Skip to main content

Anti-liver cancer effect and the mechanism of arsenic sulfide in vitro and in vivo

Abstract

Purpose

This study aimed at investigating the anti-tumor effect of arsenic sulfide (As2S2) against liver cancer both in vivo and in vitro and to elucidate its underlying mechanisms.

Methods

Cell viability of the human hepatocellular carcinoma cell lines SMMC-7721, BEL-7402, HepG2 were measured by CCK-8 assay. The effects of As2S2 on cell proliferation and apoptosis of SMMC-7721 cells were investigated using Calcein-AM and PI staining, Hoechst 33258 staining, crystal violet staining, and JC-1 staining. Cell cycle and Annexin V/PI assay were analyzed via flow cytometry. The expression of apoptosis-related proteins, phosphorylation of PI3K and AKT were detected by Western blotting. H22-bearing mice model was established to evaluate the anti-tumor effect of As2S2 in vivo. HE staining, PCNA was observed via immunohistochemistry, and TUNEL assay was used to assess the anti-proliferation and pro-apoptotic effects of As2S2.

Results

As2S2 significantly inhibited the growth of human hepatoma cells SMMC-7721, BEL-7402 and HepG2. As2S2 inhibited cell proliferation effectively by inducing G0/G1 cell cycle arrest in SMMC-7721 cells. As2S2 could increase Bax/Bcl-2 ratio, decrease mitochondrial membrane potential, promote the release of cytochrome c, increase the levels of cleaved caspase-3 and PARP, indicating that As2S2 induced apoptosis in SMMC-7721 cells via mitochondrial-mediated apoptosis pathway. Further research showed that As2S2 inhibited the PI3K/AKT signaling pathway leading to apoptotic cell death. In addition, As2S2 significantly inhibited tumor growth in H22-bearing mice and induced apoptosis by deactivating PI3K/AKT pathway, which was consistent with the in vitro results.

Conclusion

These findings suggested that As2S2 could induce apoptosis of liver cancer cells in vitro and in vivo, which was related to PI3K/AKT-mediated mitochondrial pathway and may provide a novel promising therapeutic agent for liver cancer treatment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Sia D, Villanueva A, Friedman SL, Llovet JM (2017) Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology 152(4):745–761. https://doi.org/10.1053/j.gastro.2016.11.048

    PubMed  CAS  Article  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. https://doi.org/10.3322/caac.20107

    PubMed  Article  Google Scholar 

  3. Wu Z, Wu J, Fang P, Kan SF (2017) Puerarin increases the chemosensitivity of hepatocellular carcinoma cells. Oncol Lett 14(3):3006–3010. https://doi.org/10.3892/ol.2017.6524

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  4. Khiewkamrop P, Phunsomboon P, Richert L, Pekthong D, Srisawang P (2018) Epistructured catechins, EGCG and EC facilitate apoptosis induction through targeting de novo lipogenesis pathway in HepG2 cells. Cancer Cell Int 18:46. https://doi.org/10.1186/s12935-018-0539-6

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  5. Zi D, Zhou ZW, Yang YJ, Huang L, Zhou ZL, He SM, He ZX, Zhou SF (2015) Danusertib induces apoptosis, cell cycle arrest, and autophagy but inhibits epithelial to mesenchymal transition involving PI3K/AKT/mTOR signaling pathway in human ovarian cancer cells. Int J Mol Sci 16(11):27228–27251. https://doi.org/10.3390/ijms161126018

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  6. Wang CH, Lu SX, Liu LL, Li Y, Yang X, He YF, Chen SL, Cai SH, Wang H, Yun JP (2018) POH1 knockdown induces cancer cell apoptosis via p53 and Bim. Neoplasia 20(5):411–424. https://doi.org/10.1016/j.neo.2018.02.005

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  7. Antoniou N, Vlachakis D, Memou A, Leandrou E, Valkimadi PE, Melachroinou K, Re DB, Przedborski S, Dauer WT, Stefanis L, Rideout HJ (2018) A motif within the armadillo repeat of Parkinson’s-linked LRRK2 interacts with FADD to hijack the extrinsic death pathway. Sci Rep 8(1):3455. https://doi.org/10.1038/s41598-018-21931-8

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  8. Jiao HL, Guan FX, Yang B, Li JB, Song LJ, Hu X, Du Y (2012) Human amniotic membrane derived- mesenchymal stem cells induce C6 glioma apoptosis in vivo through the Bcl-2/caspase pathways. Mol Biol Rep 39(1):467–473. https://doi.org/10.1007/s11033-011-0760-z

    PubMed  CAS  Article  Google Scholar 

  9. Niknejad H, Khayat-Khoei M, Peirovi H, Abolghasemi H (2014) Human amniotic epithelial cells induce apoptosis of cancer cells: a new anti-tumor therapeutic strategy. Cytotherapy 16(1):33–40. https://doi.org/10.1016/j.jcyt.2013.07.005

    PubMed  CAS  Article  Google Scholar 

  10. Wang J, Yuan L, Xiao HF, Xiao CX, Wang YT, Liu XB (2013) Momordin Ic induces HepG2 cell apoptosis through MAPK and PI3K/AKT-mediated mitochondrial pathways. Apoptosis 18:751–765. https://doi.org/10.1007/s10495-013-0820-z

    PubMed  CAS  Article  Google Scholar 

  11. Gerisch M, Schwarz T, Lang D, Rohde G, Reif S, Genvresse I, Reschke S, van der Mey D, Granvil C (2017) Pharmacokinetics of intravenous pan-class I phosphatidylinositol 3-kinase (PI3K) inhibitor [14C] copanlisib (BAY 80-6946) in a mass balance study in healthy male volunteers. Cancer Chemother Pharmacol 80(3):535–544. https://doi.org/10.1007/s00280-017-3383-9

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  12. Zhang C, Li CW, Chen SH, Li ZP, Jia XJ, Wang K, Bao JL, Liang Y, Wang XT, Chen MW, Li P, Su HX, Wan JB, Lee SMY, Liu KC, He CW (2017) Berberine protects against 6-OHDA-induced neurotoxicity in PC12 cells crossmark and zebrafish through hormetic mechanisms involving PI3K/AKT/Bcl-2 and Nrf2/HO-1 pathways. Redox Biol 11:1–11. https://doi.org/10.1016/j.redox.2016.10.019

    PubMed  CAS  Article  Google Scholar 

  13. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9(1):47–59. https://doi.org/10.1038/nrm2308

    PubMed  CAS  Article  Google Scholar 

  14. Parcellier A, Tintignac LA, Zhuravleva E, Hemmings BA (2008) PKB and the mitochondria: AKTing on apoptosis. Cell Signal 20(1):21–30. https://doi.org/10.1016/j.cellsig.2007.07.010

    PubMed  CAS  Article  Google Scholar 

  15. Li XQ, Lin ZH, Zhang B, Guo L, Liu S, Li H, Zhang JB, Ye QH (2016) β-elemene sensitizes hepatocellular carcinoma cells to oxaliplatin by preventing oxaliplatin-induced degradation of copper transporter 1. Sci Rep 6:21010. https://doi.org/10.1038/srep21010

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  16. Wang XB, Wang N, Cheung F, Lao LX, Li C, Feng YB (2015) Chinese medicines for prevention and treatment of human hepatocellular carcinoma: current progress on pharmacological actions and mechanisms. J Integr Med 13(3):142–164. https://doi.org/10.1016/S2095-4964(15)60171-6

    PubMed  Article  Google Scholar 

  17. Khairul I, Wang QQ, Jiang YH, Wang C, Naranmandura H (2017) Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget 8(14):23905–23926. https://doi.org/10.18632/oncotarget.14733

    PubMed  PubMed Central  Article  Google Scholar 

  18. Lo-coco F, Avvisati G, Vignetti M et al (2013) Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med 369(2):111–121. https://doi.org/10.1056/NEJMoa1300874

    PubMed  CAS  Article  Google Scholar 

  19. Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133(1):1–7. https://doi.org/10.1016/S0378-4274(02)00084-X

    PubMed  CAS  Article  Google Scholar 

  20. Zhang L, Tian W, Kim S, Ding WP, Tong YY, Chen SY (2014) Arsenic sulfide, the main component of realgar, a traditional Chinese medicine, induces apoptosis of gastric cancer cells in vitro and in vivo. Drug Des Dev Ther 9:79–92. https://doi.org/10.2147/DDDT.S74379

    CAS  Article  Google Scholar 

  21. Wang GY, Zhang T, Sun W, Wang HS, Yin F, Wang ZY, Zuo DQ, Sun MX, Zhou ZF, Lin BH, Xu J, Hua YQ, Li HQ, Cai ZD (2017) Arsenic sulfide induces apoptosis and autophagy through the activation of ROS/JNK and suppression of AKT/mTOR signaling pathways in osteosarcoma. Free Radic Bio Med 106:24–37. https://doi.org/10.1016/j.freeradbiomed.2017.02.015

    CAS  Article  Google Scholar 

  22. Xu M, Ren JY, Guo YC, Xu BX, Zeng Q, Hu Q, Zhou YM, Lu JH (2017) Effects of arsenic disulfide on apoptosis, histone acetylation, toll like receptor 2 activation, and erythropoiesis in bone marrow mononuclear cells of myelodysplastic syndromes patients in vitro. Leuk Res 62:4–11. https://doi.org/10.1016/j.leukres.2017.09.010

    PubMed  CAS  Article  Google Scholar 

  23. Zhang XL, Kang T, Zhang L, Tong Y, Ding W, Chen S (2017) NFATc3 mediates the sensitivity of gastric cancer cells to arsenic sulfide. Oncotarget 8(32):52735–52745. https://doi.org/10.18632/oncotarget.17175

    PubMed  PubMed Central  Article  Google Scholar 

  24. Song P, Hai Y, Wang X, Zhao LH, Chen BQ, Cui P, Xie QJ, Yu L, Li Y, Wu ZG, Li HY (2018) Realgar transforming solution suppresses angiogenesis and tumor growth by inhibiting VEGF receptor 2 signaling in vein endothelial cells. Arch Pham Res 41(4):467–480. https://doi.org/10.1007/s12272-018-1014-6

    CAS  Article  Google Scholar 

  25. Perelman A, Wachtel C, Cohen M, Haupt S, Shapiro H, Tzur A (2012) JC-1: alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry. Cell Death Dis 3:e430. https://doi.org/10.1038/cddis.2012.171

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  26. Xu C, Sun GB, Yuan GX, Wang R, Sun XB (2014) Effects of platycodin D on proliferation, apoptosis and PI3K/Akt signal pathway of human glioma U251 cells. Molecules 19(12):21411–21423. https://doi.org/10.3390/molecules191221411

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  27. Altekruse SF, Henley SJ, Cucinelli JE, McGlynn KA (2014) Changing hepatocellular carcinoma incidence and liver cancer mortality rates in the United States. Am J Gastroenterol 109(4):542–553. https://doi.org/10.1038/ajg.2014.11

    PubMed  PubMed Central  Article  Google Scholar 

  28. Liu CY, Chen KF, Chen PJ (2015) Treatment of liver cancer. Cold Spring Harb Perspect Med 5(9):a021535. https://doi.org/10.1101/cshperspect.a021535

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  29. Gao L, Wang XD, Niu YY, Duan DD, Yang X, Hao J, Zhu CH, Chen D, Wang KX, Qin XM, Wu XZ (2016) Molecular targets of Chinese herbs: a clinical study of hepatoma based on network pharmacology. Sci Rep 6:24944. https://doi.org/10.1038/srep24944

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  30. He PC, Liu YF, Qi J, Zhu HC, Wang Y, Zhao J, Cheng XY, Wang C, Zhang M (2015) Prohibitin promotes apoptosis of promyelocytic leukemia induced by arsenic sulfide. Int J Oncol 47(6):2286–2295. https://doi.org/10.3892/ijo.2015.3217

    PubMed  CAS  Article  Google Scholar 

  31. Lu DP, Qiu JY, Jiang B, Wang Q, Liu KY, Liu YR, Chen SS (2002) Tetra-arsenic tetra-sulfide for the treatment of acute promyelocytic leukemia: a pilot report. Blood 99:3136–3143. https://doi.org/10.1182/blood.V99.9.3136

    PubMed  CAS  Article  Google Scholar 

  32. Ding WP, Tong YY, Zhang XL, Pan MG, Chen SY (2016) Study of arsenic sulfide in solid tumor cells reveals regulation of nuclear factors of activated T-cells by PML and p53. Sci Rep 6:19793. https://doi.org/10.1038/srep19793

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  33. Zhang L, Tong YY, Zhang XL, Pan MG, Chen S (2015) Arsenic sulfide combined with JQ1, chemotherapy agents, or celecoxib inhibit gastric and colon cancer cell growth. Drug Des Devel Ther 9:5851–5862. https://doi.org/10.2147/DDDT.S92943

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  34. Zhang L, Kim S, Ding WP, Tong YY, Zhang XL, Pan MG, Chen SY (2015) Arsenic sulfide inhibits cell migration and invasion of gastric cancer in vitro and in vivo. Drug Des Devel Ther 9:5579–5590. https://doi.org/10.2147/DDDT.S89805

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  35. Li X, Qiu ZD, Jin QH, Chen GL, Guo MQ (2018) Cell cycle arrest and apoptosis in HT-29 cells induced by dichloromethane fraction from Toddalia asiatica (L.) Lam. Front Pharmacol 9:629. https://doi.org/10.3389/fphar.2018.00629

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  36. Zhao YX, Yuan B, Onda K, Sugiyama K, Tanaka S, Takagi N, Hirano T (2018) Anticancer efficacies of arsenic disulfide through apoptosis induction, cell cycle arrest, and pro-survival signal inhibition in human breast cancer cells. Am J Cancer Res 8(3):366–386

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Guo CL, Wang LJ, Zhao Y, Liu H, Li XQ, Jiang B, Luo J, Guo SJ, Wu N, Shi DY (2018) A novel bromophenol derivative BOS-102 induces cell cycle arrest and apoptosis in Human A549 lung cancer cells via ROS-mediated PI3K/AKT and the MAPK signaling pathway. Mar Drugs 16(2):43. https://doi.org/10.3390/md16020043

    PubMed Central  CAS  Article  Google Scholar 

  38. Yang CH, Cai H, Meng XX (2016) Polyphyllin D induces apoptosis and differentiation in K562 human leukemia cells. Int Immunopharmacol 36:17–22. https://doi.org/10.1016/j.intimp.2016.04.011

    PubMed  CAS  Article  Google Scholar 

  39. Kubli DA, Gustafsson ÅB (2012) Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res 111(9):1208–1221. https://doi.org/10.1161/CIRCRESAHA.112.265819

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  40. Wang LL, Han L, Ma XL, Yu Q, Zhao SN (2017) Effect of mitochondrial apoptotic activation through the mitochondrial membrane permeability transition pore on yak meat tenderness during postmortem aging. Food Chem 234:323–331. https://doi.org/10.1016/j.foodchem.2017.04.185

    PubMed  CAS  Article  Google Scholar 

  41. Shi JJ, Jiang Q, Ding XW, Xu WH, Wang DW, Chen ML (2015) The ER stress-mediated mitochondrial apoptotic pathway and MAPKs modulate tachypacing-induced apoptosis in HL-1 atrial myocytes. PLoS One 10(2):e0117567. https://doi.org/10.1371/journal.pone.0117567

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  42. Shalini S, Dorstyn L, Dawar S, Kumar S (2015) Old, new and emerging functions of caspases. Cell Death Differ 22(4):526 –526 39. https://doi.org/10.1038/cdd.2014.216

    PubMed  CAS  Article  Google Scholar 

  43. Faes S, Dormond O (2015) PI3K and AKT: unfaithful partners in cancer. Int J Mol Sci 16(9):21138–21152. https://doi.org/10.3390/ijms160921138

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  44. Zhu JW, Sun Y, Lu Y, Jiang XB, Ma B, Yu LS, Zhang J, Dong XC, Zhang Q (2018) Glaucocalyxin A exerts anticancer effect on osteosarcoma by inhibiting GLI1 nuclear translocation via regulating PI3K/Akt pathway. Cell Death Dis 9(6):708. https://doi.org/10.1038/s41419-018-0684-9

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  45. Miao S, Wang MS, Cheng X, Li YF, Zhang QS, Li G, He QS, Chen XP, Wu P (2017) Erythropoietin promoted the proliferation of hepatocellular carcinoma through hypoxia induced translocation of its specific receptor. Cancer Cell Int 17: 119.https://doi.org/10.1186%2Fs12935-017-0494-7

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Nos. 81273883).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dafang Zhang or Chaoying Li.

Ethics declarations

Conflict of interest

Author Shudan Wang declares that she has no conflict of interest. Author Chao Zhang declares that he has no conflict of interest. Author Yumei Li declares that she has no conflict of interest. Ping Li declares that she has no conflict of interest. Author Dafang Zhang declares that he has no conflict of interest. Author Chaoying Li declares that she has no conflict of interest.

Ethical approval

All applicable national and institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhang, C., Li, Y. et al. Anti-liver cancer effect and the mechanism of arsenic sulfide in vitro and in vivo. Cancer Chemother Pharmacol 83, 519–530 (2019). https://doi.org/10.1007/s00280-018-3755-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-018-3755-9

Keywords

  • Liver cancer
  • As2S2
  • Apoptosis
  • SMMC-7721 cells
  • PI3K/AKT pathway