Skip to main content

Advertisement

Log in

NCTR25 fusion facilitates the formation of TRAIL polymers that selectively activate TRAIL receptors with higher potency and efficacy than TRAIL

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) binds to death receptor (DR) 4 and DR5 and induces tumor-selective apoptosis. The fusion proteins NCTR25–TRAIL and NCTR25–TGF3L–TRAIL self-assembled into polymers and triggered super-active cancer cell killing. The role of TGF3L in self-assembly and super-activity was unclear. These multivalent TRAILs elicited apoptosis with great potency, but their specificity towards receptors and subsequent efficacy in signal activation were unclear.

Methods

NCTR25–TRAIL fusion was constructed and prokaryotically expressed. The size of fusion protein polymers was estimated. Their cytotoxicity was assessed in eight cancer cell lines and two noncancerous cell lines. Receptor binding and activation specificity were determined by antibody blockade. Apoptosis was evaluated, and the associated pathway was verified by quantifying caspase activity. The NF-κB signaling pathway was assessed by dual-luciferase assay. The in vivo antitumor activity was also evaluated in nude mice.

Results

NCTR25 fusion to TRAIL promoted its self-assembly into polymers and showed similar super-cytotoxicity to NCTR25–TGF3L–TRAIL in vitro. The multivalent TRAILs exclusively activated both DR4 and DR5 and showed a bias towards DR4 in mediating cytotoxicity in NCI-H460 cells. They activated caspase pathway and induced apoptosis with higher potency but in similar efficacy than TRAIL. A higher potency and a greater efficacy were observed in activating NF-κB pathway by NCTR25–TRAIL comparing to TRAIL. Both the polymers showed better in vivo antitumor activity than TRAIL.

Conclusions

NCTR25 fusion alone facilitates the formation of TRAIL polymers. Multivalent TRAIL polymers bind and activate DR4 and DR5 specifically and exclusively, triggering the signaling pathways with higher potency, and greater efficacy than TRAIL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information file. The data are also available from the corresponding author on reasonable request.

References

  1. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271(22):12687–12690

    Article  CAS  Google Scholar 

  2. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281(5381):1305–1308

    Article  CAS  Google Scholar 

  3. Sprick MR, Weigand MA, Rieser E, Rauch CT, Juo P, Blenis J, Krammer PH, Walczak H (2000) FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 12(6):599–609

    Article  CAS  Google Scholar 

  4. Degli-Esposti MA, Dougall WC, Smolak PJ, Waugh JY, Smith CA, Goodwin RG (1997) The novel receptor TRAIL-R4 induces NF-κB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 7(6):813–820. https://doi.org/10.1016/S1074-7613(00)80399-4

    Article  CAS  PubMed  Google Scholar 

  5. Degli-Esposti MA, Smolak PJ, Walczak H, Waugh J, Huang CP, DuBose RF, Goodwin RG, Smith CA (1997) Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J Exp Med 186(7):1165–1170

    Article  CAS  Google Scholar 

  6. Marsters SA, Sheridan JP, Pitti RM, Huang A, Skubatch M, Baldwin D, Yuan J, Gurney A, Goddard AD, Godowski P, Ashkenazi A (1997) A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr Biol 7(12):1003–1006

    Article  CAS  Google Scholar 

  7. Emery JG, McDonnell P, Burke MB, Deen KC, Lyn S, Silverman C, Dul E, Appelbaum ER, Eichman C, DiPrinzio R, Dodds RA, James IE, Rosenberg M, Lee JC, Young PR (1998) Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 273(23):14363–14367

    Article  CAS  Google Scholar 

  8. Clancy L, Mruk K, Archer K, Woelfel M, Mongkolsapaya J, Screaton G, Lenardo MJ, Chan FK (2005) Preligand assembly domain-mediated ligand-independent association between TRAIL receptor 4 (TR4) and TR2 regulates TRAIL-induced apoptosis. Proc Natl Acad Sci U S A 102(50):18099–18104. https://doi.org/10.1073/pnas.0507329102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Neumann S, Hasenauer J, Pollak N, Scheurich P (2014) Dominant negative effects of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptor 4 on TRAIL receptor 1 signaling by formation of heteromeric complexes. J Biol Chem 289(23):16576–16587. https://doi.org/10.1074/jbc.M114.559468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Smulski CR, Decossas M, Chekkat N, Beyrath J, Willen L, Guichard G, Lorenzetti R, Rizzi M, Eibel H, Schneider P, Fournel S (2017) Hetero-oligomerization between the TNF receptor superfamily members CD40, Fas and TRAILR2 modulate CD40 signalling. Cell Death Dis 8(2):e2601. https://doi.org/10.1038/cddis.2017.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vanamee ES, Faustman DL (2018) Structural principles of tumor necrosis factor superfamily signaling. Sci Signal. https://doi.org/10.1126/scisignal.aao4910

    Article  PubMed  Google Scholar 

  12. Wilson NS, Yang B, Yang A, Loeser S, Marsters S, Lawrence D, Li Y, Pitti R, Totpal K, Yee S, Ross S, Vernes JM, Lu Y, Adams C, Offringa R, Kelley B, Hymowitz S, Daniel D, Meng G, Ashkenazi A (2011) An Fcgamma receptor-dependent mechanism drives antibody-mediated target-receptor signaling in cancer cells. Cancer Cell 19(1):101–113. https://doi.org/10.1016/j.ccr.2010.11.012

    Article  CAS  PubMed  Google Scholar 

  13. Muhlenbeck F, Schneider P, Bodmer JL, Schwenzer R, Hauser A, Schubert G, Scheurich P, Moosmayer D, Tschopp J, Wajant H (2000) The tumor necrosis factor-related apoptosis-inducing ligand receptors TRAIL-R1 and TRAIL-R2 have distinct cross-linking requirements for initiation of apoptosis and are non-redundant in JNK activation. J Biol Chem 275(41):32208–32213. https://doi.org/10.1074/jbc.M000482200

    Article  CAS  PubMed  Google Scholar 

  14. Graves JD, Kordich JJ, Huang TH, Piasecki J, Bush TL, Sullivan T, Foltz IN, Chang W, Douangpanya H, Dang T, O’Neill JW, Mallari R, Zhao X, Branstetter DG, Rossi JM, Long AM, Huang X, Holland PM (2014) Apo2L/TRAIL and the death receptor 5 agonist antibody AMG 655 cooperate to promote receptor clustering and antitumor activity. Cancer Cell 26(2):177–189. https://doi.org/10.1016/j.ccr.2014.04.028

    Article  CAS  PubMed  Google Scholar 

  15. Gieffers C, Kluge M, Merz C, Sykora J, Thiemann M, Schaal R, Fischer C, Branschadel M, Abhari BA, Hohenberger P, Fulda S, Fricke H, Hill O (2013) APG350 induces superior clustering of TRAIL receptors and shows therapeutic antitumor efficacy independent of cross-linking via Fcgamma receptors. Mol Cancer Ther 12(12):2735–2747. https://doi.org/10.1158/1535-7163.MCT-13-0323

    Article  CAS  PubMed  Google Scholar 

  16. De Miguel D, Gallego-Lleyda A, Ayuso JM, Pejenaute-Ochoa D, Jarauta V, Marzo I, Fernandez LJ, Ochoa I, Conde B, Anel A, Martinez-Lostao L (2016) High-order TRAIL oligomer formation in TRAIL-coated lipid nanoparticles enhances DR5 cross-linking and increases antitumour effect against colon cancer. Cancer Lett 383(2):250–260. https://doi.org/10.1016/j.canlet.2016.10.005

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y, Lei Q, Yan Z, Shen C, Wang N (2018) TGF3L fusion enhances the antitumor activity of TRAIL by promoting assembly into polymers. Biochem Pharmacol 155:510–523. https://doi.org/10.1016/j.bcp.2018.07.035

    Article  CAS  PubMed  Google Scholar 

  18. Nestor JJ Jr, Newman SR, DeLustro B, Todaro GJ, Schreiber AB (1985) A synthetic fragment of rat transforming growth factor alpha with receptor binding and antigenic properties. Biochem Biophys Res Commun 129(1):226–232

    Article  CAS  Google Scholar 

  19. Eppstein DA, Marsh YV, Schryver BB, Bertics PJ (1989) Inhibition of epidermal growth factor/transforming growth factor-alpha-stimulated cell growth by a synthetic peptide. J Cell Physiol 141(2):420–430. https://doi.org/10.1002/jcp.1041410224

    Article  CAS  PubMed  Google Scholar 

  20. Kih M, Lee EJ, Lee NK, Kim YK, Lee KE, Jeong C, Yang Y, Kim DH, Kim IS (2018) Designed trimer-mimetic TNF superfamily ligands on self-assembling nanocages. Biomaterials 180:67–77. https://doi.org/10.1016/j.biomaterials.2018.07.009

    Article  CAS  PubMed  Google Scholar 

  21. Liu H, Su D, Zhang J, Ge S, Li Y, Wang F, Gravel M, Roulston A, Song Q, Xu W, Liang JG, Shore G, Wang X, Liang P (2017) Improvement of Pharmacokinetic Profile of TRAIL via Trimer-Tag Enhances its Antitumor Activity in vivo. Sci Rep 7(1):8953. https://doi.org/10.1038/s41598-017-09518-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nussinov R, Ma B, Tsai CJ (2014) Multiple conformational selection and induced fit events take place in allosteric propagation. Biophys Chem 186:22–30. https://doi.org/10.1016/j.bpc.2013.10.002

    Article  CAS  PubMed  Google Scholar 

  23. Pan W, Wang Y, Wang N (2019) A new metal affinity NCTR25 tag as a better alternative to the His-tag for the expression of recombinant fused proteins. Protein Expr Purif 164:105477. https://doi.org/10.1016/j.pep.2019.105477

    Article  CAS  PubMed  Google Scholar 

  24. Sambrook J, Fritsch EF, Maniatis T (2001) Molecular cloning: a laboratory manual. CSH

  25. Chennamsetty N, Voynov V, Kayser V, Helk B, Trout BL (2009) Design of therapeutic proteins with enhanced stability. Proc Natl Acad Sci U S A 106(29):11937–11942. https://doi.org/10.1073/pnas.0904191106

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  CAS  Google Scholar 

  27. Anoopkumar-Dukie S, Carey JB, Conere T, O’Sullivan E, van Pelt FN, Allshire A (2005) Resazurin assay of radiation response in cultured cells. Br J Radiol 78(934):945–947. https://doi.org/10.1259/bjr/54004230

    Article  CAS  PubMed  Google Scholar 

  28. Lazareno S, Birdsall NJ (1993) Estimation of competitive antagonist affinity from functional inhibition curves using the Gaddum, Schild and Cheng-Prusoff equations. Br J Pharmacol 109(4):1110–1119. https://doi.org/10.1111/j.1476-5381.1993.tb13737.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  Google Scholar 

  30. Long J, Zhao J, Yan Z, Liu Z, Wang N (2009) Antitumor effects of a novel sulfur-containing hydroxamate histone deacetylase inhibitor H40. Int J Cancer 124(5):1235–1244. https://doi.org/10.1002/ijc.24074

    Article  CAS  PubMed  Google Scholar 

  31. Crowley LC, Marfell BJ, Scott AP (2016) Waterhouse NJ (2016) Quantitation of Apoptosis and Necrosis by Annexin V Binding, Propidium Iodide Uptake, and Flow Cytometry. Cold Spring Harb Protoc 11:pdbprot087288. https://doi.org/10.1101/pdb.prot087288

    Article  Google Scholar 

  32. Kajstura M, Halicka HD, Pryjma J, Darzynkiewicz Z (2007) Discontinuous fragmentation of nuclear DNA during apoptosis revealed by discrete “sub-G1” peaks on DNA content histograms. Cytometry A 71(3):125–131. https://doi.org/10.1002/cyto.a.20357

    Article  CAS  PubMed  Google Scholar 

  33. De Feo CJ, Aller SG, Siluvai GS, Blackburn NJ, Unger VM (2009) Three-dimensional structure of the human copper transporter hCTR1. J Proc Natl Acad Sci 106(11):4237–4242. https://doi.org/10.1073/pnas.0810286106

    Article  Google Scholar 

  34. Wagner KW, Punnoose EA, Januario T, Lawrence DA, Pitti RM, Lancaster K, Lee D, von Goetz M, Yee SF, Totpal K, Huw L, Katta V, Cavet G, Hymowitz SG, Amler L, Ashkenazi A (2007) Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat Med 13(9):1070–1077. https://doi.org/10.1038/nm1627

    Article  CAS  PubMed  Google Scholar 

  35. Jeon YJ, Middleton J, Kim T, Lagana A, Piovan C, Secchiero P, Nuovo GJ, Cui R, Joshi P, Romano G, Di Leva G, Lee BK, Sun HL, Kim Y, Fadda P, Alder H, Garofalo M, Croce CM (2017) Correction for Jeon et al., A set of NF-kappaB-regulated microRNAs induces acquired TRAIL resistance in Lung cancer. Proc Natl Acad Sci USA 114(12):2542. https://doi.org/10.1073/pnas.1701795114

    Article  CAS  Google Scholar 

  36. Hu WH, Johnson H, Shu HB (1999) Tumor necrosis factor-related apoptosis-inducing ligand receptors signal NF-kappaB and JNK activation and apoptosis through distinct pathways. J Biol Chem 274(43):30603–30610

    Article  CAS  Google Scholar 

  37. Varewijck AJ, Janssen JA (2012) Insulin and its analogues and their affinities for the IGF1 receptor. Endocr Relat Cancer 19(5):F63-75. https://doi.org/10.1530/erc-12-0026

    Article  CAS  PubMed  Google Scholar 

  38. De Miguel D, Gallego-Lleyda A, Anel A, Martinez-Lostao L (2015) Liposome-bound TRAIL induces superior DR5 clustering and enhanced DISC recruitment in histiocytic lymphoma U937 cells. Leuk Res 39(6):657–666. https://doi.org/10.1016/j.leukres.2015.03.019

    Article  CAS  PubMed  Google Scholar 

  39. Wajant H, Moosmayer D, Wuest T, Bartke T, Gerlach E, Schonherr U, Peters N, Scheurich P, Pfizenmaier K (2001) Differential activation of TRAIL-R1 and -2 by soluble and membrane TRAIL allows selective surface antigen-directed activation of TRAIL-R2 by a soluble TRAIL derivative. Oncogene 20(30):4101–4106. https://doi.org/10.1038/sj.onc.1204558

    Article  CAS  PubMed  Google Scholar 

  40. Carlo-Stella C, Lavazza C, Di Nicola M, Cleris L, Longoni P, Milanesi M, Magni M, Morelli D, Gloghini A, Carbone A, Gianni AM (2006) Antitumor activity of human CD34+ cells expressing membrane-bound tumor necrosis factor-related apoptosis-inducing ligand. Hum Gene Ther 17(12):1225–1240. https://doi.org/10.1089/hum.2006.17.1225

    Article  CAS  PubMed  Google Scholar 

  41. Dufour F, Rattier T, Constantinescu AA, Zischler L, Morle A, Ben Mabrouk H, Humblin E, Jacquemin G, Szegezdi E, Delacote F, Marrakchi N, Guichard G, Pellat-Deceunynck C, Vacher P, Legembre P, Garrido C, Micheau O (2017) TRAIL receptor gene editing unveils TRAIL-R1 as a master player of apoptosis induced by TRAIL and ER stress. Oncotarget 8(6):9974–9985. https://doi.org/10.18632/oncotarget.14285

    Article  PubMed  Google Scholar 

  42. Lawrence D, Shahrokh Z, Marsters S, Achilles K, Shih D, Mounho B, Hillan K, Totpal K, DeForge L, Schow P, Hooley J, Sherwood S, Pai R, Leung S, Khan L, Gliniak B, Bussiere J, Smith CA, Strom SS, Kelley S, Fox JA, Thomas D, Ashkenazi A (2001) Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat Med 7(4):383–385. https://doi.org/10.1038/86397

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Beijing Municipal Natural Science Foundation (Grant No. 7162134) and the Drug Innovation Major Project (No. 2013HXW-20, 2018ZX09711001-003-001).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, NW; data curation, YW; formal analysis, YW; funding acquisition, NW; investigation, YW, QL, and CS; methodology, YW and NW; project administration, YW and NW; supervision, NW; validation, YW, QL, and CS; visualization, YW; writing—original draft, YW; writing—review & editing, YW and NW.

Corresponding author

Correspondence to Nan Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 217 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Lei, Q., Shen, C. et al. NCTR25 fusion facilitates the formation of TRAIL polymers that selectively activate TRAIL receptors with higher potency and efficacy than TRAIL. Cancer Chemother Pharmacol 88, 289–306 (2021). https://doi.org/10.1007/s00280-021-04283-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-021-04283-5

Keywords

Navigation