Advertisement

Cancer Chemotherapy and Pharmacology

, Volume 82, Issue 1, pp 139–147 | Cite as

LAPTM4B gene copy number gain is associated with inferior response to anthracycline-based chemotherapy in hormone receptor negative breast carcinomas

  • Orsolya Rusz
  • Orsolya Papp
  • Laura Vízkeleti
  • Béla Ákos Molnár
  • Kristóf Csaba Bende
  • Gábor Lotz
  • Balázs Ács
  • Zsuzsanna Kahán
  • Tamás Székely
  • Ágnes Báthori
  • Csilla Szundi
  • Janina Kulka
  • Zoltán Szállási
  • Anna-Mária Tőkés
Original Article

Abstract

Purpose

To determine the associations between lysosomal-associated transmembrane protein 4b (LAPTM4B) gene copy number and response to different chemotherapy regimens in hormone receptor negative (HR-) primary breast carcinomas.

Patients and methods

Two cohorts were analyzed: (1) 69 core biopsies from HR-breast carcinomas treated with neoadjuvant chemotherapy (anthracycline based in 72.5% of patients and non-anthracycline based in 27.5% of patients). (2) Tissue microarray (TMA) of 74 HR-breast carcinomas treated with adjuvant therapy (77.0% of the patients received anthracycline, 17.6% of the patients non-anthracycline-based therapy, and in 5.4% of the cases, no treatment data are available). Interphase FISH technique was applied on pretreatment core biopsies (cohort I) and on TMAs (cohort II) using custom-made dual-labelled FISH probes (LAPTM4B/CEN8q FISH probe Abnova Corp.).

Results

In the neoadjuvant cohort in the anthracycline-treated group, we observed a significant difference (p = 0.029) of average LAPTM4B copy number between the non-responder and pathological complete responder groups (4.1 ± 1.1 vs. 2.6 ± 0.1). In the adjuvant setting, the anthracycline-treated group of metastatic breast carcinomas was characterized by higher LAPTM4B copy number comparing to the non-metastatic ones (p = 0.046). In contrast, in the non-anthracycline-treated group of patients, we did not find any LAPTM4B gene copy number differences between responder vs. non-responder groups or between metastatic vs. non-metastatic groups.

Conclusion

Our results confirm the possible role of the LAPTM4B gene in anthracycline resistance in HR− breast cancer. Analyzing LAPTM4B copy number pattern may support future treatment decision.

Keywords

Breast carcinomas LAPTM4B Anthracycline-based chemotherapy FISH 

Notes

Acknowledgements

We would like to thank Erzsébet Kovács for technical assistance and Stefan Vari-Kakas for manuscript revision.

Funding

This study was funded by seven grants: (1) New National Excellence Program (ÚNKP-17-4-II-SE-65); (2) New National Excellence Program (ÚNKP-17-4-III-SE-71); (3) National Talent Program (NTP-NFTÖ-17-B-0308) of the Ministry of Human Capacities; (4) NVKP_16-1-2016-0004; (5) STIA 19/2017, 6800313113, 68003F0043; (6) The Research and Technology Innovation Fund (KTIA_NAP_13-2014-0021 to Z.S.). (7) Breast Cancer Research Foundation (Z.S.).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest. Orsolya Rusz declares that she has no conflict of interest. Orsolya Papp declares that she has no conflict of interest. Laura Vízkeleti declares that she has no conflict of interest. Béla Ákos Molnár declares that he has no conflict of interest. Kristóf Csaba Bende declares that he has no conflict of interest. Gábor Lotz declares that he has no conflict of interest. Balázs Ács declares that he has no conflict of interest. Zsuzsanna Kahán declares that she has no conflict of interest. Tamás Székely declares that he has no conflict of interest. Ágnes Báthori declares that she has no conflict of interest. Csilla Szundi declares that she has no conflict of interest. Janina Kulka declares that she has no conflict of interest. Zoltán Szállási declares that he has no conflict of interest. Anna-Mária Tőkés declares that she has no conflict of interest.

Ethical approval

The study was ethically approved by the Semmelweis University Institutional Review Board (SE-TUKEB 120/2013). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

The breast carcinoma cases were retrospectively selected from prospectively maintained databases (Primary breast carcinoma cases were diagnosed between 1999 and 2016), and accordingly, informed consent was not obtained from all individual participants included in the study.

Supplementary material

280_2018_3602_MOESM1_ESM.doc (58 kb)
Supplementary material 1 (DOC 58 KB)
280_2018_3602_MOESM2_ESM.doc (60 kb)
Supplementary material 2 (DOC 59 KB)

References

  1. 1.
    Gralow JR (2005) Optimizing the treatment of metastatic breast cancer. Breast Cancer Res Treat 89(Suppl 1):S9–S15.  https://doi.org/10.1007/s10549-005-0143-z CrossRefPubMedGoogle Scholar
  2. 2.
    Haibe-Kains B, Desmedt C, Di Leo A, Azambuja E, Larsimont D, Selleslags J, Delaloge S, Duhem C, Kains JP, Carly B, Maerevoet M, Vindevoghel A, Rouas G, Lallemand F, Durbecq V, Cardoso F, Salgado R, Rovere R, Bontempi G, Michiels S, Buyse M, Nogaret JM, Qi Y, Symmans F, Pusztai L, D’Hondt V, Piccart-Gebhart M, Sotiriou C (2013) Genome-wide gene expression profiling to predict resistance to anthracyclines in breast cancer patients. Genom Data 1:7–10.  https://doi.org/10.1016/j.gdata.2013.09.001 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Desmedt C, Di Leo A, de Azambuja E, Larsimont D, Haibe-Kains B, Selleslags J, Delaloge S, Duhem C, Kains JP, Carly B, Maerevoet M, Vindevoghel A, Rouas G, Lallemand F, Durbecq V, Cardoso F, Salgado R, Rovere R, Bontempi G, Michiels S, Buyse M, Nogaret JM, Qi Y, Symmans F, Pusztai L, D’Hondt V, Piccart-Gebhart M, Sotiriou C (2011) Multifactorial approach to predicting resistance to anthracyclines. J Clin Oncol 29:1578–1586.  https://doi.org/10.1200/JCO.2010.31.2231 CrossRefPubMedGoogle Scholar
  4. 4.
    Mukherjee A, Shehata M, Moseley P, Rakha E, Ellis I, Chan S (2010) Topo2alpha protein expression predicts response to anthracycline combination neo-adjuvant chemotherapy in locally advanced primary breast cancer. Br J Cancer 103:1794–1800.  https://doi.org/10.1038/sj.bjc.6605960 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Li Y, Zou L, Li Q, Haibe-Kains B, Tian R, Desmedt C, Sotiriou C, Szallasi Z, Iglehart JD, Richardson AL, Wang ZC (2010) Amplification of LAPTM4B and YWHAZ contributes to chemotherapy resistance and recurrence of breast cancer. Nat Med 16:214–218.  https://doi.org/10.1038/nm.2090 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Skovsgaard T, Nissen NI (1982) Membrane transport of anthracyclines. Pharmacol Ther 18:293–311CrossRefPubMedGoogle Scholar
  7. 7.
    Kiyomiya K, Matsuo S, Kurebe M (2001) Mechanism of specific nuclear transport of adriamycin: the mode of nuclear translocation of adriamycin-proteasome complex. Cancer Res 61:2467–2471PubMedGoogle Scholar
  8. 8.
    Larsen AK, Escargueil AE, Skladanowski A (2000) Resistance mechanisms associated with altered intracellular distribution of anticancer agents. Pharmacol Ther 85:217–229CrossRefPubMedGoogle Scholar
  9. 9.
    Li Y, Zhang Q, Tian R, Wang Q, Zhao JJ, Iglehart JD, Wang ZC, Richardson AL (2011) Lysosomal transmembrane protein LAPTM4B promotes autophagy and tolerance to metabolic stress in cancer cells. Cancer Res 71:7481–7489.  https://doi.org/10.1158/0008-5472.CAN-11-0940 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Pinder SE, Provenzano E, Earl H, Ellis IO (2007) Laboratory handling and histology reporting of breast specimens from patients who have received neoadjuvant chemotherapy. Histopathology 50:409–417.  https://doi.org/10.1111/j.1365-2559.2006.02419.x CrossRefPubMedGoogle Scholar
  11. 11.
    Tang Y, Soroush F, Tong Z, Kiani MF, Wang B (2017) Targeted multidrug delivery system to overcome chemoresistance in breast cancer. Int J Nanomedicine 12:671–681.  https://doi.org/10.2147/IJN.S124770 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Vaz-Luis I, Burstein HJ (2016) Optimizing adjuvant chemotherapy and surgery for early- and late-stage breast cancer. JAMA Oncol 2:1399–1400.  https://doi.org/10.1001/jamaoncol.2016.3631 CrossRefPubMedGoogle Scholar
  13. 13.
    Molnar IA, Molnar BA, Vizkeleti L, Fekete K, Tamas J, Deak P, Szundi C, Szekely B, Moldvay J, Vari-Kakas S, Szasz MA, Acs B, Kulka J, Tokes AM (2017) Breast carcinoma subtypes show different patterns of metastatic behavior. Virchows Arch 470:275–283.  https://doi.org/10.1007/s00428-017-2065-7 CrossRefPubMedGoogle Scholar
  14. 14.
    O’Shaughnessy J (2005) Extending survival with chemotherapy in metastatic breast cancer. Oncologist 10 Suppl 3:20–29.  https://doi.org/10.1634/theoncologist.10-90003-20 CrossRefGoogle Scholar
  15. 15.
    Kasper G, Vogel A, Klaman I, Grone J, Petersen I, Weber B, Castanos-Velez E, Staub E, Mennerich D (2005) The human LAPTM4b transcript is upregulated in various types of solid tumours and seems to play a dual functional role during tumour progression. Cancer Lett 224:93–103.  https://doi.org/10.1016/j.canlet.2004.10.004 CrossRefPubMedGoogle Scholar
  16. 16.
    Perreard L, Fan C, Quackenbush JF, Mullins M, Gauthier NP, Nelson E, Mone M, Hansen H, Buys SS, Rasmussen K, Orrico AR, Dreher D, Walters R, Parker J, Hu Z, He X, Palazzo JP, Olopade OI, Szabo A, Perou CM, Bernard PS (2006) Classification and risk stratification of invasive breast carcinomas using a real-time quantitative RT-PCR assay. Breast Cancer Res 8:R23.  https://doi.org/10.1186/bcr1399 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    de Ronde JJ, Lips EH, Mulder L, Vincent AD, Wesseling J, Nieuwland M, Kerkhoven R, Vrancken Peeters MJ, Sonke GS, Rodenhuis S, Wessels LF (2013) SERPINA6, BEX1, AGTR1, SLC26A3, and LAPTM4B are markers of resistance to neoadjuvant chemotherapy in HER2-negative breast cancer. Breast Cancer Res Treat 137:213–223.  https://doi.org/10.1007/s10549-012-2340-x CrossRefPubMedGoogle Scholar
  18. 18.
    Venet D, Dumont JE, Detours V (2011) Most random gene expression signatures are significantly associated with breast cancer outcome. PLoS Comput Biol 7:e1002240.  https://doi.org/10.1371/journal.pcbi.1002240 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Xiao M, Jia S, Wang H, Wang J, Huang Y, Li Z (2013) Overexpression of LAPTM4B: an independent prognostic marker in breast cancer. J Cancer Res Clin Oncol 139:661–667.  https://doi.org/10.1007/s00432-012-1368-y CrossRefPubMedGoogle Scholar
  20. 20.
    Xiao M, Yang S, Meng F, Qin Y, Yang Y, Jia S, Cai X, Li C, Huang Y, Ning X (2017) LAPTM4B predicts axillary lymph node metastasis in breast cancer and promotes breast cancer cell aggressiveness in vitro cell. Physiol Biochem 41:1072–1082.  https://doi.org/10.1159/000464115 CrossRefGoogle Scholar
  21. 21.
    Yang H, Xiong F, Wei X, Yang Y, McNutt MA, Zhou R (2010) Overexpression of LAPTM4B-35 promotes growth and metastasis of hepatocellular carcinoma in vitro and in vivo. Cancer Lett 294:236–244.  https://doi.org/10.1016/j.canlet.2010.02.006 CrossRefPubMedGoogle Scholar
  22. 22.
    Yin M, Lou C, Zhang W, Meng F, Zhang H, Ning X, Zhou R, Dong X, Lou G (2012) LAPTM4B overexpression is a novel independent prognostic marker for metastatic ovarian tumors. Int J Gynecol Cancer 22:54–62.  https://doi.org/10.1097/IGC.0b013e318234f9ac CrossRefPubMedGoogle Scholar
  23. 23.
    Batistatou A, Kotoula V, Bobos M, Kouvatseas G, Zagouri F, Tsolaki E, Gogas H, Koutras A, Pentheroudakis G, Timotheadou E, Pervana S, Goussia A, Petraki K, Sotiropoulou M, Koletsa T, Razis E, Kosmidis P, Aravantinos G, Papadimitriou C, Pectasides D, Fountzilas G (2017) Correlation of MYC gene and protein status with breast cancer subtypes and outcome of patients treated with anthracycline-based adjuvant chemotherapy. Pooled analysis of 2 Hellenic Cooperative Group Phase III Trials. Clin Breast Cancer 18:53–62.e3.  https://doi.org/10.1016/j.clbc.2017.07.004 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Orsolya Rusz
    • 1
  • Orsolya Papp
    • 2
  • Laura Vízkeleti
    • 2
    • 3
  • Béla Ákos Molnár
    • 4
  • Kristóf Csaba Bende
    • 2
  • Gábor Lotz
    • 2
  • Balázs Ács
    • 2
  • Zsuzsanna Kahán
    • 1
  • Tamás Székely
    • 2
  • Ágnes Báthori
    • 5
  • Csilla Szundi
    • 2
  • Janina Kulka
    • 2
  • Zoltán Szállási
    • 2
    • 3
    • 6
    • 7
  • Anna-Mária Tőkés
    • 2
  1. 1.Department of OncotherapyUniversity of SzegedSzegedHungary
  2. 2.2nd Department of PathologySemmelweis UniversityBudapestHungary
  3. 3.MTA-SE-NAP B Brain Metastasis Research Group, 2nd Department of PathologySemmelweis UniversityBudapestHungary
  4. 4.1st Department of SurgerySemmelweis UniversityBudapestHungary
  5. 5.Department of PathologyUniversity of SzegedSzegedHungary
  6. 6.Department of Bio and Health InformaticsTechnical University of DenmarkLyngbyDenmark
  7. 7.Computational Health Informatics Program, Boston Children’s Hospital, Harvard Medical SchoolHarvard UniversityBostonUSA

Personalised recommendations