Abstract
We report the case of a 44-year-old patient who experienced severe toxicity while being treated with capecitabine at standard dose for metastatic breast cancer. As the patient had already received 5-FU within the FEC protocol (5-FU 500 mg/m2, epirubicin 100 mg/m2, and cyclophosphamide 500 mg/m2) 10 years ago without experiencing any severe adverse event, no DPD deficiency testing was performed before capecitabine treatment. Nevertheless, she experienced severe diarrhea and grade 2 hand–foot syndrome from the first cycle, forcing her to stop the treatment. Phenotypic and genotypic investigation of DPD activity revealed that the patient had a partial deficiency and had therefore been exposed to a higher risk of developing severe toxicities on fluoropyrimidines. This case proves that tolerance to low-dose fluoropyrimidines does not preclude DPD deficiency and the occurrence of severe toxicities if higher doses of fluoropyrimidines are used as a second-line treatment. It emphasizes the role of DPD phenotyping testing based on uracilemia in patients scheduled for fluoropyrimidine drugs, even if previous courses with low-dose 5-FU were safely administered.
This is a preview of subscription content, access via your institution.
References
Barin-Le Guellec C, Lafay-Chebassier C, Ingrand I et al (2020) Toxicities associated with chemotherapy regimens containing a fluoropyrimidine: a real-life evaluation in France. Eur J Cancer Oxf Engl 1990 124:37–46. https://doi.org/10.1016/j.ejca.2019.09.028
Etienne-Grimaldi M-C, Boyer J-C, Beroud C et al (2017) New advances in DPYD genotype and risk of severe toxicity under capecitabine. PLoS ONE 12:e0175998. https://doi.org/10.1371/journal.pone.0175998
Boige V, Vincent M, Alexandre P et al (2016) DPYD genotyping to predict adverse events following treatment with fluorouracil-based adjuvant chemotherapy in patients with stage III colon cancer: a secondary analysis of the PETACC-8 randomized clinical trial. JAMA Oncol 2:655. https://doi.org/10.1001/jamaoncol.2015.5392
Boisdron-Celle M, Capitain O, Faroux R et al (2017) Prevention of 5-fluorouracil-induced early severe toxicity by pre-therapeutic dihydropyrimidine dehydrogenase deficiency screening: assessment of a multiparametric approach. Semin Oncol 44:13–23. https://doi.org/10.1053/j.seminoncol.2017.02.008
Etienne-Grimaldi M, Cozic N, Boyer J et al (2019) FUSAFE Individual patient data meta-analysis (MA) to assess the performance of dihydropyrimidine dehydrogenase (DPD) gene polymorphisms for predicting grade 4–5 fluoropyrimidine (FP) toxicity. Annal Oncol 30(suppl_5):v198–v252. https://doi.org/10.1093/annonc/mdz246
Amstutz U, Henricks LM, Offer SM et al (2018) Clinical pharmacogenetics implementation consortium (CPIC) guideline for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing: 2017 update. Clin Pharmacol Ther 103:210–216. https://doi.org/10.1002/cpt.911
Loriot M-A, Ciccolini J, Thomas F et al (2018) Dihydropyrimidine dehydrogenase (DPD) deficiency screening and securing of fluoropyrimidine-based chemotherapies: update and recommendations of the French GPCO-Unicancer and RNPGx networks. Bull Cancer (Paris). https://doi.org/10.1016/j.bulcan.2018.02.001
HAS-Santé (2018) Dihydropyrimidine dehydrogenase deficiency testing to prevent fluoropyrimidines-associated severe toxicities. https://www.has-sante.fr/. Accessed 15 Oct 2020
Meulendijks D, Henricks LM, Jacobs BAW et al (2017) Pretreatment serum uracil concentration as a predictor of severe and fatal fluoropyrimidine-associated toxicity. Br J Cancer 116:bjc201794. https://doi.org/10.1038/bjc.2017.94
Boisdron-Celle M, Remaud G, Traore S et al (2007) 5-Fluorouracil-related severe toxicity: a comparison of different methods for the pretherapeutic detection of dihydropyrimidine dehydrogenase deficiency. Cancer Lett 249:271–282. https://doi.org/10.1016/j.canlet.2006.09.006
Johnson MR, Wang K, Diasio RB (2002) Profound dihydropyrimidine dehydrogenase deficiency resulting from a novel compound heterozygote genotype. Clin Cancer Res 8:768–774
Gbeto CC, Quaranta S, Mari R et al (2019) Lethal toxicities after capecitabine intake in a previously 5-FU-treated patient: why dose matters with dihydropryimidine dehydrogenase deficiency. Pharmacogenomics 20:931–938. https://doi.org/10.2217/pgs-2019-0028
Thomas F, Hennebelle I, Delmas C et al (2016) Genotyping of a family with a novel deleterious DPYD mutation supports the pretherapeutic screening of DPD deficiency with dihydrouracil/uracil ratio. Clin Pharmacol Ther 99:235–242. https://doi.org/10.1002/cpt.210
EMEA (2001) Xeloda, INN-capecitabine. Summary of product characteristics. https://www.ema.europa.eu/en/documents/product-information/xeloda-epar-product-information_fr.pdf. Accessed 15 Oct 2020
Offer SM, Fossum CC, Wegner NJ et al (2014) Comparative functional analysis of DPYD variants of potential clinical relevance to dihydropyrimidine dehydrogenase activity. Cancer Res 74:2545–2554. https://doi.org/10.1158/0008-5472.CAN-13-2482
Henricks LM, Lunenburg CATC, de Man FM et al (2018) DPYD genotype-guided dose individualisation of fluoropyrimidine therapy in patients with cancer: a prospective safety analysis. Lancet Oncol 19:1459–1467. https://doi.org/10.1016/S1470-2045(18)30686-7
CPIC® (2020) Guideline for Fluoropyrimidines and DPYD. https://cpicpgx.org/guidelines/guideline-for-fluoropyrimidines-and-dpyd/. Accessed 15 Oct 2020
Pinedo HM, Peters GF (1988) Fluorouracil: biochemistry and pharmacology. J Clin Oncol 6:1653–1664. https://doi.org/10.1200/JCO.1988.6.10.1653
Terret C, Erdociain E, Guimbaud R et al (2000) Dose and time dependencies of 5-fluorouracil pharmacokinetics. Clin Pharmacol Ther 68:270–279. https://doi.org/10.1067/mcp.2000.109352
Acknowledgements
The authors wish to thank Dr. Gail Taillefer, native English-speaking medical writer (professor emeritus of English), for language support.
Funding
This study was not funded.
Author information
Authors and Affiliations
Contributions
FT, AEG, MU, MM, and FP contributed to the study design. AB, SM, and FT contributed to data acquisition/interpretation. FT, MM, and AEG contributed to writing and original draft preparation. AEG and MM contributed equally to writing of the manuscript. All authors participated in revising the original article. All authors have read and approved the version of the manuscript to be submitted.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Consent to participate
The patient signed a consent form allowing the use of her biological results and samples for research purpose.
Consent for publication
The patient signed informed consent regarding publishing her data.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Maillard, M., Eche-Gass, A., Ung, M. et al. Severe toxicity of capecitabine in a patient with DPD deficiency after a safe FEC-100 experience: why we should test DPD deficiency in all patients before high-dose fluoropyrimidines. Cancer Chemother Pharmacol 87, 579–583 (2021). https://doi.org/10.1007/s00280-021-04233-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00280-021-04233-1