Skip to main content

Protein expression profiling identifies differential modulation of homologous recombination by platinum-based antitumor agents

Abstract

Purpose

Oxaliplatin and satraplatin demonstrate activity against cisplatin-resistant tumor cells. Although the two platinum analogs are structurally-related, oxaliplatin is more active. Therefore, studies focusing on protein expression profiling were undertaken to identify the molecular mechanism for the difference in antitumor activity.

Methods

We included cisplatin as reference and DAP as a Pt(IV)-prodrug of oxaliplatin to offset Pt(IV) status of satraplatin, and utilized A2780, cisplatin-resistant 2780CP/Cl-16, U2OS, and HCT-116 tumor cells in the investigation. Protein expressions following drug exposures were examined by reverse-phase protein array and ingenuity pathway analysis. Cell cycle was assessed by flow cytometry, cytotoxicity by growth inhibition assay, and homologous recombination (HR) by a GFP reporter assay.

Results

Clustering analysis paired oxaliplatin with DAP and, surprisingly, satraplatin with cisplatin. This correlated with differential upregulation of p53/p21 pathway, with S and G2/M arrests by cisplatin and satraplatin in contrast to G1 arrest by oxaliplatin and DAP. Moreover, Rad51 and BRCA1 were severely downregulated by oxaliplatin and DAP, but not cisplatin and satraplatin. As a result, HR was inhibited only by oxaliplatin and DAP and this also contributed to their greater drug activity over cisplatin and satraplatin.

Conclusions

Oxaliplatin and DAP robustly activate p53 and p21, which downregulate HR proteins to enhance drug activity. More significantly, since oxaliplatin induces a BRCAness state, it may have potential against BRCA-proficient cancers. Satraplatin, on the other hand, resembled cisplatin in its protein expression profile, which indicates that small changes in chemical structure can substantially alter signal transduction pathways to modulate drug activity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Galluzzi L, Vitale I, Michels J et al (2014) Systems biology of cisplatin resistance: past, present and future. Cell Death Dis 5:e1257

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22:7265–7279

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Choy H, Park C, Yao M (2008) Current status and future prospects for satraplatin, an oral platinum analogue. Clin Cancer Res 14:1633–1638

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Kelland LR, Abel G, McKeage MJ et al (1993) Preclinical antitumor evaluation of bis-acetato-ammine-dichloro-cyclohexylamine platinum(IV): an orally active platinum drug. Cancer Res 53:2581–2586

    CAS  PubMed  Google Scholar 

  5. 5.

    Bruno PM, Liu Y, Park GY et al (2017) A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress. Nat Med 23:461–471

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Hagopian GS, Mills GB, Khokhar AR et al (1999) Expression of p53 in cisplatin-resistant ovarian cancer cell lines: modulation with the novel platinum analogue (1R, 2R-diaminocyclohexane)(trans-diacetato)(dichloro)-platinum(IV). Clin Cancer Res 5:655–663

    CAS  PubMed  Google Scholar 

  7. 7.

    Goschl S, Schreiber-Brynzak E, Pichler V et al (2017) Comparative studies of oxaliplatin-based platinum(IV) complexes in different in vitro and in vivo tumor models. Metallomics 9:309–322

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Perry J, Powles T, Shamash J et al (2009) The relative activity of cisplatin, oxaliplatin and satraplatin in testicular germ cell tumour sensitive and resistant cell lines. Cancer Chemother Pharmacol 64:925–933

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7:573–584

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Woynarowski JM, Faivre S, Herzig MC et al (2000) Oxaliplatin-induced damage of cellular DNA. Mol Pharmacol 58:920–927

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Seetharam R, Sood A, Goel S (2009) Oxaliplatin: pre-clinical perspectives on the mechanisms of action, response and resistance. Ecancermedicalscience 3:153

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Singer G, Stohr R, Cope L et al (2005) Patterns of p53 mutations separate ovarian serous borderline tumors and low- and high-grade carcinomas and provide support for a new model of ovarian carcinogenesis: a mutational analysis with immunohistochemical correlation. Am J Surg Pathol 29:218–224

    PubMed  Article  Google Scholar 

  13. 13.

    Khokhar AR, Al Baker S, Shamsuddin S, Siddik ZH (1997) Chemical and biological studies on a series of novel (trans-(1R,2R)-, trans-(1S,2S)-, and cis-1,2-diaminocyclohexane)platinum(IV) carboxylate complexes. J Med Chem 40:112–116

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Xie X, He G, Siddik ZH (2017) Functional activation of mutant p53 by platinum analogues in cisplatin-resistant cells is dependent on phosphorylation. Mol Cancer Res 15:328–339

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Bhatt M, Ivan C, Xie X, Siddik ZH (2017) Drug-dependent functionalization of wild-type and mutant p53 in cisplatin-resistant human ovarian tumor cells. Oncotarget 8:10905–10918

    PubMed  Article  Google Scholar 

  16. 16.

    Rockfield S, Guergues J, Rehman N et al (2018) Proteomic profiling of iron-treated ovarian cells identifies AKT activation that modulates the CLEAR Network. Proteomics 18:e1800244

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Masuda H, Qi Y, Liu S et al (2017) Reverse phase protein array identification of triple-negative breast cancer subtypes and comparison with mRNA molecular subtypes. Oncotarget 8:70481–70495

    PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    He G, Kuang J, Khokhar AR, Siddik ZH (2011) The impact of S- and G2-checkpoint response on the fidelity of G1-arrest by cisplatin and its comparison to a non-cross-resistant platinum(IV) analog. Gynecol Oncol 122:402–409

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Hu Y, Scully R, Sobhian B et al (2011) RAP80-directed tuning of BRCA1 homologous recombination function at ionizing radiation-induced nuclear foci. Genes Dev 25:685–700

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Manning AL, Benes C, Dyson NJ (2014) Whole chromosome instability resulting from the synergistic effects of pRB and p53 inactivation. Oncogene 33:2487–2494

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Xie X, Lozano G, Siddik ZH (2016) Heterozygous p53(V172F) mutation in cisplatin-resistant human tumor cells promotes MDM4 recruitment and decreases stability and transactivity of p53. Oncogene 35:4798–4806

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Budke B, Logan HL, Kalin JH et al (2012) RI-1: a chemical inhibitor of RAD51 that disrupts homologous recombination in human cells. Nucleic Acids Res 40:7347–7357

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Peng G, Chun-Jen LC, Mo W et al (2014) Genome-wide transcriptome profiling of homologous recombination DNA repair. Nat Commun 5:3361

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. 24.

    Kim D, Liu Y, Oberly S et al (2018) ATR-mediated proteome remodeling is a major determinant of homologous recombination capacity in cancer cells. Nucleic Acids Res 46:8311–8325

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Xie X, He G, Siddik ZH (2020) Cisplatin in combination with MDM2 inhibition downregulates Rad51 recombinase in a bimodal manner to inhibit homologous recombination and augment tumor cell kill. Mol Pharmacol 97:237–249

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Chou TC (2010) Drug combination studies and their synergy quantification using the Chou–Talalay method. Cancer Res 70:440–446

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Mujoo K, Watanabe M, Nakamura J et al (2003) Status of p53 phosphorylation and function in sensitive and resistant human cancer models exposed to platinum-based DNA damaging agents. J Cancer Res Clin Oncol 129:709–718

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Siddik ZH, Hagopian GS, Thai G et al (1999) Role of p53 in the ability of 1,2-diaminocyclohexane-diacetato-dichloro-Pt(IV) to circumvent cisplatin resistance. J Inorg Biochem 77:65–70

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Schroyens W, Dodion P, Rozencweig M (1990) Comparative effect of cisplatin, spiroplatin, carboplatin and iproplatin in a human tumor clonogenic assay. J Cancer Res Clin Oncol 116:392–396

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Kraker AJ, Moore CW, Roberts BJ et al (1991) Preclinical antitumor activity of CI-973,[SP-4-3-(R)]-[1,1-cyclobutanedicarboxylato(2-)](2-methyl-1,4-butane-diamine-N,N′)platinum. Investig New Drugs 9:1–7

    CAS  Article  Google Scholar 

  31. 31.

    Chapman JR, Taylor MR, Boulton SJ (2012) Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47:497–510

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Velez-Cruz R, Manickavinayaham S, Biswas AK et al (2016) RB localizes to DNA double-strand breaks and promotes DNA end resection and homologous recombination through the recruitment of BRG1. Genes Dev 30:2500–2512

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Alsop K, Fereday S, Meldrum C et al (2012) BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. J Clin Oncol 30:2654–2663

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Konstantinopoulos PA, Ceccaldi R, Shapiro GI, D'Andrea AD (2015) Homologous recombination deficiency: exploiting the fundamental vulnerability of ovarian cancer. Cancer Discov 5:1137–1154

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Fischer M (2017) Census and evaluation of p53 target genes. Oncogene 36:3943–3956

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Barsotti AM, Prives C (2009) Pro-proliferative FoxM1 is a target of p53-mediated repression. Oncogene 28:4295–4305

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Lohr K, Moritz C, Contente A, Dobbelstein M (2003) p21/CDKN1A mediates negative regulation of transcription by p53. J Biol Chem 278:32507–32516

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Husain A, He G, Venkatraman ES, Spriggs DR (1998) BRCA1 up-regulation is associated with repair-mediated resistance to cis-diamminedichloroplatinum(II). Cancer Res 58:1120–1123

    CAS  PubMed  Google Scholar 

  39. 39.

    Takahashi M, Koi M, Balaguer F et al (2011) MSH3 mediates sensitization of colorectal cancer cells to cisplatin, oxaliplatin, and a poly(ADP-ribose) polymerase inhibitor. J Biol Chem 286:12157–12165

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Xu K, Chen Z, Cui Y et al (2015) Combined olaparib and oxaliplatin inhibits tumor proliferation and induces G2/M arrest and gamma-H2AX foci formation in colorectal cancer. Onco Targets Ther 8:3047–3054

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Xiao Z, Chen Z, Gunasekera AH et al (2003) Chk1 mediates S and G2 arrests through Cdc25A degradation in response to DNA-damaging agents. J Biol Chem 278:21767–21773

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Kuang J, He G, Huang Z et al (2001) Bimodal effects of 1R,2R-diaminocyclohexane(trans-diacetato)(dichloro)platinum(IV) on cell cycle checkpoints. Clin Cancer Res 7:3629–3639

    CAS  PubMed  Google Scholar 

  43. 43.

    el Deiry WS (2003) The role of p53 in chemosensitivity and radiosensitivity. Oncogene 22:7486–7495

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    MacLachlan TK, Takimoto R, el Deiry WS (2002) BRCA1 directs a selective p53-dependent transcriptional response towards growth arrest and DNA repair targets. Mol Cell Biol 22:4280–4292

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Ongusaha PP, Ouchi T, Kim KT et al (2003) BRCA1 shifts p53-mediated cellular outcomes towards irreversible growth arrest. Oncogene 22:3749–3758

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Friedler A, Veprintsev DB, Rutherford T et al (2005) Binding of Rad51 and other peptide sequences to a promiscuous, highly electrostatic binding site in p53. J Biol Chem 280:8051–8059

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Siddik ZH (2002) Mechanisms of action of cancer chemotherapeutic agents: DNA-interactive alkylating agents and antitumour platinum-based drugs. In: Alison MR (ed) The cancer handbook. Nature Publishing Group, London, pp 1295–1312

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Haifeng Zhu at MD Anderson Cancer Center for his invaluable advice in hierarchical clustering analysis. Thanks also to Gerald Thai for his excellent technical assistance. The research support from the U.S. Public Health Service Grants CA211975 to ZHS and CA16672 to MD Anderson Cancer Center awarded by the National Cancer Institute, and in part from the Megan McBride Franz Endowed Research Fund, is gratefully acknowledged.

Author information

Affiliations

Authors

Contributions

GH, XX and ZHS: designed and/or conducted the experiments, and analyzed and interpreted the data; GH and ZHS: wrote the initial draft of the manuscript, and XX: contributed to revision for the final version.

Corresponding author

Correspondence to Zahid H. Siddik.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, G., Xie, X. & Siddik, Z.H. Protein expression profiling identifies differential modulation of homologous recombination by platinum-based antitumor agents. Cancer Chemother Pharmacol 85, 1129–1140 (2020). https://doi.org/10.1007/s00280-020-04085-1

Download citation

Keywords

  • Platinum complexes
  • Protein expression
  • Cell cycle
  • BRCA1
  • Rad51
  • Homologous recombination