Skip to main content

Advertisement

Log in

Identification and preclinical characterization of a novel and potent poly (ADP-ribose) polymerase (PARP) inhibitor ZYTP1

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme involved in the detection and repair of DNA damage. Studies have shown that inhibition of PARP and Tankyrase (TNKS) has significant antitumor effect in several types of cancers including BRCA-negative breast cancers.

Methods

Identification of ZYTP1, a novel PARP inhibitor, through a battery of in vitro assays and in vivo studies. PARP and TNKS inhibitory activity of ZYTP1 was assessed in cell-free kinase assay. In vitro cell killing potency of ZYTP1 was tested in a panel of cell lines including BRCA-negative cells. ZYTP1 was also tested in xenograft models in combination with temozolomide (TMZ). The pharmacokinetic profile of ZYTP1 was determined in rodent and non-rodent preclinical species. Safety of ZYTP1 was assessed in Wistar rats and Beagle dogs upon repeated dosing.

Results

ZYTP1 inhibited PARP1, PARP2, Tankyrase-1 and Tankyrase-2 with IC50 of 5.4, 0.7, 133.3 and 289.8 nM, respectively, and additionally trapped PARP1 onto damaged DNA. It also potentiated MMS-mediated killing of different cancer cell lines. Compound demonstrated good Caco-2 cell permeability. The oral bioavailability of ZYTP1 in mice, rats and dogs ranged between 40 and 79% and demonstrated efficacy in colon cancer xenograft model at a dose of 1–10 mg/kg in combination with TMZ. In a 28-day repeat dosing, oral toxicity study in rats, it was found to show > 10× safety margin.

Conclusions

ZYTP1 is a novel PARP inhibitor that showed potential for development as a treatment for various solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schreiber V, Dantzer F, Amé J-C, de Murcia G (2006) Poly(ADPribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7:517–528

    Article  PubMed  CAS  Google Scholar 

  2. Schiewer MJ, Knudsen KE (2014) Transcriptional roles of PARP1 in cancer. Mol Cancer Res 12:1069–1080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. de Murcia JM, Niedergang C, Trucco C, Ricoul M, Dutrillaux B, Mark M, Oliver FJ, Masson M, Dierich A, LeMeur M, Walztinger C, Chambon P, de Murcia G (1997) Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci USA 94:7303–7307

    Article  PubMed  Google Scholar 

  4. Bernstein C, Bernstein H, Payne CM, Garewal H (2002) DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res 511:145–178

    Article  PubMed  CAS  Google Scholar 

  5. Plummer E (2006) Inhibition of polyADP-ribose polymerase in cancer. Curr Opin Pharmacol 6:364–368

    Article  PubMed  CAS  Google Scholar 

  6. Liu X, Shi Y, Guan R, Donawho C, Luo Y, Palma J, Zhu GD, Johnson EF, Rodriguez LE, Ghoreishi-Haack N, Jarvis K, Hradil VP, Colon-Lopez M, Cox BF, Klinghofer V, Penning T, Rosenberg SH, Frost D, Giranda VL, Luo Y (2008) Potentiation of temozolomide cytotoxicity by poly(ADP)ribose polymerase inhibitor ABT-888 requires a conversion of single-stranded DNA damages to double-stranded DNA breaks. Mol Cancer Res 6:1621–1629

    PubMed  CAS  Google Scholar 

  7. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434:913–917

    Article  PubMed  CAS  Google Scholar 

  8. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921

    Article  PubMed  CAS  Google Scholar 

  9. McCabe N, Turner NC, Lord CJ, Kluzek K, Bialkowska A, Swift S, Giavara S, O’Connor MJ, Tutt AN, Zdzienicka MZ, Smith GC, Ashworth A (2006) Deficiency in the repair of DNA damage by homologous recombination and sensitivity to polyADP-ribose polymerase inhibition. Cancer Res 66:8109–8115

    Article  PubMed  CAS  Google Scholar 

  10. Poggio F, Bruzzone M, Ceppi M, Conte B, Martel S, Maurer C, Tagliamento M, Viglietti G, Del Mastro L, de Azambuja E, Lambertini M (2018) Single-agent PARP inhibitors for the treatment of patients with BRCA-mutated HER2-negative metastatic breast cancer: a systematic review and meta-analysis. ESMO Open 20:e000361

    Article  Google Scholar 

  11. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW, Vogelstein B, Clevers H (1997) Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC−/− colon carcinoma. Science 275:1784–1787

    Article  PubMed  CAS  Google Scholar 

  12. Nakashima T, Liu D, Nakano J, Ishikawa S, Yokomise H, Ueno M, Kadota K, Huang CL (2008) Wnt1 overexpression associated with tumor proliferation and a poor prognosis in non-small cell lung cancer patients. Oncol Rep 19:203–209

    PubMed  Google Scholar 

  13. Nathubhai A, Haikarainen T, Koivunen J, Murthy S, Koumanov F, Lloyd MD, Holman GD, Pihlajaniemi T, Tosh D, Lehtiö L, Threadgill MD (2018) Highly potent and isoform selective dual site binding tankyrase/Wnt signaling inhibitors that increase cellular glucose uptake and have antiproliferative activity. J Med Chem 26:814–820

    Google Scholar 

  14. Riffell JL, Lord CJ, Ashworth A (2012) Tankyrase-targeted therapeutics: expanding opportunities in the PARP family. Nat Rev Drug Discov 11:923–936

    Article  PubMed  CAS  Google Scholar 

  15. Menear KA, Adcock C, Boulter R, Cockcroft X, Copsey L, Cranston A, Dillon KJ, Drzewiecki J, Garman S, Gomez S, Javaid H, Kerrigan F, Knights C, Lau A, Loh VM Jr, Matthews ITW, Moore S, O’Connor MJ, Smith GCM, Martin NMB (2008) 4-[3-(4-Cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2H-phthalazin-1-one: a novel bioavailable inhibitor of poly(ADP-ribose) polymerase-1. J Med Chem 51:6581–6591

    Article  PubMed  CAS  Google Scholar 

  16. Srivastava BK, Desai RC, Patel PR (2014) Substituted phthalazin-1 (2h)-one derivatives as selective inhibitors of poly(ADP-ribose) polymerase-1. WO 2014102817:A1

    Google Scholar 

  17. Karson SP, Paul JH (2004) An enzymatic assay for poly(ADP-ribose) polymerase-1 (PARP-1) via the chemical quantitation of NAD: application to the high-throughput screening of small molecules as potential inhibitors. Anal Biochem 326:78–86

    Article  CAS  Google Scholar 

  18. Murai J, Huang SY, Das BB, Renaud A, Zhang Y, Doroshow JH, Ji J, Takeda S, Pommier Y (2012) Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res 72:5588–5599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Parker RM (2006) Testing for reproductive toxicity. In: Hood R (ed) Developmental and reproductive toxicology, a practical approach, 2nd edn. CRC Press, Boca Raton, pp 425–87

    Google Scholar 

  20. Maron DM, Ames BN (1983) Revised method for the Salmonella mutagenicity test. Mutat Res 113:173–215

    Article  PubMed  CAS  Google Scholar 

  21. Mortelmans K, Zeiger E (2000) The AMES Salmonella/microsome Mutagenicity assay. Mutation Res 455:29–60

    Article  PubMed  CAS  Google Scholar 

  22. Evans HJ, O’Riordan ML (1975) Human lymphocytes for analysis of chromosome aberrations in mutagen tests. Mutat Res 31:135–148

    Article  PubMed  CAS  Google Scholar 

  23. ICH Guideline (2012) Guidance on genotoxicity testing and data interpretation for pharmaceuticals intended for human use. S2 (R1)

  24. OECD Guideline (1997) Bacterial reverse mutation test. No. 471

  25. OECD Guideline (1997) In vitro mammalian chromosome aberration test. No. 473

  26. Curtin NJ, Szabo C (2013) Therapeutic applications of PARP inhibitors: anticancer therapy and beyond. Mol Asp Med 34:1217–1256

    Article  CAS  Google Scholar 

  27. Lupo B, Trusolino L (2014) Inhibition of poly(ADP-ribosyl) ation in cancer: old and new paradigms revisited. Biochem Biophys Acta 1846:201–215

    PubMed  CAS  Google Scholar 

  28. Lord CJ, Ashworth A (2012) The DNA damage response and cancer therapy. Nature 481:287–294

    Article  PubMed  CAS  Google Scholar 

  29. Lopez-Serra L, Esteller M (2008) Proteins that bind methylated DNA and human cancer: reading the wrong words. Br J Cancer 98:1881–1885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zhao H, Thienpont B, Yesilyurt BT, Moisse M, Reumers J, Coenegrachts L, Sagaert X, Schrauwen S, Smeets D, Matthijs G, Aerts S, Cools J, Metcalf A, Spurdle A, Amant ANECS, Lambrechts F D (2014) Mismatch repair deficiency endows tumors with a unique mutation signature and sensitivity to DNA double-strand break. Elife 3:e02725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Horton TM, Jenkins G, Pati D, Zhang L, Dolan ME, Ribes-Zamora A, Bertuch AA, Blaney SM, Delaney SL, Hegde M, Berg SL (2009) Poly(ADP-ribose) polymerase inhibitor ABT-888 potentiates the cytotoxic activity of temozolomide in leukemia cells: influence of mismatch repair status and O6-methylguanine-DNA methyltransferase activity. Mol Cancer Ther 8:2232–2242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Palma JP, Wang YC, Rodriguez LE, Montgomery D, Ellis PA, Bukofzer G, Niquette A, Liu X, Shi Y, Lasko L, Zhu GD, Penning TD, Giranda VL, Rosenberg SH, Frost DJ, Donawho CK (2009) ABT-888 confers broad in vivo activity in combination with temozolomide in diverse tumors. Clin Cancer Res 15:7277–7290

    Article  PubMed  CAS  Google Scholar 

  33. Jessica SB, Stan BK, Timothy AY (2016) PARP inhibitors: the race is on. Br J Cancer 114:713–715

    Article  CAS  Google Scholar 

  34. McCabe N, Cerone MA, Ohishi T, Seimiya H, Lord CJ, Ashworth A (2009) Targeting tankyrase 1 as a therapeutic strategy for BRCA-associated cancer. Oncogene 28:1465–1470

    Article  PubMed  CAS  Google Scholar 

  35. Haikarainen T, Krauss S, Lehtio L (2014) Tankyrases: structure, function and therapeutic implications in cancer. Curr Pharm Des 20:6472–6488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. McGonigle S, Chen Z, Wu J, Chang P, Kolber-Simonds D, Ackermann K, Twine NC, Shie JL, Miu JT, Huang KC, Moniz GA, Nomoto K (2015) E7449: a dual inhibitor of PARP1/2 and tankyrase1/2 inhibits growth of DNA repair deficient tumors and antagonizes Wnt signaling. Oncotarget 1:41307–41323

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Chatterjee.

Ethics declarations

Conflict of interest

The authors acknowledge that this work was supported by Zydus Research Centre, Ahmedabad, India and declare that there were no potential conflicts of interest.

Ethical approval

The current work involves the use of animals. All animal care and experimental procedures were in compliance with the guidelines of the Committee for the Purpose of Control and Supervision of Experiments on Animals as stated by the National Institutes of Health and were approved by the Institutional Animal Ethics Committee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 54 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, M.R., Mohapatra, J., Bandhyopadhyay, D. et al. Identification and preclinical characterization of a novel and potent poly (ADP-ribose) polymerase (PARP) inhibitor ZYTP1. Cancer Chemother Pharmacol 82, 635–647 (2018). https://doi.org/10.1007/s00280-018-3653-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-018-3653-1

Keywords

Navigation