Skip to main content

Advertisement

Log in

Preclinical efficacy of a novel dual PI3K/mTOR inhibitor, CMG002, alone and in combination with sorafenib in hepatocellular carcinoma

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Sorafenib has been the only first systemic drug that improves survival of patients with advanced hepatocellular carcinoma (HCC). However, because the response rate of sorafenib is relatively low, novel therapeutic strategies are needed to improve survival in patients with HCC. This study investigated the effect of CMG002 alone and in combination with sorafenib on HCC in vitro and vivo.

Methods

The effect of a newly developed dual PI3K/mTOR inhibitor, CMG002, on the proliferation of Huh-7 and HepG2 HCC cells was investigated using the MTT assay. Western blotting was performed to assess phosphorylation of the key enzymes in the Ras/Raf/MAPK and PI3K/AKT/mTOR pathways. HepG2 cells were inoculated into mice, which were treated with vehicle, sorafenib, CMG002, and their combinations. Tumor cell proliferation and tumor angiogenesis were evaluated by immunohistochemical analysis of Ki-67 and CD31, respectively. Tumor cell apoptosis was detected by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Levels of key enzymes in the Ras/Raf/MAPK and PI3K/AKT/mTOR pathways were evaluated by western blot analysis.

Results

The combination of sorafenib and CMG002 additively inhibited Huh-7 and HepG2 cell proliferation compared to single-agent treatment. Sorafenib and CMG002 as single agents differentially inhibited or activated key enzymes in the Ras/Raf/MAPK and PI3K/AKT/mTOR pathways. The combination of sorafenib and CMG002 inhibited all key enzymes in the two pathways. Treatment with CMG002 for 4 weeks alone and in combination with sorafenib strongly inhibited tumor growth. CMG002 inhibited HCC cell proliferation, induced apoptosis, and decreased tumor angiogenesis. Furthermore, these effects were enhanced when CMG002 was combined with sorafenib.

Conclusions

The combination of CMG002 and sorafenib significantly inhibited HCC cell proliferation and tumorigenesis by inhibiting the Ras/Raf/MAPK and PI3K/AKT/mTOR pathways. These findings suggest that CMG002 to be a potential novel candidate treatment for HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HCC:

Hepatocellular carcinoma

PI:

Proliferation index

TUNEL:

Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386. https://doi.org/10.1002/ijc.29210

    Article  CAS  PubMed  Google Scholar 

  2. Sartorius K, Sartorius B, Aldous C, Govender PS, Madiba TE (2015) Global and country underestimation of hepatocellular carcinoma (HCC) in 2012 and its implications. Cancer Epidemiol 39(3):284–290. https://doi.org/10.1016/j.canep.2015.04.006

    Article  CAS  PubMed  Google Scholar 

  3. European Association For The Study Of The Liver, European Organisation For Research And Treatment Of Cancer (2012) EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 56(4):908–943. https://doi.org/10.1016/j.jhep.2011.12.001

    Article  Google Scholar 

  4. Yang JD (2019) Detect or not to detect very early stage hepatocellular carcinoma? The western perspective. Clin Mol Hepatol. https://doi.org/10.3350/cmh.2019.0010

    Article  PubMed  Google Scholar 

  5. Omata M, Cheng AL, Kokudo N, Kudo M, Lee JM, Jia J, Tateishi R, Han KH, Chawla YK, Shiina S, Jafri W, Payawal DA, Ohki T, Ogasawara S, Chen PJ, Lesmana CRA, Lesmana LA, Gani RA, Obi S, Dokmeci AK, Sarin SK (2017) Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. Hep Intl 11(4):317–370. https://doi.org/10.1007/s12072-017-9799-9

    Article  Google Scholar 

  6. Kim TS, Kim JH (2017) Complete response of advanced hepatocellular carcinoma to sorafenib: another case and a comprehensive review. Clin Mol Hepatol 23(4):340–346. https://doi.org/10.3350/cmh.2016.0070

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dika IE, Abou-Alfa GK (2017) Treatment options after sorafenib failure in patients with hepatocellular carcinoma. Clin Mol Hepatol 23(4):273–279. https://doi.org/10.3350/cmh.2017.0108

    Article  PubMed  PubMed Central  Google Scholar 

  8. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Haussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359(4):378–390. https://doi.org/10.1056/NEJMoa0708857

    Article  CAS  PubMed  Google Scholar 

  9. Courtney KD, Corcoran RB, Engelman JA (2010) The PI3K pathway as drug target in human cancer. J Clin Oncol 28(6):1075–1083. https://doi.org/10.1200/jco.2009.25.3641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wymann MP, Zvelebil M, Laffargue M (2003) Phosphoinositide 3-kinase signalling–which way to target? Trends Pharmacol Sci 24(7):366–376. https://doi.org/10.1016/s0165-6147(03)00163-9

    Article  CAS  PubMed  Google Scholar 

  11. Kim MN, Ro SW, Kim DY, da Kim Y, Cho KJ, Park JH, Lim HY, Han KH (2015) Efficacy of perifosine alone and in combination with sorafenib in an HrasG12 V plus shp53 transgenic mouse model of hepatocellular carcinoma. Cancer Chemother Pharmacol 76(2):257–267. https://doi.org/10.1007/s00280-015-2787-7

    Article  CAS  PubMed  Google Scholar 

  12. Sharp ZD, Bartke A (2005) Evidence for down-regulation of phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR)-dependent translation regulatory signaling pathways in Ames dwarf mice. J Gerontol Ser A Biol Sci Med Sci 60(3):293–300

    Article  Google Scholar 

  13. Morgensztern D, McLeod HL (2005) PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs 16(8):797–803

    Article  CAS  Google Scholar 

  14. Brown RE (2005) Morphoproteomics: exposing protein circuitries in tumors to identify potential therapeutic targets in cancer patients. Expert Rev Proteom 2(3):337–348. https://doi.org/10.1586/14789450.2.3.337

    Article  CAS  Google Scholar 

  15. Yip PY (2015) Phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin (PI3K-Akt-mTOR) signaling pathway in non-small cell lung cancer. Transl Lung Cancer Res 4(2):165–176. https://doi.org/10.3978/j.issn.2218-6751.2015.01.04

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Faivre S, Bouattour M, Raymond E (2011) Novel molecular therapies in hepatocellular carcinoma. Liver Int 31(Suppl 1):151–160. https://doi.org/10.1111/j.1478-3231.2010.02395.x

    Article  PubMed  Google Scholar 

  17. Lee JW, Soung YH, Kim SY, Lee HW, Park WS, Nam SW, Kim SH, Lee JY, Yoo NJ, Lee SH (2005) PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene 24(8):1477–1480. https://doi.org/10.1038/sj.onc.1208304

    Article  CAS  PubMed  Google Scholar 

  18. Hu TH, Huang CC, Lin PR, Chang HW, Ger LP, Lin YW, Changchien CS, Lee CM, Tai MH (2003) Expression and prognostic role of tumor suppressor gene PTEN/MMAC1/TEP1 in hepatocellular carcinoma. Cancer 97(8):1929–1940. https://doi.org/10.1002/cncr.11266

    Article  CAS  PubMed  Google Scholar 

  19. Zhou L, Huang Y, Li J, Wang Z (2010) The mTOR pathway is associated with the poor prognosis of human hepatocellular carcinoma. Med Oncol (Northwood, London, England) 27(2):255–261. https://doi.org/10.1007/s12032-009-9201-4

    Article  CAS  Google Scholar 

  20. Minguez B, Tovar V, Chiang D, Villanueva A, Llovet JM (2009) Pathogenesis of hepatocellular carcinoma and molecular therapies. Curr Opin Gastroenterol 25(3):186–194. https://doi.org/10.1097/MOG.0b013e32832962a1

    Article  CAS  PubMed  Google Scholar 

  21. Yap TA, Bjerke L, Clarke PA, Workman P (2015) Drugging PI3K in cancer: refining targets and therapeutic strategies. Curr Opin Pharmacol 23:98–107. https://doi.org/10.1016/j.coph.2015.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Elkabets M, Vora S, Juric D, Morse N, Mino-Kenudson M, Muranen T, Tao J, Campos AB, Rodon J, Ibrahim YH, Serra V, Rodrik-Outmezguine V, Hazra S, Singh S, Kim P, Quadt C, Liu M, Huang A, Rosen N, Engelman JA, Scaltriti M, Baselga J (2013) mTORC1 inhibition is required for sensitivity to PI3K p110alpha inhibitors in PIK3CA-mutant breast cancer. Sci Transl Med 5(196):196ra199. https://doi.org/10.1126/scitranslmed.3005747

    Article  CAS  Google Scholar 

  23. Choi HJ, Heo JH, Park JY, Jeong JY, Cho HJ, Park KS, Kim SH, Moon YW, Kim JS, An HJ (2019) A novel PI3K/mTOR dual inhibitor, CMG002, overcomes the chemoresistance in ovarian cancer. Gynecol Oncol 153(1):135–148. https://doi.org/10.1016/j.ygyno.2019.01.012

    Article  CAS  PubMed  Google Scholar 

  24. Fei HR, Chen G, Wang JM, Wang FZ (2010) Perifosine induces cell cycle arrest and apoptosis in human hepatocellular carcinoma cell lines by blockade of Akt phosphorylation. Cytotechnology 62(5):449–460. https://doi.org/10.1007/s10616-010-9299-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Llovet JM, Bruix J (2008) Molecular targeted therapies in hepatocellular carcinoma. Hepatology (Baltimore, MD) 48(4):1312–1327. https://doi.org/10.1002/hep.22506

    Article  CAS  Google Scholar 

  26. Gedaly R, Angulo P, Hundley J, Daily MF, Chen C, Koch A, Evers BM (2010) PI-103 and sorafenib inhibit hepatocellular carcinoma cell proliferation by blocking Ras/Raf/MAPK and PI3K/AKT/mTOR pathways. Anticancer Res 30(12):4951–4958

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Huynh H, Ngo VC, Koong HN, Poon D, Choo SP, Thng CH, Chow P, Ong HS, Chung A, Soo KC (2009) Sorafenib and rapamycin induce growth suppression in mouse models of hepatocellular carcinoma. J Cell Mol Med 13(8b):2673–2683. https://doi.org/10.1111/j.1582-4934.2009.00692.x

    Article  PubMed  PubMed Central  Google Scholar 

  28. Piguet AC, Saar B, Hlushchuk R, St-Pierre MV, McSheehy PM, Radojevic V, Afthinos M, Terracciano L, Djonov V, Dufour JF (2011) Everolimus augments the effects of sorafenib in a syngeneic orthotopic model of hepatocellular carcinoma. Mol Cancer Ther 10(6):1007–1017. https://doi.org/10.1158/1535-7163.mct-10-0666

    Article  CAS  PubMed  Google Scholar 

  29. Gedaly R, Angulo P, Chen C, Creasy KT, Spear BT, Hundley J, Daily MF, Shah M, Evers BM (2012) The role of PI3K/mTOR inhibition in combination with sorafenib in hepatocellular carcinoma treatment. Anticancer Res 32(7):2531–2536

    CAS  PubMed  Google Scholar 

  30. Zhang CZ, Wang XD, Wang HW, Cai Y, Chao LQ (2015) Sorafenib inhibits liver cancer growth by decreasing mTOR, AKT, and PI3K expression. J BUON 20(1):218–222

    PubMed  Google Scholar 

  31. Dai N, Ye R, He Q, Guo P, Chen H, Zhang Q (2018) Capsaicin and sorafenib combination treatment exerts synergistic antihepatocellular carcinoma activity by suppressing EGFR and PI3K/Akt/mTOR signaling. Oncol Rep 40(6):3235–3248. https://doi.org/10.3892/or.2018.6754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cervello M, Bachvarov D, Lampiasi N, Cusimano A, Azzolina A, McCubrey JA, Montalto G (2012) Molecular mechanisms of sorafenib action in liver cancer cells. Cell cycle (Georgetown, Tex) 11(15):2843–2855. https://doi.org/10.4161/cc.21193

    Article  CAS  Google Scholar 

  33. Ho C, Wang C, Mattu S, Destefanis G, Ladu S, Delogu S, Armbruster J, Fan L, Lee SA, Jiang L, Dombrowski F, Evert M, Chen X, Calvisi DF (2012) AKT (v-akt murine thymoma viral oncogene homolog 1) and N-Ras (neuroblastoma ras viral oncogene homolog) coactivation in the mouse liver promotes rapid carcinogenesis by way of mTOR (mammalian target of rapamycin complex 1), FOXM1 (forkhead box M1)/SKP2, and c-Myc pathways. Hepatology (Baltimore, MD) 55(3):833–845. https://doi.org/10.1002/hep.24736

    Article  CAS  Google Scholar 

  34. Yan G, Ru Y, Yan F, Xiong X, Hu W, Pan T, Sun J, Zhang C, Wang Q, Li X (2019) MIIP inhibits the growth of prostate cancer via interaction with PP1alpha and negative modulation of AKT signaling. Cell Commun Signal 17(1):44. https://doi.org/10.1186/s12964-019-0355-1

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shi J, Wang X, Lyu L, Jiang H, Zhu HJ (2018) Comparison of protein expression between human livers and the hepatic cell lines HepG2, Hep3B, and Huh7 using SWATH and MRM-HR proteomics: focusing on drug-metabolizing enzymes. Drug Metab Pharmacokinet 33(2):133–140. https://doi.org/10.1016/j.dmpk.2018.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Friedman D, Baird JR, Young KH, Cottam B, Crittenden MR, Friedman S, Gough MJ, Newell P (2017) Programmed cell death-1 blockade enhances response to stereotactic radiation in an orthotopic murine model of hepatocellular carcinoma. Hepatology 47(7):702–714. https://doi.org/10.1111/hepr.12789

    Article  CAS  Google Scholar 

  37. Baiz D, Pozzato G, Dapas B, Farra R, Scaggiante B, Grassi M, Uxa L, Giansante C, Zennaro C, Guarnieri G, Grassi G (2009) Bortezomib arrests the proliferation of hepatocellular carcinoma cells HepG2 and JHH6 by differentially affecting E2F1, p21 and p27 levels. Biochimie 91(3):373–382. https://doi.org/10.1016/j.biochi.2008.10.015

    Article  CAS  PubMed  Google Scholar 

  38. Baiz D, Dapas B, Farra R, Scaggiante B, Pozzato G, Zanconati F, Fiotti N, Consoloni L, Chiaretti S, Grassi G (2014) Bortezomib effect on E2F and cyclin family members in human hepatocellular carcinoma cell lines. World J Gastroenterol 20(3):795–803. https://doi.org/10.3748/wjg.v20.i3.795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by a grant of the Research Driven Hospital R&D project, funded by the CHA Bundang Medical Center (Grant Number: BDCHA R&D 2015-25), and by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (2015R1D1A1A01058653). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi Na Kim.

Ethics declarations

Conflicts of interest

Nothing to declare for all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M.N., Lee, S.M., Kim, J.S. et al. Preclinical efficacy of a novel dual PI3K/mTOR inhibitor, CMG002, alone and in combination with sorafenib in hepatocellular carcinoma. Cancer Chemother Pharmacol 84, 809–817 (2019). https://doi.org/10.1007/s00280-019-03918-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-019-03918-y

Keywords

Navigation