Skip to main content

Advertisement

Log in

Berberine chloride suppresses non-small cell lung cancer by deregulating Sin3A/TOP2B pathway in vitro and in vivo

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Berberine chloride (BBC) is a well-known plant isoquinoline alkaloid derived from Berberis aristata. In this study, we aim to explore the effect of BBC on non-small cell lung cancer (NSCLC), and further expound the underlying mechanism of BBC induces NSCLC cell death in vitro and in vivo.

Methods

CCK-8 assay and colony formation assay were used to test the viability and colony formation ability of NSCLC cells. Apoptosis analysis was used to analyze the apoptotic cells. siRNAs were utilized to disturb the expression of Sin3A. qPCR and Western blot analysis were employed to determine mRNA and protein levels of related genes and proteins. Tumor xenografts model was used for in vivo detection.

Results

BBC inhibited the proliferation and colony formation of human NSCLC cells in a dose- and time-dependent manner. In addition, BBC induced DNA double-stranded breaks (DSBs) through downregulating TOP2B level, leading to apoptosis in human NSCLC cells. The Chip-seq data of A549 cells obtained from the ENCODE consortium indicate that Sin3A binds on the promoters of TOP2B. Knockdown of Sin3A led to downregulation of TOP2B in human NSCLC cells. Furthermore, BBC decreased Sin3A expression and shortened the half-life of Sin3A, results in downregulation of TOP2B in human NSCLC cells.

Conclusion

In this study, we demonstrated a new mechanism that BBC suppresses human NSCLC by deregulating Sin3A/TOP2B pathway, leading to DNA damage and apoptosis in human NSCLC in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wakelee H, Kelly K, Edelman MJ (2014) 50 Years of progress in the systemic therapy of non-small cell lung cancer. Am Soc Clin Oncol Educ Book. https://doi.org/10.14694/EdBook_AM.2014.34.177

    Article  PubMed  PubMed Central  Google Scholar 

  2. Amable L (2016) Cisplatin resistance and opportunities for precision medicine. Pharmacol Res 106:27–36. https://doi.org/10.1016/j.phrs.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  3. Feng X, Liu H, Zhang Z, Gu Y, Qiu H, He Z (2017) Annexin A2 contributes to cisplatin resistance by activation of JNK-p53 pathway in non-small cell lung cancer cells. J Exp Clin Cancer Res 36(1):123. https://doi.org/10.1186/s13046-017-0594-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xiao L, Lan X, Shi X, Zhao K, Wang D, Wang X, Li F, Huang H, Liu J (2017) Cytoplasmic RAP1 mediates cisplatin resistance of non-small cell lung cancer. Cell Death Dis 8(5):e2803. https://doi.org/10.1038/cddis.2017.210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Drake FH, Zimmerman JP, McCabe FL, Bartus HF, Per SR, Sullivan DM, Ross WE, Mattern MR, Johnson RK, Crooke ST et al (1987) Purification of topoisomerase II from amsacrine-resistant P388 leukemia cells. Evidence for two forms of the enzyme. J Biol Chem 262(34):16739–16747

    CAS  PubMed  Google Scholar 

  6. Cowell IG, Sondka Z, Smith K, Lee KC, Manville CM, Sidorczuk-Lesthuruge M, Rance HA, Padget K, Jackson GH, Adachi N, Austin CA (2012) Model for MLL translocations in therapy-related leukemia involving topoisomerase IIbeta-mediated DNA strand breaks and gene proximity. Proc Natl Acad Sci USA 109(23):8989–8994. https://doi.org/10.1073/pnas.1204406109

    Article  PubMed  Google Scholar 

  7. Austin CA, Lee KC, Swan RL, Khazeem MM, Manville CM, Cridland P, Treumann A, Porter A, Morris NJ, Cowell IG (2018) TOP2B: the first thirty years. Int J Mol Sci. https://doi.org/10.3390/ijms19092765

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nitiss JL (2009) Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9(5):338–350. https://doi.org/10.1038/nrc2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang P, Wang H, Rowe PSN, Hu B, Wang Y (2010) MEPE/OF45 as a new target for sensitizing human tumour cells to DNA damage inducers. Br J Cancer 102(5):862–866. https://doi.org/10.1038/sj.bjc.6605572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bansal N, David G, Farias E, Waxman S (2016) Emerging roles of epigenetic regulator Sin3 in cancer. Adv Cancer Res 130:113–135. https://doi.org/10.1016/bs.acr.2016.01.006

    Article  CAS  PubMed  Google Scholar 

  11. Dannenberg JH, David G, Zhong S, van der Torre J, Wong WH, Depinho RA (2005) mSin3A corepressor regulates diverse transcriptional networks governing normal and neoplastic growth and survival. Genes Dev 19(13):1581–1595. https://doi.org/10.1101/gad.1286905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Das TK, Sangodkar J, Negre N, Narla G, Cagan RL (2013) Sin3a acts through a multi-gene module to regulate invasion in drosophila and human tumors. Oncogene 32(26):3184–3197. https://doi.org/10.1038/onc.2012.326

    Article  CAS  PubMed  Google Scholar 

  13. Desborough MJR, Keeling DM (2017) The aspirin story—from willow to wonder drug. Br J Haematol 177(5):674–683. https://doi.org/10.1111/bjh.14520

    Article  PubMed  Google Scholar 

  14. Rolnik DL, Wright D, Poon LC, O'Gorman N, Syngelaki A, de Paco MC, Akolekar R, Cicero S, Janga D, Singh M, Molina FS, Persico N, Jani JC, Plasencia W, Papaioannou G, Tenenbaum-Gavish K, Meiri H, Gizurarson S, Maclagan K, Nicolaides KH (2017) Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med 377(7):613–622. https://doi.org/10.1056/NEJMoa1704559

    Article  CAS  PubMed  Google Scholar 

  15. Nelson BS, Kremer DM, Lyssiotis CA (2018) New tricks for an old drug. Nat Chem Biol 14(11):990–991. https://doi.org/10.1038/s41589-018-0137-x

    Article  CAS  PubMed  Google Scholar 

  16. Vuddanda PR, Chakraborty S, Singh S (2010) Berberine: a potential phytochemical with multispectrum therapeutic activities. Expert Opin Investig Drugs 19(10):1297–1307. https://doi.org/10.1517/13543784.2010.517745

    Article  CAS  PubMed  Google Scholar 

  17. Cicero AF, Baggioni A (2016) Berberine and its role in chronic disease. Adv Exp Med Biol 928:27–45. https://doi.org/10.1007/978-3-319-41334-1_2

    Article  CAS  PubMed  Google Scholar 

  18. Watanabe A, Obata T, Nagashima H (1982) Berberine therapy of hypertyraminemia in patients with liver cirrhosis. Acta Med Okayama 36(4):277–281. https://doi.org/10.18926/AMO/30659

    Article  CAS  PubMed  Google Scholar 

  19. Chekalina SI, Umurzakova RZ, Saliev KK, Abdurakhmanov TR (1994) Effect of berberine bisulfate on platelet hemostasis in thrombocytopenia patients. Gematol Transfuziol 39(5):33–35

    CAS  PubMed  Google Scholar 

  20. Zhao W, Xue R, Zhou ZX, Kong WJ, Jiang JD (2008) Reduction of blood lipid by berberine in hyperlipidemic patients with chronic hepatitis or liver cirrhosis. Biomed Pharmacother 62(10):730–731. https://doi.org/10.1016/j.biopha.2008.01.007

    Article  CAS  PubMed  Google Scholar 

  21. Cao C, Su M (2019) Effects of berberine on glucose-lipid metabolism, inflammatory factors and insulin resistance in patients with metabolic syndrome. Exp Ther Med 17(4):3009–3014. https://doi.org/10.3892/etm.2019.7295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kalaiarasi A, Anusha C, Sankar R, Rajasekaran S, John Marshal J, Muthusamy K, Ravikumar V (2016) Plant isoquinoline alkaloid berberine exhibits chromatin remodeling by modulation of histone deacetylase to induce growth arrest and apoptosis in the A549 cell line. J Agric Food Chem 64(50):9542–9550. https://doi.org/10.1021/acs.jafc.6b04453

    Article  CAS  PubMed  Google Scholar 

  23. Ortiz LM, Lombardi P, Tillhon M, Scovassi AI (2014) Berberine, an epiphany against cancer. Molecules 19(8):12349–12367. https://doi.org/10.3390/molecules190812349

    Article  CAS  PubMed  Google Scholar 

  24. Ruan H, Zhan YY, Hou J, Xu B, Chen B, Tian Y, Wu D, Zhao Y, Zhang Y, Chen X, Mi P, Zhang L, Zhang S, Wang X, Cao H, Zhang W, Wang H, Li H, Su Y, Zhang XK, Hu T (2017) Berberine binds RXRalpha to suppress beta-catenin signaling in colon cancer cells. Oncogene 36(50):6906–6918. https://doi.org/10.1038/onc.2017.296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hou D, Xu G, Zhang C, Li B, Qin J, Hao X, Liu Q, Zhang X, Liu J, Wei J, Gong Y, Liu Z, Shao C (2017) Berberine induces oxidative DNA damage and impairs homologous recombination repair in ovarian cancer cells to confer increased sensitivity to PARP inhibition. Cell Death Dis 8(10):e3070. https://doi.org/10.1038/cddis.2017.471

    Article  PubMed  PubMed Central  Google Scholar 

  26. Saxena S, Shukla S, Kakkar P (2018) Berberine induced modulation of PHLPP2-Akt-MST1 kinase signaling is coupled with mitochondrial impairment and hepatoma cell death. Toxicol Appl Pharmacol 347:92–103. https://doi.org/10.1016/j.taap.2018.03.033

    Article  CAS  PubMed  Google Scholar 

  27. Ma W, Zhu M, Zhang D, Yang L, Yang T, Li X, Zhang Y (2017) Berberine inhibits the proliferation and migration of breast cancer ZR-75-30 cells by targeting Ephrin-B2. Phytomedicine 25:45–51. https://doi.org/10.1016/j.phymed.2016.12.013

    Article  CAS  PubMed  Google Scholar 

  28. Xi S, Chuang K, Fang K, Lee Y, Chung J, Chuang Y (2014) Effect of berberine on activity and mRNA expression of N-acetyltransferase in human lung cancer cell line A549. J Tradit Chin Med 34(3):302–308

    Article  Google Scholar 

  29. Li J, Liu F, Jiang S, Liu J, Chen X, Zhang S, Zhao H (2018) Berberine hydrochloride inhibits cell proliferation and promotes apoptosis of non-small cell lung cancer via the suppression of the MMP2 and Bcl-2/Bax signaling pathways. Oncol Lett 15(5):7409–7414. https://doi.org/10.3892/ol.2018.8249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen J, Huang X, Tao C, Xiao T, Li X, Zeng Q, Ma M, Wu Z (2019) Artemether attenuates the progression of non-small cell lung cancer by inducing apoptosis, cell cycle arrest and promoting cellular senescence. Biol Pharm Bull 42(10):1720–1725. https://doi.org/10.1248/bpb.b19-00391

    Article  CAS  PubMed  Google Scholar 

  31. Chen J, Li W, Cui K, Ji K, Xu S, Xu Y (2018) Artemisitene suppresses tumorigenesis by inducing DNA damage through deregulating c-Myc-topoisomerase pathway. Oncogene 37(37):5079–5087. https://doi.org/10.1038/s41388-018-0331-z

    Article  CAS  PubMed  Google Scholar 

  32. Nagasaka M, Zaki M, Kim H, Raza SN, Yoo G, Lin HS, Sukari A (2016) PD1/PD-L1 inhibition as a potential radiosensitizer in head and neck squamous cell carcinoma: a case report. J Immunother Cancer 4:83. https://doi.org/10.1186/s40425-016-0187-0

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gurley KE, Moser R, Gu Y, Hasty P, Kemp CJ (2009) DNA-PK suppresses a p53-independent apoptotic response to DNA damage. EMBO Rep 10(1):87–93. https://doi.org/10.1038/embor.2008.214

    Article  CAS  PubMed  Google Scholar 

  34. Bohlman S, Manfredi JJ (2014) p53-independent effects of Mdm2. Subcell Biochem 85:235–246. https://doi.org/10.1007/978-94-017-9211-0_13

    Article  PubMed  PubMed Central  Google Scholar 

  35. Roos WP, Kaina B (2013) DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett 332(2):237–248. https://doi.org/10.1016/j.canlet.2012.01.007

    Article  CAS  PubMed  Google Scholar 

  36. Roos WP, Kaina B (2006) DNA damage-induced cell death by apoptosis. Trends Mol Med 12(9):440–450. https://doi.org/10.1016/j.molmed.2006.07.007

    Article  CAS  PubMed  Google Scholar 

  37. Li J, Gu L, Zhang H, Liu T, Tian D, Zhou M, Zhou S (2013) Berberine represses DAXX gene transcription and induces cancer cell apoptosis. Lab Invest 93(3):354–364. https://doi.org/10.1038/labinvest.2012.172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gambi G, Di Simone E, Basso V, Ricci L, Wang R, Verma A, Elemento O, Ponzoni M, Inghirami G, Icardi L, Mondino A (2019) The transcriptional regulator Sin3A contributes to the oncogenic potential of STAT3. Cancer Res 79(12):3076–3087. https://doi.org/10.1158/0008-5472.CAN-18-0359

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Natural Science Foundation of China (nos. 81574038 and 81673979), Shenzhen Basic Discipline Layout Project (no. JCYJ20170412161254416), Shenzhen Sanming Project of Medical and Health (No. SZSM 201612049), the Science and Technology Project of Guangdong (no. 2014A020210001), Natural Science Foundation of Guangdong Province (nos. 2018A030313393 and 2016A030313114), Scientific Research and Innovation Fund of Jinan University/the Fundamental Research Funds for the Central Universities (no. 21615464), and Science and Technology Program of Guangzhou (no. 201803010051).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Ma, Ren Zhang or Zhengzhi Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3824 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Huang, X., Tao, C. et al. Berberine chloride suppresses non-small cell lung cancer by deregulating Sin3A/TOP2B pathway in vitro and in vivo. Cancer Chemother Pharmacol 86, 151–161 (2020). https://doi.org/10.1007/s00280-020-04050-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-020-04050-y

Keywords

Navigation