-mediated cardiotoxicity. Curr Hypertens Rep 13(6):430–435. https://doi.org/10.1007/s11906-011-0229-4

    Article  CAS  PubMed  Google Scholar 

  7. Rutkowski P, Stepniak J (2016) The safety of regorafenib for the treatment of gastrointestinal stromal tumors. Expert Opin Drug Saf 15(1):105–116. https://doi.org/10.1517/14740338.2016.1122754

    Article  CAS  PubMed  Google Scholar 

  8. Wang Q, Liu F, Wang B, Zou F, Chen C, Liu X, Wang A, Qi S, Wang W, Qi Z, Zhao Z, Hu Z, Wang W, Wang L, Zhang S, Wang Y, Liu J, Liu Q (2016) Discovery of N-(3-((1-Isonicotinoylpiperidin-4-yl)oxy)-4-methylphenyl)-3-(trifluoromethyl)benz amide (CHMFL-KIT-110) as a selective, potent, and orally available type II c-KIT kinase inhibitor for gastrointestinal stromal tumors (GISTs). J Med Chem 59(8):3964–3979. https://doi.org/10.1021/acs.jmedchem.6b00200

    Article  CAS  PubMed  Google Scholar 

  9. Huang Y, Dai WG (2014) Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B 4(1):18–25. https://doi.org/10.1016/j.apsb.2013.11.001

    Article  PubMed  Google Scholar 

  10. Schittny A, Philipp-Bauer S, Detampel P, Huwyler J, Puchkov M (2020) Mechanistic insights into effect of surfactants on oral bioavailability of amorphous solid dispersions. J Control Release 320:214–225. https://doi.org/10.1016/j.jconrel.2020.01.031

    Article  CAS  PubMed  Google Scholar 

  11. Wu Y, Chen D, Wang X, Sun H, Huo M (2020) Preparation, physicochemical properties and pharmacokinetics in rats of CHMFL-KIT-110 solid dispersions. J China Pharm Univ 51(06):688–695 ((In Chinese))

    Google Scholar 

  12. Derendorf H, Lesko LJ, Chaikin P, Colburn WA, Lee P, Miller R, Powell R, Rhodes G, Stanski D, Venitz J (2000) Pharmacokinetic/pharmacodynamic modeling in drug research and development. J Clin Pharmacol 40(12 Pt 2):1399–1418

    CAS  PubMed  Google Scholar 

  13. Tuntland T, Ethell B, Kosaka T, Blasco F, Zang RX, Jain M, Gould T, Hoffmaster K (2014) Implementation of pharmacokinetic and pharmacodynamic strategies in early research phases of drug discovery and development at Novartis Institute of Biomedical Research. Front Pharmacol 5:174. https://doi.org/10.3389/fphar.2014.00174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pilla Reddy V, Anjum R, Grondine M, Smith A, Bhavsar D, Barry E, Guichard SM, Shao W, Kettle JG, Brown C, Banks E, Jones RDO (2020) The pharmacokinetic-pharmacodynamic (PKPD) relationships of AZD3229, a Novel and selective inhibitor of KIT, in a range of mouse xenograft models of GIST. Clin Cancer Res 26(14):3751–3759. https://doi.org/10.1158/1078-0432.CCR-19-2848

    Article  PubMed  Google Scholar 

  15. Floris G, Debiec-Rychter M, Wozniak A, Stefan C, Normant E, Faa G, Machiels K, Vanleeuw U, Sciot R, Schoffski P (2011) The heat shock protein 90 inhibitor IPI-504 induces KIT degradation, tumor shrinkage, and cell proliferation arrest in xenograft models of gastrointestinal stromal tumors. Mol Cancer Ther 10(10):1897–1908. https://doi.org/10.1158/1535-7163.MCT-11-0148

    Article  CAS  PubMed  Google Scholar 

  16. Nagano T, Yasunaga M, Goto K, Kenmotsu H, Koga Y, Kuroda J, Nishimura Y, Sugino T, Nishiwaki Y, Matsumura Y (2009) Antitumor activity of NK012 combined with cisplatin against small cell lung cancer and intestinal mucosal changes in tumor-bearing mouse after treatment. Clin Cancer Res 15(13):4348–4355. https://doi.org/10.1158/1078-0432.CCR-08-3334

    Article  CAS  PubMed  Google Scholar 

  17. Qin J, Yuan J, Li L, Liu H, Qin R, Qin W, Chen B, Wang H, Wu K (2009) In vitro and in vivo inhibitory effect evaluation of cyclooxygenase-2 inhibitors, antisense cyclooxygenase-2 cDNA, and their combination on the growth of human bladder cancer cells. Biomed Pharmacother 63(3):241–248. https://doi.org/10.1016/j.biopha.2008.04.007

    Article  CAS  PubMed  Google Scholar 

  18. Mendel DB, Laird AD, Xin X, Louie SG, Christensen JG, Li G, Schreck RE, Abrams TJ, Ngai TJ, Lee LB, Murray LJ, Carver J, Chan E, Moss KG, Haznedar JO, Sukbuntherng J, Blake RA, Sun L, Tang C, Miller T, Shirazian S, McMahon G, Cherrington JM (2003) In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 9(1):327–337

    CAS  PubMed  Google Scholar 

  19. Wu Y, Wang B, Wang J, Qi S, Zou F, Qi Z, Liu F, Liu Q, Chen C, Hu C, Hu Z, Wang A, Wang L, Wang W, Ren T, Cai Y, Bai M, Liu Q, Liu J (2019) Discovery of 2-(4-Chloro-3-(trifluoromethyl)phenyl)-N-(4-((6,7-dimethoxyquinolin-4-yl)oxy)phen yl)acetamide (CHMFL-KIT-64) as a novel orally available potent inhibitor against broad-spectrum mutants of c-KIT kinase for gastrointestinal stromal tumors. J Med Chem 62(13):6083–6101. https://doi.org/10.1021/acs.jmedchem.9b00280

    Article  CAS  PubMed  Google Scholar 

  20. Ferreira NH, Ribeiro AB, Rinaldi-Neto F, Fernandes FS, do Nascimento S, Braz WR, Nassar EJ, Tavares DC, (2020) Anti-melanoma activity of indomethacin incorporated into mesoporous silica nanoparticles. Pharm Res 37(9):172. https://doi.org/10.1007/s11095-020-02903-y

    Article  CAS  PubMed  Google Scholar 

  21. Trainor GL (2007) The importance of plasma protein binding in drug discovery. Expert Opin Drug Discov 2(1):51–64. https://doi.org/10.1517/17460441.2.1.51

    Article  CAS  PubMed  Google Scholar 

  22. Guan J, Jin L, Liu Q, Xu H, Wu H, Zhang X, Mao S (2019) Exploration of supersaturable lacidipine ternary amorphous solid dispersion for enhanced dissolution and in vivo absorption. Eur J Pharm Sci 139:105043. https://doi.org/10.1016/j.ejps.2019.105043

    Article  CAS  PubMed  Google Scholar 

  23. Cowley S, Paterson H, Kemp P, Marshall CJ (1994) Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77(6):841–852. https://doi.org/10.1016/0092-8674(94)90133-3

    Article  CAS  PubMed  Google Scholar 

  24. Daouti S, Wang H, Li WH, Higgins B, Kolinsky K, Packman K, Specian A Jr, Kong N, Huby N, Wen Y, Xiang Q, Podlaski FJ, He Y, Fotouhi N, Heimbrook D, Niu H (2009) Characterization of a novel mitogen-activated protein kinase kinase 1/2 inhibitor with a unique mechanism of action for cancer therapy. Cancer Res 69(5):1924–1932. https://doi.org/10.1158/0008-5472.CAN-08-2627

    Article  CAS  PubMed  Google Scholar 

  25. Liu L, Chen J, Cao M, Wang J, Wang S (2019) NO donor inhibits proliferation and induces apoptosis by targeting PI3K/AKT/mTOR and MEK/ERK pathways in hepatocellular carcinoma cells. Cancer Chemother Pharmacol 84(6):1303–1314. https://doi.org/10.1007/s00280-019-03965-5

    Article  CAS  PubMed  Google Scholar 

  26. Saini KS, Loi S, de Azambuja E, Metzger-Filho O, Saini ML, Ignatiadis M, Dancey JE, Piccart-Gebhart MJ (2013) Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast cancer. Cancer Treat Rev 39(8):935–946. https://doi.org/10.1016/j.ctrv.2013.03.009

    Article  CAS  PubMed  Google Scholar 

  27. Bohnert T, Gan LS (2013) Plasma protein binding: from discovery to development. J Pharm Sci 102(9):2953–2994. https://doi.org/10.1002/jps.23614

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

These authors acknowledge staff members' help from the Hefei Blooming Drug Safety Evaluation Co., Ltd, and Institute of Clinical Pharmacology, Anhui Medical University, in conducting these studies. The authors would like to acknowledge Hongzhang Sun for performing the formulation study and manufacturing work of the test article. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaorong Lu or Shangxue Yan.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wang, C., Wang, X. et al. Antitumor efficacy of CHMFL-KIT-110 solid dispersion in mouse xenograft models of human gastrointestinal stromal tumors. Cancer Chemother Pharmacol 88, 795–804 (2021). https://doi.org/10.1007/s00280-021-04332-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-021-04332-z

Keywords

Navigation