Skip to main content
Log in

Brazilin induces FOXO3A-dependent autophagic cell death by disturbing calcium homeostasis in osteosarcoma cells

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Osteosarcoma is a common primary malignant bone tumour, and its cure rate has stagnated over the past 25–30 years. Brazilin, a purified natural product from sappan wood (Caesalpinia sappan L.), has been proved to possess potent anti-cancer effects. In this study, we investigated the anti-cancer effect of brazilin on human osteosarcoma and elucidated the underlying mechanisms.

Methods

We exposed MG-63 cells to different concentrations of brazilin (5, 10 and 20 µM) for 24 h. Western blotting, immunocytofluorescence, luciferase reporter assays, and RT-PCR were used to evaluate whether brazilin activates FOXO family-dependent autophagy.

Results

Brazilin increased autophagic flux in the human osteosarcoma cell line MG-63, as evidenced by the upregulation of LC3-II and the downregulation of P62/SQSTM1. Moreover, the pharmacological or genetic blockade of autophagy decreased brazilin-induced cell death, indicating that brazilin triggered autophagic cell death in MG-63 cells. Specifically, brazilin induced FOXO3A(Ser7) phosphorylation, activated FOXO3A nuclear translocation and increased FOXO3A reporter activity, which contributed to the expression of autophagy-related genes and subsequently initiated autophagic cell death in MG-63 cells. Importantly, the increased expression and nuclear translocation of FOXO3A were tightly related to the disturbance of calcium homeostasis, which could be prevented by chelating intracellular calcium.

Conclusions

Taken together, these data demonstrate that brazilin induces osteosarcoma cell death by inducing excessive autophagy, which is mediated through the Ca2+-FOXO3A pathway. Our study provides a new anti-tumour mechanism for brazilin treatment in osteosarcoma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Reed DR, Hayashi M, Wagner L, Binitie O, Steppan DA, Brohl AS, Shinohara ET, Bridge JA, Loeb DM, Borinstein SC, Isakoff MS (2017) Treatment pathway of bone sarcoma in children, adolescents, and young adults. Cancer 123(12):2206–2218. https://doi.org/10.1002/cncr.30589

    Article  PubMed  PubMed Central  Google Scholar 

  2. Harrison DJ, Geller DS, Gill JD, Lewis VO, Gorlick R (2018) Current and future therapeutic approaches for osteosarcoma. Expert Rev Anticancer Ther 18(1):39–50. https://doi.org/10.1080/14737140.2018.1413939

    Article  PubMed  CAS  Google Scholar 

  3. Onorati AV, Dyczynski M, Ojha R, Amaravadi RK (2018) Targeting autophagy in cancer. Cancer. https://doi.org/10.1002/cncr.31335

  4. Duffy A, Le J, Sausville E, Emadi A (2015) Autophagy modulation: a target for cancer treatment development. Cancer Chemother Pharmacol 75(3):439–447. https://doi.org/10.1007/s00280-014-2637-z

    Article  PubMed  CAS  Google Scholar 

  5. Xu Y, Wang Q, Zhang L, Zheng M (2018) 2-Deoxy-d-glucose enhances TRAIL-induced apoptosis in human gastric cancer cells through downregulating JNK-mediated cytoprotective autophagy. Cancer Chemother Pharmacol 81(3):555–564. https://doi.org/10.1007/s00280-018-3526-7

    Article  PubMed  CAS  Google Scholar 

  6. Tan Q, Joshua AM, Wang M, Bristow RG, Wouters BG, Allen CJ, Tannock IF (2017) Up-regulation of autophagy is a mechanism of resistance to chemotherapy and can be inhibited by pantoprazole to increase drug sensitivity. Cancer Chemother Pharmacol 79(5):959–969. https://doi.org/10.1007/s00280-017-3298-5

    Article  PubMed  CAS  Google Scholar 

  7. Rybstein MD, Bravo-San Pedro JM, Kroemer G, Galluzzi L (2018) The autophagic network and cancer. Nat Cell Biol 20(3):243–251. https://doi.org/10.1038/s41556-018-0042-2

    Article  PubMed  CAS  Google Scholar 

  8. Yang X, Zhu J, Wu J, Huang N, Cui Z, Luo Y, Sun F, Pan Q, Li Y, Yang Q (2018) (−)-Guaiol regulates autophagic cell death depending on mTOR signaling in NSCLC. Cancer Biol Ther. https://doi.org/10.1080/15384047.2018.1451277

  9. Xiang Y, Zhao J, Zhao M, Wang K (2018) Allicin activates autophagic cell death to alleviate the malignant development of thyroid cancer. Exp Ther Med 15(4):3537–3543. https://doi.org/10.3892/etm.2018.5828

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wu B, Tan M, Cai W, Wang B, He P, Zhang X (2018) Arsenic trioxide induces autophagic cell death in osteosarcoma cells via the ROS-TFEB signaling pathway. Biochem Biophys Res Commun 496(1):167–175. https://doi.org/10.1016/j.bbrc.2018.01.018

    Article  PubMed  CAS  Google Scholar 

  11. Huang K, Chen Y, Zhang R, Wu Y, Ma Y, Fang X, Shen S (2018) Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo. Cell Death Dis 9(2):157. https://doi.org/10.1038/s41419-017-0166-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Monsalve M, Olmos Y (2011) The complex biology of FOXO. Curr Drug Targets 12(9):1322–1350

    Article  PubMed  CAS  Google Scholar 

  13. Furukawa-Hibi Y, Kobayashi Y, Chen C, Motoyama N (2005) FOXO transcription factors in cell-cycle regulation and the response to oxidative stress. Antioxid Redox Signal 7(5–6):752–760. https://doi.org/10.1089/ars.2005.7.752

    Article  PubMed  CAS  Google Scholar 

  14. Coomans de Brachene A, Demoulin JB (2016) FOXO transcription factors in cancer development and therapy. CMLS 73(6):1159–1172. https://doi.org/10.1007/s00018-015-2112-y

    Article  PubMed  CAS  Google Scholar 

  15. van der Vos KE, Coffer PJ (2011) The extending network of FOXO transcriptional target genes. Antioxid Redox Signal 14(4):579–592. https://doi.org/10.1089/ars.2010.3419

    Article  PubMed  CAS  Google Scholar 

  16. Nirmal NP, Panichayupakaranant P (2015) Antioxidant, antibacterial, and anti-inflammatory activities of standardized brazilin-rich Caesalpinia sappan extract. Pharmaceut Biol 53(9):1339–1343. https://doi.org/10.3109/13880209.2014.982295

    Article  CAS  Google Scholar 

  17. Nirmal NP, Rajput MS, Prasad RG, Ahmad M (2015) Brazilin from Caesalpinia sappan heartwood and its pharmacological activities: a review. Asian Pac J Trop Med 8(6):421–430. https://doi.org/10.1016/j.apjtm.2015.05.014

    Article  PubMed  CAS  Google Scholar 

  18. Young CN, Sinadinos A, Lefebvre A, Chan P, Arkle S, Vaudry D, Gorecki DC (2015) A novel mechanism of autophagic cell death in dystrophic muscle regulated by P2RX7 receptor large-pore formation and HSP90. Autophagy 11(1):113–130. https://doi.org/10.4161/15548627.2014.994402

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang X, Wang XL, Chen HL, Wu D, Chen JX, Wang XX, Li RL, He JH, Mo L, Cen X, Wei YQ, Jiang W (2014) Ghrelin inhibits doxorubicin cardiotoxicity by inhibiting excessive autophagy through AMPK and p38-MAPK. Biochem Pharmacol 88(3):334–350. https://doi.org/10.1016/j.bcp.2014.01.040

    Article  PubMed  CAS  Google Scholar 

  20. Sandri M (2012) FOXOphagy path to inducing stress resistance and cell survival. Nat Cell Biol 14(8):786–788. https://doi.org/10.1038/ncb2550

    Article  PubMed  CAS  Google Scholar 

  21. Tzivion G, Dobson M, Ramakrishnan G (2011) FoxO transcription factors; regulation by AKT and 14-3-3 proteins. Biochim Biophys Acta 1813(11):1938–1945. https://doi.org/10.1016/j.bbamcr.2011.06.002

    Article  PubMed  CAS  Google Scholar 

  22. Lin Y, Sheng M, Weng Y, Xu R, Lu N, Du H, Yu W (2017) Berberine protects against ischemia/reperfusion injury after orthotopic liver transplantation via activating Sirt1/FoxO3alpha induced autophagy. Biochem Biophys Res Commun 483(2):885–891. https://doi.org/10.1016/j.bbrc.2017.01.028

    Article  PubMed  CAS  Google Scholar 

  23. Ho KK, McGuire VA, Koo CY, Muir KW, de Olano N, Maifoshie E, Kelly DJ, McGovern UB, Monteiro LJ, Gomes AR, Nebreda AR, Campbell DG, Arthur JS, Lam EW (2012) Phosphorylation of FOXO3a on Ser-7 by p38 promotes its nuclear localization in response to doxorubicin. J Biol Chem 287(2):1545–1555. https://doi.org/10.1074/jbc.M111.284224

    Article  PubMed  CAS  Google Scholar 

  24. Dick O, Bading H (2010) Synaptic activity and nuclear calcium signaling protect hippocampal neurons from death signal-associated nuclear translocation of FoxO3a induced by extrasynaptic N-methyl-d-aspartate receptors. J Biol Chem 285(25):19354–19361. https://doi.org/10.1074/jbc.M110.127654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Liu R, Li J, Zhang T, Zou L, Chen Y, Wang K, Lei Y, Yuan K, Li Y, Lan J, Cheng L, Xie N, Xiang R, Nice EC, Huang C, Wei Y (2014) Itraconazole suppresses the growth of glioblastoma through induction of autophagy: involvement of abnormal cholesterol trafficking. Autophagy 10(7):1241–1255. https://doi.org/10.4161/auto.28912

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Fulda S, Kogel D (2015) Cell death by autophagy: emerging molecular mechanisms and implications for cancer therapy. Oncogene 34(40):5105–5113. https://doi.org/10.1038/onc.2014.458

    Article  PubMed  CAS  Google Scholar 

  27. Eijkelenboom A, Burgering BM (2013) FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol 14(2):83–97. https://doi.org/10.1038/nrm3507

    Article  PubMed  CAS  Google Scholar 

  28. Ni HM, Du K, You M, Ding WX (2013) Critical role of FoxO3a in alcohol-induced autophagy and hepatotoxicity. Am J Pathol 183(6):1815–1825. https://doi.org/10.1016/j.ajpath.2013.08.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Yang M, Pi H, Li M, Xu S, Zhang L, Xie J, Tian L, Tu M, He M, Lu Y, Yu Z, Zhou Z (2016) From the cover: autophagy induction contributes to cadmium toxicity in mesenchymal stem cells via AMPK/FOXO3a/BECN1 signaling. Toxicol Sci 154(1):101–114. https://doi.org/10.1093/toxsci/kfw144

    Article  PubMed  CAS  Google Scholar 

  30. Wang X, Hu S, Liu L (2017) Phosphorylation and acetylation modifications of FOXO3a: Independently or synergistically? Oncol Lett 13(5):2867–2872. https://doi.org/10.3892/ol.2017.5851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study was funded by a grant from the Guangdong Science and Technology Project (No. 2017A020215162).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peigen Xie or Bowen Wu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Y., He, P., Wang, H. et al. Brazilin induces FOXO3A-dependent autophagic cell death by disturbing calcium homeostasis in osteosarcoma cells. Cancer Chemother Pharmacol 82, 479–491 (2018). https://doi.org/10.1007/s00280-018-3633-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-018-3633-5

Keywords

Navigation