Skip to main content

Advertisement

Log in

Blood mRNA expression of REV3L and TYMS as potential predictive biomarkers from platinum-based chemotherapy plus pemetrexed in non-small cell lung cancer patients

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Therapeutic options for cancer patients have increased in the last years, although drugs resistance problem remains unresolved. Genetic background in individual susceptibility to cancer treatment could influence the therapy responses. The aim of this study was to explore the feasibility of using blood 4 genes (AEG-1, BRCA-1, REV3L and TYMS) expression levels as a predictor of the efficacy of pemetrexed therapy in patients with advanced non-small cell lung cancer.

Methods

Sixteen patients from the Medical Oncology Department at “12 de Octubre” Hospital, were included in the study. Total mRNA was isolated from blood samples, and gene expression was analyzed by RT-qPCR. A panel of lung tumor cell lines were used in cell proliferation tests and siRNA-mediated silencing assays.

Results

Similarity between blood gene expression levels and protein expression in matched tumor tissue was observed in 54.54% (REV3L) and 81.81% (TYMS) of cases. Gene expression of REV3L and TYMS in blood correlated directly and inversely, respectively, with progression-free survival and overall survival in the patients from our cohort. In tumor cell lines, the knockdown of REV3L conferred resistance to pemetrexed treatment, and the TYMS silencing increased the pemetrexed sensitivity of tumor cells.

Conclusions

The use of peripheral blood samples for expression quantification of interest genes is an affordable method with promising results in the evaluation of response to pemetrexed treatment. Therefore, expression levels of REV3L and TYMS genes might be used as predictive biomarkers in advanced NSCLC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin. https://doi.org/10.3322/caac.21332

    Article  PubMed  PubMed Central  Google Scholar 

  2. Novello S, Barlesi F, Califano R, Cufer T, Ekman S, Levra MG et al (2016) Metastatic non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. https://doi.org/10.1093/annonc/mdw326

    Article  PubMed  Google Scholar 

  3. Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E et al (2012) Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. https://doi.org/10.1016/S1470-2045(11)70393-X

    Article  PubMed  Google Scholar 

  4. Sequist LV, Yang JC, Yamamoto N, O'Byrne K, Hirsh V, Mok T et al (2013) Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol. https://doi.org/10.1200/JCO.2012.44.2806

    Article  PubMed  Google Scholar 

  5. Inoue A, Kobayashi K, Maemondo M, Sugawara S, Oizumi S, Isobe H et al (2013) Updated overall survival results from a randomized phase III trial comparing gefitinib with carboplatin-paclitaxel for chemo-naive non-small cell lung cancer with sensitive EGFR gene mutations (NEJ002). Ann Oncol. https://doi.org/10.1093/annonc/mds214

    Article  PubMed  Google Scholar 

  6. Paz-Ares L, Tan EH, O'Byrne K, Zhang L, Hirsh V, Boyer M et al (2017) Afatinib versus gefitinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: overall survival data from the phase IIb LUX-lung 7 trial. Ann Oncol. https://doi.org/10.1093/annonc/mdw611

    Article  PubMed  PubMed Central  Google Scholar 

  7. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A et al (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. https://doi.org/10.1056/nejmoa1606774

    Article  PubMed  Google Scholar 

  8. Li M, Zhang Q, Fu P, Li P, Peng A, Zhang G et al (2012) Pemetrexed plus platinum as the first-line treatment option for advanced non-small cell lung cancer: a meta-analysis of randomized controlled trials. PLoS ONE. https://doi.org/10.1371/journal.pone.0037229

    Article  PubMed  PubMed Central  Google Scholar 

  9. Paz-Ares L, de Marinis F, Dediu M, Thomas M, Pujol JL, Bidoli P et al (2012) Maintenance therapy with pemetrexed plus best supportive care versus placebo plus best supportive care after induction therapy with pemetrexed plus cisplatin for advanced non-squamous non-small-cell lung cancer (PARAMOUNT): a double-blind, phase 3, randomised controlled trial. Lancet Oncol. https://doi.org/10.1016/S1470-2045(12)70001-3

    Article  PubMed  Google Scholar 

  10. Paz-Ares LG, de Marinis F, Dediu M, Thomas M, Pujol JL, Bidoli P et al (2013) PARAMOUNT: final overall survival results of the phase III study of maintenance pemetrexed versus placebo immediately after induction treatment with pemetrexed plus cisplatin for advanced nonsquamous non-small-cell lung cancer. J Clin Oncol. https://doi.org/10.1200/JCO.2012.47.1102

    Article  PubMed  Google Scholar 

  11. Shih C, Chen VJ, Gossett LS, Gates SB, MacKellar WC, Habeck LL et al (1997) LY231514, a pyrrolo[2, 3-d]pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes. Cancer Res 57:1116–1123

    CAS  PubMed  Google Scholar 

  12. Gonen N, Assaraf YG (2012) Antifolates in cancer therapy: structure, activity and mechanisms of drug resistance. Drug Resist Update. https://doi.org/10.1016/j.drup.2012.07.002

    Article  Google Scholar 

  13. Buque A, Aresti U, Calvo B, Sh Muhialdin J, Munoz A, Carrera S et al (2013) Thymidylate synthase expression determines pemetrexed targets and resistance development in tumour cells. PLoS ONE. https://doi.org/10.1371/journal.pone.0063338

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chattopadhyay S, Moran RG, Goldman ID (2007) Pemetrexed: biochemical and cellular pharmacology, mechanisms, and clinical applications. Mol Cancer Ther. https://doi.org/10.1158/1535-7163.MCT-06-0343

    Article  PubMed  Google Scholar 

  15. Song L, Li W, Zhang H, Liao W, Dai T, Yu C et al (2009) Over-expression of AEG-1 significantly associates with tumour aggressiveness and poor prognosis in human non-small cell lung cancer. J Pathol. https://doi.org/10.1002/path.2595

    Article  PubMed  Google Scholar 

  16. Yoo BK, Chen D, Su ZZ, Gredler R, Yoo J, Shah K et al (2010) Molecular mechanism of chemoresistance by astrocyte elevated gene-1. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-09-4009

    Article  PubMed  PubMed Central  Google Scholar 

  17. Emdad L, Das SK, Dasgupta S, Hu B, Sarkar D, Fisher PB (2013) AEG-1/MTDH/LYRIC: signaling pathways, downstream genes, interacting proteins, and regulation of tumor angiogenesis. Adv Cancer Res. https://doi.org/10.1016/B978-0-12-401676-7.00003-6

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bonanno L, Costa C, Majem M, Favaretto A, Rugge M, Rosell R (2013) The predictive value of BRCA1 and RAP80 mRNA expression in advanced non-small-cell lung cancer patients treated with platinum-based chemotherapy. Ann Oncol. https://doi.org/10.1093/annonc/mdt063

    Article  PubMed  Google Scholar 

  19. Shen J, Wei J, Guan W, Wang H, Ding Y, Qian X et al (2014) Plasma mRNA expression levels of BRCA1 and TS as potential predictive biomarkers for chemotherapy in gastric cancer. J Transl Med. https://doi.org/10.1186/s12967-014-0355-2

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ceppi P, Rapa I, Lo Iacono M, Righi L, Giorcelli J, Pautasso M et al (2012) Expression and pharmacological inhibition of thymidylate synthase and Src kinase in nonsmall cell lung cancer. Int J Cancer. https://doi.org/10.1002/ijc.26188

    Article  PubMed  Google Scholar 

  21. Ceppi P, Volante M, Saviozzi S, Rapa I, Novello S, Cambieri A et al (2006) Squamous cell carcinoma of the lung compared with other histotypes shows higher messenger RNA and protein levels for thymidylate synthase. Cancer. https://doi.org/10.1002/cncr.22208

    Article  PubMed  Google Scholar 

  22. Liu Y, Yin TJ, Zhou R, Zhou S, Fan L, Zhang RG (2013) Expression of thymidylate synthase predicts clinical outcomes of pemetrexed-containing chemotherapy for non-small-cell lung cancer: a systemic review and meta-analysis. Cancer Chemother Pharmacol. https://doi.org/10.1007/s00280-013-2299-2

    Article  PubMed  PubMed Central  Google Scholar 

  23. Albertella MR, Lau A, O'Connor MJ (2005) The overexpression of specialized DNA polymerases in cancer. DNA Repair. https://doi.org/10.1016/j.dnarep.2005.01.005

    Article  PubMed  Google Scholar 

  24. Cardona AF, Rojas L, Wills B, Arrieta O, Carranza H, Vargas C et al (2016) Pemetrexed/carboplatin/bevacizumab followed by maintenance pemetrexed/bevacizumab in hispanic patients with non-small cell lung cancer: ourcomes according to thymidylase synthase expression. PLoS ONE. https://doi.org/10.1371/journal.pone.0154293

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yang L, Shi T, Liu F, Ren C, Wang Z, Li Y et al (2015) REV3L, a promising target in regulating the chemosensitivity of cervical cancer cells. PLoS ONE. https://doi.org/10.1371/journal.pone.0120334

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lange SS, Takata K, Wood RD (2011) DNA polymerases and cancer. Nat Rev Cancer. https://doi.org/10.1038/nrc2998

    Article  PubMed  PubMed Central  Google Scholar 

  27. Doles J, Oliver TG, Cameron ER, Hsu G, Jacks T, Walker GC et al (2010) Suppression of Rev3, the catalytic subunit of Pol{ ζ }, sensitizes drug-resistant lung tumors to chemotherapy. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1011409107

    Article  PubMed  Google Scholar 

  28. Sharma S, Shah NA, Joiner AM, Roberts KH, Canman CE (2012) DNA polymerase ζ is a major determinant of resistance to platinum-based chemotherapeutic agents. Mol Pharmacol. https://doi.org/10.1124/mol.111.076828

    Article  PubMed  PubMed Central  Google Scholar 

  29. Makarova AV, Burgers PM (2015) Eukaryotic DNA polymerase ζ. DNA Repair. https://doi.org/10.1016/j.dnarep.2015.02.012

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wittschieben JP, Patil V, Glushets V, Robinson LJ, Kusewitt DF, Wood RD (2010) Loss of DNA polymerase ζ enhances spontaneous tumorigenesis. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-09-4267

    Article  PubMed  PubMed Central  Google Scholar 

  31. Brondello JM, Pillaire MJ, Rodriguez C, Gourraud PA, Selves J, Cazaux C et al (2008) Novel evidences for a tumor suppressor role of Rev3, the catalytic subunit of Pol ζ. Oncogene. https://doi.org/10.1038/onc.2008.212

    Article  PubMed  Google Scholar 

  32. Zhang S, Chen H, Zhao X, Cao J, Tong J, Lu J et al (2013) REV3L 3′UTR 460 T%3eC polymorphism in microRNA target sites contributes to lung cancer susceptibility. Oncogene. https://doi.org/10.1038/onc.2012.32

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang W, Sheng W, Yu C, Cao J, Zhou J, Wu J et al (2015) REV3L modulates cisplatin sensitivity of non-small cell lung cancer H1299 cells. Oncology Rep. https://doi.org/10.3892/or.2015.4121

    Article  Google Scholar 

  34. Zhang D, Ochi N, Takigawa N, Tanimoto Y, Chen Y, Ichihara E et al (2011) Establishment of pemetrexed-resistant non-small cell lung cancer cell lines. Cancer Lett. https://doi.org/10.1016/j.canlet.2011.06.006

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nicolson MC, Fennell DA, Ferry D, O'Byrne K, Shah R, Potter V et al (2013) Thymidylate synthase expression and outcome of patients receiving pemetrexed for advanced nonsquamous non-small-cell lung cancer in a prospective blinded assessment phase II clinical trial. J Thorac Oncol. https://doi.org/10.1097/JTO.0b013e318292c500

    Article  PubMed  Google Scholar 

  36. Ozasa H, Oguri T, Uemura T, Miyazaki M, Maeno K, Sato S et al (2010) Significance of thymidylate synthase for resistance to pemetrexed in lung cancer. Cancer Sci. https://doi.org/10.1111/j.1349-7006.2009.01358.x

    Article  PubMed  Google Scholar 

  37. Chamizo C, Zazo S, Domine M, Cristobal I, Garcia-Foncillas J, Rojo F et al (2015) Thymidylate synthase expression as a predictive biomarker of pemetrexed sensitivity in advanced non-small cell lung cancer. BMC Pulm Med. https://doi.org/10.1186/s12890-015-0132-x

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yang M, Fan WF, Pu XL, Liu FY, Meng LJ, Wang J (2014) Significance of thymidylate synthase expression for resistance to pemetrexed in pulmonary adenocarcinoma. Oncology Lett. https://doi.org/10.3892/ol.2013.1688

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Fundación Mutua Madrileña (Madrid, Spain) [Grant Number 2013/0074].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Teresa Agulló-Ortuño.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32 kb)

Supplementary file2 (DOCX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agulló-Ortuño, M.T., García-Ruiz, I., Díaz-García, C.V. et al. Blood mRNA expression of REV3L and TYMS as potential predictive biomarkers from platinum-based chemotherapy plus pemetrexed in non-small cell lung cancer patients. Cancer Chemother Pharmacol 85, 525–535 (2020). https://doi.org/10.1007/s00280-019-04008-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-019-04008-9

Keywords

Navigation