Skip to main content

Advertisement

Log in

Autophagy inhibitor potentiates the antitumor efficacy of apatinib in uterine sarcoma by stimulating PI3K/Akt/mTOR pathway

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Aim

The present study aims to examine the effects of apatinib combined with autophagy inhibitor 3-Methyladenine (3-MA) on the proliferation and apoptosis of human uterine sarcoma in FU-MMT-1 and MES-SA cells and its tumor inhibition effect in xenograft model of uterine sarcoma.

Methods

Different concentrations of 3-MA and apatinib were used to treat the uterine sarcoma cell lines (MES-SA and FU-MMT-1 cells). The cell viability was detected by CCK8 method. Flow cytometry was used to detect the apoptosis and cell cycle. Wound closure assay and Transwell assay were performed to measure the migration ability of cells. Western blot was used to determine the apoptosis proteins and autophagy proteins. A nude mice sarcoma xenograft model was established and treated with apatinib alone, 3-MA alone, or combined incubation of them. Tumor size of xenograft and the mice survival rate were measured.

Results

Combination of 3-MA and apatinib significantly inhibited the proliferation and migration ability, but increased the apoptosis rate of uterine sarcoma cells compared to apatinib. The combination of 3-MA and apatinib significantly limited the tumor size of xenograft and increased the survival rate of mice compared to apatinib alone. Apatinib inhibited the PI3K/Akt/mTOR pathway, while 3-MA and the combination of 3-MA and apatinib significantly activated the PI3K/Akt/mTOR pathway and inhibited autophagy. Combination of 3-MA and apatinib increased apoptosis compared to apatinib alone. The expression of VEGFR-2 was not impacted by 3-MA.

Conclusion

Combination of apatinib and autophagy inhibitor 3-MA significantly inhibited the growth and migration of uterine sarcoma cells and xenograft. Autophagy inhibition may increase the antitumor effect of apatinib via the PI3K/Akt/mTOR pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

3-MA:

3-Methyladenine

CCK8:

Cholecystokinin 8

PI3K:

Phosphatidylinositol 3-kinase

mTOR:

Mammalian Target of Rapamycin

VEGF:

Endothelial growth factor

VEGFR-2:

Endothelial growth factor receptor 2

FBS:

Fetal bovine serum

DMEM:

Dulbecco's Modified Eagle Medium

SD:

Standard deviation

SDS:

Sodium dodecyl sulfate

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

APA:

Apatinib

ANOVA:

One-way analyses of variance

ABCB1:

P-glycoprotein 1

ABCG2:

ATP-binding cassette transporter G2

References

  1. Mbatani N, Olawaiye AB, Prat J (2018) Uterine sarcomas. Int J Gynaecol Obstet 2:51–58

    Article  Google Scholar 

  2. Kyriazoglou A, Liontos M, Ziogas DC, Zagouri F, Koutsoukos K, Tsironis G, Tsiara A, Kaparelou M, Zakopoulou R, Thomakos N, Haidopoulos D, Papaspyrou I, Rodolakis A, Bamias A, Dimopoulos MA (2018) Management of uterine sarcomas and prognostic indicators: real world data from a single-institution. BMC Cancer 18:018–5156

    Article  Google Scholar 

  3. Amant F, Coosemans A, Debiec-Rychter M, Timmerman D, Vergote I (2009) Clinical management of uterine sarcomas. Lancet Oncol 10:1188–1198

    Article  PubMed  Google Scholar 

  4. Ghirardi V, Bizzarri N, Guida F, Vascone C, Costantini B, Scambia G, Fagotti A (2019) Role of surgery in gynaecological sarcomas. Oncotarget 10:2561–2575

    Article  PubMed  PubMed Central  Google Scholar 

  5. Koh WJ, Abu-Rustum NR, Bean S, Bradley K, Campos SM, Cho KR, Chon HS, Chu C, Cohn D, Crispens MA, Damast S, Dorigo O, Eifel PJ, Fisher CM, Frederick P, Gaffney DK, George S, Han E, Higgins S, Huh WK, Lurain JR 3rd, Mariani A, Mutch D, Nagel C, Nekhlyudov L, Fader AN, Remmenga SW, Reynolds RK, Tillmanns T, Ueda S, Wyse E, Yashar CM, McMillian NR, Scavone JL (2018) Uterine Neoplasms, Version 12018, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 16:170–199

    Article  PubMed  Google Scholar 

  6. Schwartz SM, Weiss NS, Daling JR, Gammon MD, Liff JM, Watt J, Lynch CF, Newcomb PA, Armstrong BK, Thompson WD (1996) Exogenous sex hormone use, correlates of endogenous hormone levels, and the incidence of histologic types of sarcoma of the uterus. Cancer 77:717–724

    Article  CAS  PubMed  Google Scholar 

  7. Felix AS, Cook LS, Gaudet MM, Rohan TE, Schouten LJ, Setiawan VW, Wise LA, Anderson KE, Bernstein L, De Vivo I, Friedenreich CM, Gapstur SM, Goldbohm RA, Henderson B, Horn-Ross PL, Kolonel L, Lacey JV, Liang X, Lissowska J, Magliocco A, McCullough ML, Miller AB, Olson SH, Palmer JR, Park Y, Patel AV, Prescott J, Rastogi R, Robien K, Rosenberg L, Schairer C, Ou Shu X, van den Brandt PA, Virkus RA, Wentzensen N, Xiang YB, Xu WH, Yang HP, Brinton LA (2013) The etiology of uterine sarcomas: a pooled analysis of the epidemiology of endometrial cancer consortium. Br J Cancer 108:727–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Muskiet FA, Stratingh MC, Stob GJ, Wolthers BG (1981) Simultaneous determination of the four major catecholamine metabolites and estimation of a serotonin metabolite in urine by capillary gas chromatography of their tert-butyldimethylsilyl derivatives. Clin Chem 27:223–227

    Article  CAS  PubMed  Google Scholar 

  9. Zhang H (2015) Apatinib for molecular targeted therapy in tumor. Drug Des Devel Ther 9:6075–6081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hu X, Cao J, Hu W, Wu C, Pan Y, Cai L, Tong Z, Wang S, Li J, Wang Z, Wang B, Chen X, Yu H (2014) Multicenter phase II study of apatinib in non-triple-negative metastatic breast cancer. BMC Cancer 14:1471–2407

    Article  Google Scholar 

  11. Hu X, Zhang J, Xu B, Jiang Z, Ragaz J, Tong Z, Zhang Q, Wang X, Feng J, Pang D, Fan M, Li J, Wang B, Wang Z, Zhang Q, Sun S, Liao C (2014) Multicenter phase II study of apatinib, a novel VEGFR inhibitor in heavily pretreated patients with metastatic triple-negative breast cancer. Int J Cancer 135:1961–1969

    Article  CAS  PubMed  Google Scholar 

  12. Zhen L, Jiali C, Yong F, Han X, Hongming P, Weidong H (2018) The efficacy and safety of apatinib treatment for patients with unresectable or relapsed liver cancer: a retrospective study. J Cancer 9:2773–2777

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tewari D, Patni P, Bishayee A, Sah AN (2019) Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy. Semin Cancer Biol 19:30405–30405

    Google Scholar 

  14. Sui H, Luo M, Miao Y, Cheng W, Wen S, Zhao B, Li Y, Qiao Z, Liu Y, Xu C (2020) Cystic fibrosis transmembrane conductance regulator ameliorates lipopolysaccharide-induced acute lung injury by inhibiting autophagy through PI3K/AKT/mTOR pathway in mice. Respir Physiol Neurobiol 273:11

    Article  Google Scholar 

  15. Yao Y, Zhou D, Shi D, Zhang H, Zhan S, Shao X, Sun K, Sun L, Wu G, Tian K, Zhu X, He S (2019) GLI1 overexpression promotes gastric cancer cell proliferation and migration and induces drug resistance by combining with the AKT-mTOR pathway. Biomed Pharmacother 111:993–1004

    Article  CAS  PubMed  Google Scholar 

  16. Wu S, Wang X, Chen J, Chen Y (2013) Autophagy of cancer stem cells is involved with chemoresistance of colon cancer cells. Biochem Biophys Res Commun 434:898–903

    Article  CAS  PubMed  Google Scholar 

  17. Yao L, Chen S, Li W (2020) Fatostatin inhibits the development of endometrial carcinoma in endometrial carcinoma cells and a xenograft model by targeting lipid metabolism. Arch Biochem Biophys 684:108327

    Article  CAS  PubMed  Google Scholar 

  18. Feng SQ, Wang GJ, Zhang JW, Xie Y, Sun RB, Fei F, Huang JQ, Wang Y, Aa JY, Zhou F (2018) Combined treatment with apatinib and docetaxel in A549 xenograft mice and its cellular pharmacokinetic basis. Acta Pharmacol Sin 39:1670–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cao H, Jia Q, Shen D, Yan L, Chen C, Xing S (2019) Quercetin has a protective effect on atherosclerosis via enhancement of autophagy in ApoE(-/-) mice. Exp Ther Med 18:2451–2458

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu J, Liu X, Yang S, Zhang X, Shi Y (2018) Clinical response to apatinib monotherapy in advanced non-small cell lung cancer. Asia Pac J Clin Oncol 14:264–269

    Article  PubMed  Google Scholar 

  21. Kou P, Zhang Y, Shao W, Zhu H, Zhang J, Wang H, Kong L, Yu J (2017) Significant efficacy and well safety of apatinib in an advanced liver cancer patient: a case report and literature review. Oncotarget 8:20510–20515

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lin Y, Wu Z, Zhang J, Hu X, Wang Z, Wang B, Cao J, Wang L (2017) Apatinib for metastatic breast cancer in non-clinical trial setting: Satisfying efficacy regardless of previous anti-angiogenic treatment. Tumour Biol 39:1010428317711033

    Article  PubMed  Google Scholar 

  23. Ding L, Li QJ, You KY, Jiang ZM, Yao HR (2016) The Use of Apatinib in treating nonsmall-cell lung cancer: case report and review of literature. Medicine 95:0000000000003598

    Article  Google Scholar 

  24. Roviello G, Ravelli A, Polom K, Petrioli R, Marano L, Marrelli D, Roviello F, Generali D (2016) Apatinib: a novel receptor tyrosine kinase inhibitor for the treatment of gastric cancer. Cancer Lett 372:187–191

    Article  CAS  PubMed  Google Scholar 

  25. Wu J, Yu J, Wang J, Zhang C, Shang K, Yao X, Cao B (2018) Astragalus polysaccharide enhanced antitumor effects of Apatinib in gastric cancer AGS cells by inhibiting AKT signalling pathway. Biomed Pharmacother 100:176–183

    Article  CAS  PubMed  Google Scholar 

  26. Mi YJ, Liang YJ, Huang HB, Zhao HY, Wu CP, Wang F, Tao LY, Zhang CZ, Dai CL, Tiwari AK, Ma XX, To KK, Ambudkar SV, Chen ZS, Fu LW (2010) Apatinib (YN968D1) reverses multidrug resistance by inhibiting the efflux function of multiple ATP-binding cassette transporters. Cancer Res 70:7981–7991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xue JM, Astère M, Zhong MX, Lin H, Shen J, Zhu YX (2018) Efficacy and safety of apatinib treatment for gastric cancer, hepatocellular carcinoma and non-small cell lung cancer: a meta-analysis. Onco Targets Ther 11:6119–6128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li F, Zhu T, Cao B, Wang J, Liang L (2017) Apatinib enhances antitumour activity of EGFR-TKIs in non-small cell lung cancer with EGFR-TKI resistance. Eur J Cancer 84:184–192

    Article  CAS  PubMed  Google Scholar 

  29. Wen S, Shao G, Zheng J, Zeng H, Luo J, Gu D (2019) Apatinib regulates the cell proliferation and apoptosis of liver cancer by regulation of VEGFR2/STAT3 signaling. Pathol Res Pract 215(4):816–821

    Article  CAS  PubMed  Google Scholar 

  30. Maroufi NF, Vahedian V, Akbarzadeh M, Mohammadian M, Zahedi M, Isazadeh A, Pouremamali F, Taefehshokr S, Heidari M, Rashidi M, Nouri M (2020) The apatinib inhibits breast cancer cell line MDA-MB-231 in vitro by inducing apoptosis, cell cycle arrest, and regulating nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Breast Cancer 27(4):613–620

    Article  PubMed  Google Scholar 

  31. Meng X, Wang H, Zhao J, Hu L, Zhi J, Wei S, Ruan X, Hou X, Li D, Zhang J, Yang W, Qian B, Wu Y, Zhang Y, Meng Z, Guan L, Zhang H, Zheng X, Gao M (2020) Apatinib inhibits cell proliferation and induces autophagy in human papillary thyroid carcinoma via the PI3K/Akt/mTOR signaling pathway. Front Oncol 10:217

    Article  PubMed  PubMed Central  Google Scholar 

  32. Song YA, Ma T, Zhang XY, Cheng XS, Olajuyin AM, Sun ZF, Zhang XJ (2019) Apatinib preferentially inhibits PC9 gefitinib-resistant cancer cells by inducing cell cycle arrest and inhibiting VEGFR signaling pathway. Cancer Cell Int 19:117

    Article  PubMed  PubMed Central  Google Scholar 

  33. Roviello G, Ravelli A, Fiaschi AI, Cappelletti MR, Gobbi A, Senti C, Zanotti L, Polom K, Reynolds AR, Fox SB, Generali D (2016) Apatinib for the treatment of gastric cancer. Expert Rev Gastroenterol Hepatol 10:887–892

    CAS  PubMed  Google Scholar 

  34. Liu C, Xing W, Si T, Yu H, Guo Z (2017) Efficacy and safety of apatinib combined with transarterial chemoembolization for hepatocellular carcinoma with portal venous tumor thrombus: a retrospective study. Oncotarget 8:100734–100745

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schulte N, Ebert MP, Härtel N (2014) Gastric cancer: new drugs—new strategies. Gastrointest Tumors 1:180–194

    Article  CAS  PubMed  Google Scholar 

  36. Chen LT, Oh DY, Ryu MH, Yeh KH, Yeo W, Carlesi R, Cheng R, Kim J, Orlando M, Kang YK (2017) Anti-angiogenic therapy in patients with advanced gastric and gastroesophageal junction cancer: a systematic review. Cancer Res Treat 49:851–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peng QX, Han YW, Zhang YL, Hu J, Fan J, Fu SZ, Xu S, Wan Q (2017) Apatinib inhibits VEGFR-2 and angiogenesis in an in vivo murine model of nasopharyngeal carcinoma. Oncotarget 8:52813–52822

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yang J, Pi C, Wang G (2018) Inhibition of PI3K/Akt/mTOR pathway by apigenin induces apoptosis and autophagy in hepatocellular carcinoma cells. Biomed Pharmacother 103:699–707

    Article  CAS  PubMed  Google Scholar 

  39. Katayama M, Kawaguchi T, Berger MS, Pieper RO (2007) DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ 14:548–558

    Article  CAS  PubMed  Google Scholar 

  40. Dong Y, Wu Y, Zhao GL, Ye ZY, Xing CG, Yang XD (2019) Inhibition of autophagy by 3-MA promotes hypoxia-induced apoptosis in human colorectal cancer cells. Eur Rev Med Pharmacol Sci 23:1047–1054

    CAS  PubMed  Google Scholar 

  41. Yu W, Wang Y, Zhu J, Jin L, Liu B, Xia K, Wang J, Gao J, Liang C, Tao H (2019) Autophagy inhibitor enhance ZnPc/BSA nanoparticle induced photodynamic therapy by suppressing PD-L1 expression in osteosarcoma immunotherapy. Biomaterials 192:128–139

    Article  CAS  PubMed  Google Scholar 

  42. Cheong H, Lu C, Lindsten T, Thompson CB (2012) Therapeutic targets in cancer cell metabolism and autophagy. Nat Biotechnol 30:671–678

    Article  CAS  PubMed  Google Scholar 

  43. Chen YS, Song HX, Lu Y, Li X, Chen T, Zhang Y, Xue JX, Liu H, Kan B, Yang G, Fu T (2011) Autophagy inhibition contributes to radiation sensitization of esophageal squamous carcinoma cells. Dis Esophagus 24:437–443

    Article  CAS  PubMed  Google Scholar 

  44. Li J, Hou N, Faried A, Tsutsumi S, Takeuchi T, Kuwano H (2009) Inhibition of autophagy by 3-MA enhances the effect of 5-FU-induced apoptosis in colon cancer cells. Ann Surg Oncol 16:761–771

    Article  PubMed  Google Scholar 

  45. Liu F, Liu D, Yang Y, Zhao S (2013) Effect of autophagy inhibition on chemotherapy-induced apoptosis in A549 lung cancer cells. Oncol Lett 5:1261–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu Z, Liu J, Li L, Nie D, Tao Q, Wu J, Fan J, Lin C, Zhao S, Ju D (2015) Inhibition of Autophagy Potentiated the Antitumor Effect of Nedaplatin in Cisplatin-Resistant Nasopharyngeal Carcinoma Cells. PLoS ONE 10:0135236

    Google Scholar 

  47. Cheng X, Feng H, Wu H, Jin Z, Shen X, Kuang J, Huo Z, Chen X, Gao H, Ye F, Ji X, Jing X, Zhang Y, Zhang T, Qiu W, Zhao R (2018) Targeting autophagy enhances apatinib-induced apoptosis via endoplasmic reticulum stress for human colorectal cancer. Cancer Lett 431:105–114

    Article  CAS  PubMed  Google Scholar 

  48. Kimmelman AC (2011) The dynamic nature of autophagy in cancer. Genes Dev 25:1999–2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16:663–669

    Article  CAS  PubMed  Google Scholar 

  50. Bauvy C, Gane P, Arico S, Codogno P, Ogier-Denis E (2001) Autophagy delays sulindac sulfide-induced apoptosis in the human intestinal colon cancer cell line HT-29. Exp Cell Res 268:139–149

    Article  CAS  PubMed  Google Scholar 

  51. Fu X, Pan Y, Wang J, Liu Q, Yang G, Li J (2008) The role of autophagy in human lung cancer cell line A549 induced by Vinorelbine. Zhongguo Fei Ai Za Zhi 11:345–348

    CAS  PubMed  Google Scholar 

  52. Yang Q, Guan KL (2007) Expanding mTOR signaling. Cell Res 17:666–681

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by Hebei Provincial Department of Science and Technology (No. 182777246).

Author information

Authors and Affiliations

Authors

Contributions

Shucheng Chen performed the study and wrote the paper; Lan Yao designed the study, revised the paper and provided the funding.

Corresponding author

Correspondence to Lan Yao.

Ethics declarations

Conflict of interests

No potential conflict of interest relevant to this article was reported.

Ethical approval

The study was approved by Ethics Committee of Fourth Hospital of Hebei Medical University (No. FHHMU-2018265).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Yao, L. Autophagy inhibitor potentiates the antitumor efficacy of apatinib in uterine sarcoma by stimulating PI3K/Akt/mTOR pathway. Cancer Chemother Pharmacol 88, 323–334 (2021). https://doi.org/10.1007/s00280-021-04291-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-021-04291-5

Keywords

Navigation