HOTAIR promotes paclitaxel resistance by regulating CHEK1 in ovarian cancer



The HOX transcript antisense RNA (HOTAIR) has been reported to be aberrantly expressed in ovarian cancer (OC). Abnormal high expression level of HOTAIR has been found to be associated with poor overall survival of OC patients. Yet, the role of HOTAIR in paclitaxel resistance of OC is unclear. This study aims to investigate the effect, as well as the mechanism of HOTAIR in promoting paclitaxel resistance of OC.


Ovarian cancer cell lines with down-regulated and up-regulated expression of HOTAIR were, respectively, established. The expression of HOTAIR was confirmed by qRT-PCR. The sensitivity of ovarian cancer cells to paclitaxel was detected by MTT assays, colony formation, EdU assays, flow cytometry, and in vivo experiments.


An increased expression level of HOTAIR was observed in ovarian cancer cell lines following treatment with paclitaxel. When the expression of HOTAIR was down-regulated, the proliferation of ovarian cancer cells was found to be inhibited, coupled with enhanced cell sensitivity to paclitaxel. Conversely, when the HOTAIR expression was up-regulated, an opposite effect was observed on the ovarian cancer cells. In addition, cell cycle arrest in G2/M phase was also shown to be accelerated upon HOTAIR suppression. Strikingly, our results also revealed that HOTAIR plays a regulatory role in the expression of checkpoint kinase 1 (CHEK1), and that the restored paclitaxel sensitivity through knockdown of HOTAIR can be weakened by CHEK1 up-regulation. Consistently, in vivo data confirmed that the therapeutic efficacy of paclitaxel can be enhanced through down-regulation of HOTAIR, and that CHEK1 is the down-stream target of HOTAIR in inducing paclitaxel resistance.


HOTAIR confers paclitaxel resistance in epithelial ovarian cancer by increasing the protein level of CHEK1.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Availability of data and materials

The datasets used and/or analyzed in this study are available from the corresponding author on reasonable request.


  1. 1.

    Parkin DM (2001) Global cancer statistics in the year 2000. Lancet Oncol 2(9):533–543

    CAS  Article  Google Scholar 

  2. 2.

    Cannistra SA (2006) Intraperitoneal chemotherapy comes of age. N Engl J Med 354(1):77–79

    CAS  Article  Google Scholar 

  3. 3.

    Young M, Plosker GL (2001) Paclitaxel: a pharmacoeconomic review of its use in the treatment of ovarian cancer. Pharmacoeconomics 19(12):1227–1259

    CAS  Article  Google Scholar 

  4. 4.

    Woo CJ, Kingston RE (2007) HOTAIR lifts noncoding RNAs to new levels. Cell 129(7):1257–1259

    CAS  Article  Google Scholar 

  5. 5.

    Marchese FP, Huarte M (2014) Long non-coding RNAs and chromatin modifiers: their place in the epigenetic code. Epigenetics 9(1):21–26

    CAS  Article  Google Scholar 

  6. 6.

    Chang L, Guo R, Yuan Z et al (2018) LncRNA HOTAIR regulates CCND1 and CCND2 expression by sponging miR-206 in ovarian cancer. Cell Physiol Biochem 49(4):1289–1303

    CAS  Article  Google Scholar 

  7. 7.

    Tang Q, Hann SS (2018) HOTAIR: an oncogenic long non-coding RNA in human cancer. Cell Physiol Biochem 47(3):893–913

    CAS  Article  Google Scholar 

  8. 8.

    Wu Y, Xiong Q, Li S et al (2018) Integrated proteomic and transcriptomic analysis reveals long noncoding RNA HOX transcript antisense intergenic RNA (HOTAIR) promotes hepatocellular carcinoma cell proliferation by regulating opioid growth factor receptor (OGFr). Mol Cell Proteomics 17(1):146–159

    CAS  Article  Google Scholar 

  9. 9.

    Cheng C, Qin Y, Zhi Q et al (2018) Knockdown of long non-coding RNA HOTAIR inhibits cisplatin resistance of gastric cancer cells through inhibiting the PI3K/Akt and Wnt/beta-catenin signaling pathways by up-regulating miR-34a. Int J Biol Macromol 107(Pt B):2620–2629

    CAS  Article  Google Scholar 

  10. 10.

    Ozes AR, Miller DF, Ozes ON et al (2016) NF-kappaB-HOTAIR axis links DNA damage response, chemoresistance and cellular senescence in ovarian cancer. Oncogene 35(41):5350–5361

    CAS  Article  Google Scholar 

  11. 11.

    Yu Y, Zhang X, Tian H, Zhang Z, Tian Y (2018) Knockdown of long non-coding RNA HOTAIR increases cisplatin sensitivity in ovarian cancer by inhibiting cisplatin-induced autophagy. J BUON 23(5):1396–1401

    PubMed  Google Scholar 

  12. 12.

    Dong X, Mattingly CA, Tseng MT, Cho MJ, Liu Y, Adams VR, Mumper RJ (2009) Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP. Cancer Res 69:3918–3926

    CAS  Article  Google Scholar 

  13. 13.

    Zhang SF, Wang XY, Fu ZQ, Peng QH, Zhang JY, Ye F, Fu YF, Zhou CY, Lu WG, Cheng XD, Xie X (2015) TXNDC17 promotes paclitaxel resistance via inducing autophagy in ovarian cancer. Autophagy 11(2):225–238

    Article  Google Scholar 

  14. 14.

    Fu Y, Ye D, Chen H, Lu W, Ye F, Xie X (2007) Weakened spindle checkpoint with reduced BubR1 expression in paclitaxel-resistant ovarian carcinoma cell line SKOV3-TR30. Gynecol Oncol 105:66–73

    CAS  Article  Google Scholar 

  15. 15.

    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408

    CAS  Article  Google Scholar 

  16. 16.

    Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q et al (2010) An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 123:725–731

    Article  Google Scholar 

  17. 17.

    Xiao Z, Xue J, Semizarov D et al (2005) Novel indication for cancer therapy: Chk1 inhibition sensitizes tumor cells to antimitotics. Int J Cancer 115(4):528–538

    CAS  Article  Google Scholar 

  18. 18.

    Kim A, Ueda Y, Naka T et al (2012) Therapeutic strategies in epithelial ovarian cancer. J Exp Clin Cancer Res 31:14

    CAS  Article  Google Scholar 

  19. 19.

    McGuire WP, Hoskins WJ, Brady MF et al (1997) Comparison of combination therapy with paclitaxel and cisplatin versus cyclophosphamide and cisplatin in patients with suboptimal stage III and stage IV ovarian cancer: a Gynecologic Oncology Group study. Semin Oncol 24(1 Suppl 2):S2-13–S2-16

    Google Scholar 

  20. 20.

    Xue X, Yang YA, Zhang A et al (2016) LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer. Oncogene 35(21):2746–2755

    CAS  Article  Google Scholar 

  21. 21.

    Wang H, Li Q, Tang S et al (2017) The role of long noncoding RNA HOTAIR in the acquired multidrug resistance to imatinib in chronic myeloid leukemia cells. Hematology 22(4):208–216

    Article  Google Scholar 

  22. 22.

    Zhou Y, Wang C, Liu X et al (2017) Long non-coding RNA HOTAIR enhances radioresistance in MDA-MB231 breast cancer cells. Oncol Lett 13(3):1143–1148

    CAS  Article  Google Scholar 

  23. 23.

    Jing L, Yuan W, Ruofan D et al (2015) HOTAIR enhanced aggressive biological behaviors and induced radio-resistance via inhibiting p21 in cervical cancer. Tumour Biol 36(5):3611–3619

    Article  Google Scholar 

  24. 24.

    Abdeahad H, Avan A, Pashirzad M et al (2019) The prognostic potential of long noncoding RNA HOTAIR expression in human digestive system carcinomas: a meta-analysis. J Cell Physiol 234(7):10926–10933

    CAS  Article  Google Scholar 

  25. 25.

    Cui L, Xie XY, Wang H et al (2013) Expression of long non-coding RNA HOTAIR mRNA in ovarian cancer. Sichuan Da Xue Xue Bao Yi Xue Ban 44(1):57–59

    CAS  PubMed  Google Scholar 

  26. 26.

    Chi S, Liu Y, Zhou X et al (2019) Knockdown of long non-coding HOTAIR enhances the sensitivity to progesterone in endometrial cancer by epigenetic regulation of progesterone receptor isoform B. Cancer Chemother Pharmacol 83(2):277–287

    CAS  Article  Google Scholar 

  27. 27.

    Wang H, Qin R, Guan A, Yao Y, Huang Y, Jia H, Huang W, Gao J (2018) HOTAIR enhanced paclitaxel and doxorubicin resistance in gastric cancer cells partly through inhibiting miR-217 expression. J Cell Biochem 119(9):7226–7234

    CAS  Article  Google Scholar 

  28. 28.

    Goto H, Izawa I, Li P et al (2012) Novel regulation of checkpoint kinase 1: is checkpoint kinase 1 a good candidate for anti-cancer therapy? Cancer Sci 103(7):1195–1200

    CAS  Article  Google Scholar 

  29. 29.

    Zhang XZ, Liu H, Chen SR (2020) Mechanisms of long non-coding RNAs in cancers and their dynamic regulations. Cancers (Basel) 12(5):1245

    Article  Google Scholar 

  30. 30.

    Zhao H, Wang A, Zhang Z (2020) LncRNA SDHAP1 confers paclitaxel resistance of ovarian cancer by regulating EIF4G2 expression via miR-4465. J Biochem.

    Article  PubMed  Google Scholar 

  31. 31.

    Xu M, Zhou K, Wu Y, Wang L, Lu S (2019) Linc00161 regulated the drug resistance of ovarian cancer by sponging microRNA-128 and modulating MAPK1. Mol Carcinog 58(4):577–587

    CAS  Article  Google Scholar 

  32. 32.

    Wang J, Ye C, Liu J, Hu Y (2018) UCA1 confers paclitaxel resistance to ovarian cancer through miR-129/ABCB1 axis. Biochem Biophys Res Commun 501(4):1034–1040

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (No. 81602277) and the Natural Science Foundation of Hubei Province (No. 2018CFB557).

Author information



Corresponding authors

Correspondence to Xiaoqi He or Chun Yang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethics approval

Appropriate approvals were obtained.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Wang, S., Wang, Z. et al. HOTAIR promotes paclitaxel resistance by regulating CHEK1 in ovarian cancer. Cancer Chemother Pharmacol (2020).

Download citation


  • CHEK1
  • Drug resistance
  • Ovarian cancer
  • Paclitaxel