Sia D, Villanueva A, Friedman SL, Llovet JM (2017) Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology 152(4):745–761. https://doi.org/10.1053/j.gastro.2016.11.048
PubMed
CAS
Article
Google Scholar
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. https://doi.org/10.3322/caac.20107
PubMed
Article
Google Scholar
Wu Z, Wu J, Fang P, Kan SF (2017) Puerarin increases the chemosensitivity of hepatocellular carcinoma cells. Oncol Lett 14(3):3006–3010. https://doi.org/10.3892/ol.2017.6524
PubMed
PubMed Central
CAS
Article
Google Scholar
Khiewkamrop P, Phunsomboon P, Richert L, Pekthong D, Srisawang P (2018) Epistructured catechins, EGCG and EC facilitate apoptosis induction through targeting de novo lipogenesis pathway in HepG2 cells. Cancer Cell Int 18:46. https://doi.org/10.1186/s12935-018-0539-6
PubMed
PubMed Central
CAS
Article
Google Scholar
Zi D, Zhou ZW, Yang YJ, Huang L, Zhou ZL, He SM, He ZX, Zhou SF (2015) Danusertib induces apoptosis, cell cycle arrest, and autophagy but inhibits epithelial to mesenchymal transition involving PI3K/AKT/mTOR signaling pathway in human ovarian cancer cells. Int J Mol Sci 16(11):27228–27251. https://doi.org/10.3390/ijms161126018
PubMed
PubMed Central
CAS
Article
Google Scholar
Wang CH, Lu SX, Liu LL, Li Y, Yang X, He YF, Chen SL, Cai SH, Wang H, Yun JP (2018) POH1 knockdown induces cancer cell apoptosis via p53 and Bim. Neoplasia 20(5):411–424. https://doi.org/10.1016/j.neo.2018.02.005
PubMed
PubMed Central
CAS
Article
Google Scholar
Antoniou N, Vlachakis D, Memou A, Leandrou E, Valkimadi PE, Melachroinou K, Re DB, Przedborski S, Dauer WT, Stefanis L, Rideout HJ (2018) A motif within the armadillo repeat of Parkinson’s-linked LRRK2 interacts with FADD to hijack the extrinsic death pathway. Sci Rep 8(1):3455. https://doi.org/10.1038/s41598-018-21931-8
PubMed
PubMed Central
CAS
Article
Google Scholar
Jiao HL, Guan FX, Yang B, Li JB, Song LJ, Hu X, Du Y (2012) Human amniotic membrane derived- mesenchymal stem cells induce C6 glioma apoptosis in vivo through the Bcl-2/caspase pathways. Mol Biol Rep 39(1):467–473. https://doi.org/10.1007/s11033-011-0760-z
PubMed
CAS
Article
Google Scholar
Niknejad H, Khayat-Khoei M, Peirovi H, Abolghasemi H (2014) Human amniotic epithelial cells induce apoptosis of cancer cells: a new anti-tumor therapeutic strategy. Cytotherapy 16(1):33–40. https://doi.org/10.1016/j.jcyt.2013.07.005
PubMed
CAS
Article
Google Scholar
Wang J, Yuan L, Xiao HF, Xiao CX, Wang YT, Liu XB (2013) Momordin Ic induces HepG2 cell apoptosis through MAPK and PI3K/AKT-mediated mitochondrial pathways. Apoptosis 18:751–765. https://doi.org/10.1007/s10495-013-0820-z
PubMed
CAS
Article
Google Scholar
Gerisch M, Schwarz T, Lang D, Rohde G, Reif S, Genvresse I, Reschke S, van der Mey D, Granvil C (2017) Pharmacokinetics of intravenous pan-class I phosphatidylinositol 3-kinase (PI3K) inhibitor [14C] copanlisib (BAY 80-6946) in a mass balance study in healthy male volunteers. Cancer Chemother Pharmacol 80(3):535–544. https://doi.org/10.1007/s00280-017-3383-9
PubMed
PubMed Central
CAS
Article
Google Scholar
Zhang C, Li CW, Chen SH, Li ZP, Jia XJ, Wang K, Bao JL, Liang Y, Wang XT, Chen MW, Li P, Su HX, Wan JB, Lee SMY, Liu KC, He CW (2017) Berberine protects against 6-OHDA-induced neurotoxicity in PC12 cells crossmark and zebrafish through hormetic mechanisms involving PI3K/AKT/Bcl-2 and Nrf2/HO-1 pathways. Redox Biol 11:1–11. https://doi.org/10.1016/j.redox.2016.10.019
PubMed
CAS
Article
Google Scholar
Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9(1):47–59. https://doi.org/10.1038/nrm2308
PubMed
CAS
Article
Google Scholar
Parcellier A, Tintignac LA, Zhuravleva E, Hemmings BA (2008) PKB and the mitochondria: AKTing on apoptosis. Cell Signal 20(1):21–30. https://doi.org/10.1016/j.cellsig.2007.07.010
PubMed
CAS
Article
Google Scholar
Li XQ, Lin ZH, Zhang B, Guo L, Liu S, Li H, Zhang JB, Ye QH (2016) β-elemene sensitizes hepatocellular carcinoma cells to oxaliplatin by preventing oxaliplatin-induced degradation of copper transporter 1. Sci Rep 6:21010. https://doi.org/10.1038/srep21010
PubMed
PubMed Central
CAS
Article
Google Scholar
Wang XB, Wang N, Cheung F, Lao LX, Li C, Feng YB (2015) Chinese medicines for prevention and treatment of human hepatocellular carcinoma: current progress on pharmacological actions and mechanisms. J Integr Med 13(3):142–164. https://doi.org/10.1016/S2095-4964(15)60171-6
PubMed
Article
Google Scholar
Khairul I, Wang QQ, Jiang YH, Wang C, Naranmandura H (2017) Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget 8(14):23905–23926. https://doi.org/10.18632/oncotarget.14733
PubMed
PubMed Central
Article
Google Scholar
Lo-coco F, Avvisati G, Vignetti M et al (2013) Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med 369(2):111–121. https://doi.org/10.1056/NEJMoa1300874
PubMed
CAS
Article
Google Scholar
Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133(1):1–7. https://doi.org/10.1016/S0378-4274(02)00084-X
PubMed
CAS
Article
Google Scholar
Zhang L, Tian W, Kim S, Ding WP, Tong YY, Chen SY (2014) Arsenic sulfide, the main component of realgar, a traditional Chinese medicine, induces apoptosis of gastric cancer cells in vitro and in vivo. Drug Des Dev Ther 9:79–92. https://doi.org/10.2147/DDDT.S74379
CAS
Article
Google Scholar
Wang GY, Zhang T, Sun W, Wang HS, Yin F, Wang ZY, Zuo DQ, Sun MX, Zhou ZF, Lin BH, Xu J, Hua YQ, Li HQ, Cai ZD (2017) Arsenic sulfide induces apoptosis and autophagy through the activation of ROS/JNK and suppression of AKT/mTOR signaling pathways in osteosarcoma. Free Radic Bio Med 106:24–37. https://doi.org/10.1016/j.freeradbiomed.2017.02.015
CAS
Article
Google Scholar
Xu M, Ren JY, Guo YC, Xu BX, Zeng Q, Hu Q, Zhou YM, Lu JH (2017) Effects of arsenic disulfide on apoptosis, histone acetylation, toll like receptor 2 activation, and erythropoiesis in bone marrow mononuclear cells of myelodysplastic syndromes patients in vitro. Leuk Res 62:4–11. https://doi.org/10.1016/j.leukres.2017.09.010
PubMed
CAS
Article
Google Scholar
Zhang XL, Kang T, Zhang L, Tong Y, Ding W, Chen S (2017) NFATc3 mediates the sensitivity of gastric cancer cells to arsenic sulfide. Oncotarget 8(32):52735–52745. https://doi.org/10.18632/oncotarget.17175
PubMed
PubMed Central
Article
Google Scholar
Song P, Hai Y, Wang X, Zhao LH, Chen BQ, Cui P, Xie QJ, Yu L, Li Y, Wu ZG, Li HY (2018) Realgar transforming solution suppresses angiogenesis and tumor growth by inhibiting VEGF receptor 2 signaling in vein endothelial cells. Arch Pham Res 41(4):467–480. https://doi.org/10.1007/s12272-018-1014-6
CAS
Article
Google Scholar
Perelman A, Wachtel C, Cohen M, Haupt S, Shapiro H, Tzur A (2012) JC-1: alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry. Cell Death Dis 3:e430. https://doi.org/10.1038/cddis.2012.171
PubMed
PubMed Central
CAS
Article
Google Scholar
Xu C, Sun GB, Yuan GX, Wang R, Sun XB (2014) Effects of platycodin D on proliferation, apoptosis and PI3K/Akt signal pathway of human glioma U251 cells. Molecules 19(12):21411–21423. https://doi.org/10.3390/molecules191221411
PubMed
PubMed Central
CAS
Article
Google Scholar
Altekruse SF, Henley SJ, Cucinelli JE, McGlynn KA (2014) Changing hepatocellular carcinoma incidence and liver cancer mortality rates in the United States. Am J Gastroenterol 109(4):542–553. https://doi.org/10.1038/ajg.2014.11
PubMed
PubMed Central
Article
Google Scholar
Liu CY, Chen KF, Chen PJ (2015) Treatment of liver cancer. Cold Spring Harb Perspect Med 5(9):a021535. https://doi.org/10.1101/cshperspect.a021535
PubMed
PubMed Central
CAS
Article
Google Scholar
Gao L, Wang XD, Niu YY, Duan DD, Yang X, Hao J, Zhu CH, Chen D, Wang KX, Qin XM, Wu XZ (2016) Molecular targets of Chinese herbs: a clinical study of hepatoma based on network pharmacology. Sci Rep 6:24944. https://doi.org/10.1038/srep24944
PubMed
PubMed Central
CAS
Article
Google Scholar
He PC, Liu YF, Qi J, Zhu HC, Wang Y, Zhao J, Cheng XY, Wang C, Zhang M (2015) Prohibitin promotes apoptosis of promyelocytic leukemia induced by arsenic sulfide. Int J Oncol 47(6):2286–2295. https://doi.org/10.3892/ijo.2015.3217
PubMed
CAS
Article
Google Scholar
Lu DP, Qiu JY, Jiang B, Wang Q, Liu KY, Liu YR, Chen SS (2002) Tetra-arsenic tetra-sulfide for the treatment of acute promyelocytic leukemia: a pilot report. Blood 99:3136–3143. https://doi.org/10.1182/blood.V99.9.3136
PubMed
CAS
Article
Google Scholar
Ding WP, Tong YY, Zhang XL, Pan MG, Chen SY (2016) Study of arsenic sulfide in solid tumor cells reveals regulation of nuclear factors of activated T-cells by PML and p53. Sci Rep 6:19793. https://doi.org/10.1038/srep19793
PubMed
PubMed Central
CAS
Article
Google Scholar
Zhang L, Tong YY, Zhang XL, Pan MG, Chen S (2015) Arsenic sulfide combined with JQ1, chemotherapy agents, or celecoxib inhibit gastric and colon cancer cell growth. Drug Des Devel Ther 9:5851–5862. https://doi.org/10.2147/DDDT.S92943
PubMed
PubMed Central
CAS
Article
Google Scholar
Zhang L, Kim S, Ding WP, Tong YY, Zhang XL, Pan MG, Chen SY (2015) Arsenic sulfide inhibits cell migration and invasion of gastric cancer in vitro and in vivo. Drug Des Devel Ther 9:5579–5590. https://doi.org/10.2147/DDDT.S89805
PubMed
PubMed Central
CAS
Article
Google Scholar
Li X, Qiu ZD, Jin QH, Chen GL, Guo MQ (2018) Cell cycle arrest and apoptosis in HT-29 cells induced by dichloromethane fraction from Toddalia asiatica (L.) Lam. Front Pharmacol 9:629. https://doi.org/10.3389/fphar.2018.00629
PubMed
PubMed Central
CAS
Article
Google Scholar
Zhao YX, Yuan B, Onda K, Sugiyama K, Tanaka S, Takagi N, Hirano T (2018) Anticancer efficacies of arsenic disulfide through apoptosis induction, cell cycle arrest, and pro-survival signal inhibition in human breast cancer cells. Am J Cancer Res 8(3):366–386
PubMed
PubMed Central
CAS
Google Scholar
Guo CL, Wang LJ, Zhao Y, Liu H, Li XQ, Jiang B, Luo J, Guo SJ, Wu N, Shi DY (2018) A novel bromophenol derivative BOS-102 induces cell cycle arrest and apoptosis in Human A549 lung cancer cells via ROS-mediated PI3K/AKT and the MAPK signaling pathway. Mar Drugs 16(2):43. https://doi.org/10.3390/md16020043
PubMed Central
CAS
Article
Google Scholar
Yang CH, Cai H, Meng XX (2016) Polyphyllin D induces apoptosis and differentiation in K562 human leukemia cells. Int Immunopharmacol 36:17–22. https://doi.org/10.1016/j.intimp.2016.04.011
PubMed
CAS
Article
Google Scholar
Kubli DA, Gustafsson ÅB (2012) Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res 111(9):1208–1221. https://doi.org/10.1161/CIRCRESAHA.112.265819
PubMed
PubMed Central
CAS
Article
Google Scholar
Wang LL, Han L, Ma XL, Yu Q, Zhao SN (2017) Effect of mitochondrial apoptotic activation through the mitochondrial membrane permeability transition pore on yak meat tenderness during postmortem aging. Food Chem 234:323–331. https://doi.org/10.1016/j.foodchem.2017.04.185
PubMed
CAS
Article
Google Scholar
Shi JJ, Jiang Q, Ding XW, Xu WH, Wang DW, Chen ML (2015) The ER stress-mediated mitochondrial apoptotic pathway and MAPKs modulate tachypacing-induced apoptosis in HL-1 atrial myocytes. PLoS One 10(2):e0117567. https://doi.org/10.1371/journal.pone.0117567
PubMed
PubMed Central
CAS
Article
Google Scholar
Shalini S, Dorstyn L, Dawar S, Kumar S (2015) Old, new and emerging functions of caspases. Cell Death Differ 22(4):526 –526 39. https://doi.org/10.1038/cdd.2014.216
PubMed
CAS
Article
Google Scholar
Faes S, Dormond O (2015) PI3K and AKT: unfaithful partners in cancer. Int J Mol Sci 16(9):21138–21152. https://doi.org/10.3390/ijms160921138
PubMed
PubMed Central
CAS
Article
Google Scholar
Zhu JW, Sun Y, Lu Y, Jiang XB, Ma B, Yu LS, Zhang J, Dong XC, Zhang Q (2018) Glaucocalyxin A exerts anticancer effect on osteosarcoma by inhibiting GLI1 nuclear translocation via regulating PI3K/Akt pathway. Cell Death Dis 9(6):708. https://doi.org/10.1038/s41419-018-0684-9
PubMed
PubMed Central
CAS
Article
Google Scholar
Miao S, Wang MS, Cheng X, Li YF, Zhang QS, Li G, He QS, Chen XP, Wu P (2017) Erythropoietin promoted the proliferation of hepatocellular carcinoma through hypoxia induced translocation of its specific receptor. Cancer Cell Int 17: 119.https://doi.org/10.1186%2Fs12935-017-0494-7
PubMed
PubMed Central
Article
Google Scholar