Extracellular vesicles and ctDNA in lung cancer: biomarker sources and therapeutic applications

  • Chengliang Huang
  • Sitong Liu
  • Xiang Tong
  • Hong Fan
Review Article
  • 17 Downloads

Abstract

Lung cancer is the leading cause of cancer death in the world. Recently, targeted therapy and anti-programmed cell death receptor 1 (PD-1) and anti-programmed cell death ligand 1 (PD-L1) immunotherapy have made great progress in treatment of lung cancer. However, responses to these therapies are variable, influenced by genetic alterations, high microsatellite instability and mismatch repair deficiency. Liquid biopsy of extracellular vesicles and circulating tumor DNA (ctDNA) emerges as a new promising non-invasive means that enables not only biomarker determination, but also continuous monitoring of cancer treatment. Notably, tumor extracellular vesicles play important roles in tumor formation and progression, and also serve as natural carriers for anti-tumor drugs and short-interfering RNA. In this review, we summarize the latest progress in understanding the relationships of extracellular vesicles and ctDNA in cancer biology, diagnosis and drug delivery. In particular, the application of extracellular vesicles and ctDNA in anti-PD-1/PD-L1 immunotherapy is discussed.

Keywords

Lung cancer Exosome ctDNA Immunotherapy Clinical application 

Notes

Funding

Funding information is not applicable.

Compliance with ethical standards

Conflict of interest

Chengliang Huang declares that he has no conflict of interest. Sitong Liu declares that she has no conflict of interest. Xiang Tong declares that he has no conflict of interest. Hong Fan declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Torre LA, Siegel RL, Jemal ALung (2016) Cancer statistics. Adv Exp Med Biol 893:1–19.  https://doi.org/10.1007/978-3-319-24223-1_1 PubMedCrossRefGoogle Scholar
  2. 2.
    Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J (2016) Cancer statistics in China, 2015. CA Cancer J Clin 66(2):115–132.  https://doi.org/10.3322/caac.21338 PubMedCrossRefGoogle Scholar
  3. 3.
    Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30.  https://doi.org/10.3322/caac.21332 PubMedCrossRefGoogle Scholar
  4. 4.
    Hanna N, Johnson D, Temin S, Baker Jr S, Brahmer J, Ellis PM, Giaccone G, Hesketh PJ, Jaiyesimi I, Leighl NB, Riely GJ, Schiller JH, Schneider BJ, Smith TJ, Tashbar J, Biermann WA, Masters G (2017) Systemic therapy for stage IV non-small-cell lung cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol 35(30):3484–3515.  https://doi.org/10.1200/JCO.2017.74..6065 PubMedCrossRefGoogle Scholar
  5. 5.
    Herbst RS, Baas P, Kim DW, Felip E, Pérez-Gracia JL, Han JY, Molina J, Kim JH, Arvis CD, Ahn MJ, Majem M, Fidler MJ, de Castro Jr G, Garrido M, Lubiniecki GM, Shentu Y, Im E, Dolled-Filhart M, Garon EB (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387(10027):1540–1550.  https://doi.org/10.1016/S0140-6736(15)01281-7 PubMedCrossRefGoogle Scholar
  6. 6.
    Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, Lu S, Kemberlin H, Wilt C, Luber BS, Wong F, Azad NS, Rucki AA, Laheru D, Donehower R, Zaheer A, Fisher GA, Crocenzi TS, Lee JJ, Greten TF, Duffy AG, Ciombor KK, Eyring AD, Lam BH, Joe A, Kang SP, Holdhoff M, Danilova L, Cope LC, Zhou S, Goldberg RM, Armstrong DK, Bever KM, Fader AN, Taube J, Housseau F, Spetzler D, Xiao N, Pardoll DM, Papadopoulos N, Kinzler KW, Eshleman JR, Vogelstein B, Anders RA, Diaz LA Jr (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357(6349):409–413.  https://doi.org/10.1126/science.aan6733 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Ilié M, Hofman P (2016) Pros: can tissue biopsy be replaced by liquid biopsy? Transl Lung Cancer Res 5(4):420–423.  https://doi.org/10.21037/tlcr.2016.08.06 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Logozzi M, Angelini DF, Iessi E, Mizzoni D, Di Raimo R, Federici C, Lugini L, Borsellino G, Gentilucci A, Pierella F, Marzio V, Sciarra A, Battistini L, Fais S (2017) Increased PSA expression on prostate cancer exosomes in in vitro condition and in cancer patients. Cancer Lett 403:318–329.  https://doi.org/10.1016/j.canlet.2017.06.036 PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W (2015) Exosomes in cancer: small particle, big player. J Hematol Oncol 8:83.  https://doi.org/10.1186/s13045-015-0181-x PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Sheridan C (2016) Exosome cancer diagnostic reaches market. Nat Biotechnol 34(4):359–360.  https://doi.org/10.1038/nbt0416-359 PubMedCrossRefGoogle Scholar
  11. 11.
    Zhou L, Lv T, Zhang Q, Zhu Q, Zhan P, Zhu S, Zhang J, Song Y (2017) The biology, function and clinical implications of exosomes in lung cancer. Cancer Lett 407:84–92.  https://doi.org/10.1016/j.canlet.2017.08.003 PubMedCrossRefGoogle Scholar
  12. 12.
    Thierry AR, El Messaoudi S, Gahan PB, Anker P, Stroun M (2016) Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev 35(3):347–376.  https://doi.org/10.1007/s10555-016-9629-x PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Schwarzenbach H, Hoon DS, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11(6):426–437.  https://doi.org/10.1038/nrc3066 PubMedCrossRefGoogle Scholar
  14. 14.
    Siravegna G, Marsoni S, Siena S, Bardelli A (2017) Integrating liquid biopsies into the management of cancer. Nat. Rev Clin Oncol 14(9):531–548.  https://doi.org/10.1038/nrclinonc.2017.14 PubMedCrossRefGoogle Scholar
  15. 15.
    Eichmüller SB, Osen W, Mandelboim O, Seliger B Immune, Modulatory (2017) microRNAs involved in tumor attack and tumor immune escape. J Natl Cancer Inst 109(10)Google Scholar
  16. 16.
    Marinho R, Alcântara PSM, Ottoch JP, Seelaender M (2018) Role of exosomal microRNAs and myomiRs in the development of cancer cachexia-associated muscle wasting. Front Nutr 4:69.  https://doi.org/10.3389/fnut.2017.00069 (eCollection 2017)PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Meehan K, Vella LJ (2016) The contribution of tumour-derived exosomes to the hallmarks of cancer. Crit Rev. Clin Lab Sci 53(2):121–131.  https://doi.org/10.3109/10408363.2015.1092496 PubMedCrossRefGoogle Scholar
  18. 18.
    Moore C, Kosgodage U, Lange S, Inal JM (2017) The emerging role of exosome and microvesicle- (EMV-) based cancer therapeutics and immunotherapy. Int J Cancer 141(3):428–436.  https://doi.org/10.1002/ijc.30672 PubMedCrossRefGoogle Scholar
  19. 19.
    Abd Elmageed ZY, Yang Y, Thomas R, Ranjan M, Mondal D, Moroz K, Fang Z, Rezk BM, Moparty K, Sikka SC, Sartor O, Abdel-Mageed AB. (2014) Neoplastic reprogramming of patient-derived adipose stem cells by prostate cancer cell-associated. Cells 32(4):983–997.  https://doi.org/10.1002/stem.1619 CrossRefGoogle Scholar
  20. 20.
    Melo SA, Sugimoto H, O’Connell JT, Kato N, Villanueva A, Vidal A, Qiu L, Vitkin E, Perelman LT, Melo CA, Lucci A, Ivan C, Calin GA, Kalluri R (2014) Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 26(5):707–721.  https://doi.org/10.1016/j.ccell.2014.09.005 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Xiao H, Lässer C, Shelke GV, Wang J, Rådinger M, Lunavat TR, Malmhäll C, Lin LH, Li J, Li L, Lötvall J (2014) Mast cell exosomes promote lung adenocarcinoma cell proliferation-role of KIT-stem cell factor signaling. Cell Commun Signal.  https://doi.org/10.1186/s12964-014-0064-8 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Zhuang G, Wu X, Jiang Z, Kasman I, Yao J, Guan Y, Oeh J, Modrusan Z, Bais C, Sampath D, Ferrara N (2012) Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK–STAT pathway. EMBO J 31(17):3513–3523.  https://doi.org/10.1038/emboj.2012.183 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Umezu T, Tadokoro H, Azuma K, Yoshizawa S, Ohyashiki K, Ohyashiki JH (2014) Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood 124(25):3748–3757.  https://doi.org/10.1182/blood-2014-05-576116 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Cai Z, Yang F, Yu L, Yu Z, Jiang L, Wang Q, Yang Y, Wang L, Cao X, Wang J (2012) Activated T cell exosomes promote tumor invasion via Fas signaling pathway. J Immunol 188(12):5954–5961.  https://doi.org/10.4049/jimmunol.1103466 PubMedCrossRefGoogle Scholar
  25. 25.
    Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335.  https://doi.org/10.1038/nature15756 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Rahman MA, Barger JF, Lovat F, Gao M, Otterson GA, Nana-Sinkam P (2016) Lung cancer exosomes as drivers of epithelial mesenchymal transition. Oncotarget 7(34):54852–54866.  https://doi.org/10.18632/oncotarget.10243 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, Lovat F, Fadda P, Mao C, Nuovo GJ, Zanesi N, Crawford M, Ozer GH,,Nana-Sinkam P, Perrotti D, Wernicke D, Alder H, Caligiuri MA, Croce CM (2012) MicroRNAs bind to toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA 109(31):E2110–2116.  https://doi.org/10.1073/pnas.1209414109 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, Yu Y, Chow A, O’Connor ST, Chin AR, Yen Y, Wang Y, Marcusson EG, Chu P, Wu J, Wu X, Li AX, Li Z, Gao H, Ren X, Boldin MP, Lin PC, Wang SE (2014) Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25(4):501–515.  https://doi.org/10.1016/j.ccr.2014.03.007 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Xiao X, Yu S, Li S, Wu J, Ma R, Cao H, Zhu Y, Feng J (2014) Exosomes: decreased sensitivity of lung cancer A549 cells o cisplatin. PLoS One 9(2):e89534.  https://doi.org/10.1371/journal.pone.0089534 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Qin X, Yu S, Zhou L, Shi M, Hu Y, Xu X, Shen B, Liu S, Yan D, Feng J (2017) Cisplatin-resistant lung cancer cell-derived exosomes increase cisplatin resistance of recipient cells in exosomal miR-100-5p-dependent manner. Int J Nanomed 12:3721–3733.  https://doi.org/10.2147/IJN.S131516 CrossRefGoogle Scholar
  31. 31.
    Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, Inskoe E, Piroyan A, Sokolsky M, Okolie O, Hingtgen SD, Kabanov AV, Batrakova EV (2016) Development of exosome-encapsulated paclitaxel to overcome MDR cancer cells. Nanomedicine 12(3):655–664.  https://doi.org/10.1016/j.nano.2015.10.012 PubMedCrossRefGoogle Scholar
  32. 32.
    Quinn JJ, Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17(1):47–62.  https://doi.org/10.1038/nrg.2015.10 PubMedCrossRefGoogle Scholar
  33. 33.
    Kondo Y, Shinjo K, Katsushima K (2017) Long non-coding RNAs as an epigenetic regulator in human cancers. Cancer Sci 108(10):1927–1933.  https://doi.org/10.1111/cas.13342 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Qu L, Ding J, Chen C, Wu ZJ, Liu B, Gao Y, Chen W, Liu F, Sun W, Li XF, Wang X, Wang Y, Xu ZY, Gao L, Yang Q, Xu B, Li YM, Fang ZY, Xu ZP, Bao Y, Wu DS, Miao X, Sun HY, Sun YH7, Wang HY, Wang LH (2016) Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell 29(5):653–668.  https://doi.org/10.1016/j.ccell.2016.03.004 PubMedCrossRefGoogle Scholar
  35. 35.
    Wang Y, Xu YM, Zou YQ, Lin J, Huang B, Liu J, Li J, Zhang J, Yang WM, Min QH, Li SQ, Gao QF, Sun F, Chen QG, Zhang L, Jiang YH, Deng LB, Wang XZ (2017) Identification of differential expressed PE exosomal miRNA in lung adenocarcinoma, tuberculosis, and other benign lesions. Medicine 96(44):e8361.  https://doi.org/10.1097/MD.0000000000008361 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Jakobsen KR, Paulsen BS, Baek R, Varming K, Sorensen BS, Jrgensen MM (2015) Exosomal proteins as potential diagnostic markers in advanced non-small cell lung carcinoma. J Extracell Vesicles 4:26659.  https://doi.org/10.3402//jev.v4.26659 PubMedCrossRefGoogle Scholar
  37. 37.
    Sandfeld-Paulsen B, Aggerholm-Pedersen N, Baek R, Jakobsen KR, Meldgaard P, Folkersen BH, Rasmussen TR, Varming K, Jrgensen MM, Sorensen BS (2016) Exosomal proteins as prognostic biomarkers in non-small cell lung cancer. Mol Oncol 10(10):1595–1602.  https://doi.org/10.1016/j.molonc.2016.10.003 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Salehi M, Sharifi M (2018) Exosomal miRNAs as novel cancer biomarkers: challenges and opportunities. J Cell Physiol.  https://doi.org/10.1002/jcp.26481 (epub ahead of print) CrossRefPubMedGoogle Scholar
  39. 39.
    Vanni I, Alama A, Grossi F, Dal Bello MG, Coco S (2017) Exosomes: a new horizon in lung cancer. Drug Discov Today 22(6):927–936.  https://doi.org/10.1016/j.drudis.2017.03.004 PubMedCrossRefGoogle Scholar
  40. 40.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233.  https://doi.org/10.1016/j.cell.2009.01.002 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ambros V(2004) The functions of animal microRNAs. Nature 431(7006):350–355.  https://doi.org/10.1038/nature02871 PubMedCrossRefGoogle Scholar
  42. 42.
    Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006.  https://doi.org/10.1038/cr.2008.282 PubMedCrossRefGoogle Scholar
  43. 43.
    Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105(30):10513–10518.  https://doi.org/10.1073/pnas.0804549105 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Rabinowits G, Gerçel-Taylor C, Day JM, Taylor DD, Kloecker GH (2009) Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10(1):42–46.  https://doi.org/10.3816/CLC.2009.n.006 PubMedCrossRefGoogle Scholar
  45. 45.
    Cazzoli R, Buttitta F, Di Nicola M, Malatesta S, Marchetti A, Rom WN, Pass HI (2013) microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer. J Thorac Oncol 8(9):1156–1162.  https://doi.org/10.1097/JTO.0b013e318299ac32 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Munagala R, Aqil F, Gupta RC (2016) Exosomal miRNAs as biomarkers of recurrent lung cancer. Tumour Biol 37(8):10703–10714.  https://doi.org/10.1007/s13277-016-4939-8 PubMedCrossRefGoogle Scholar
  47. 47.
    Wang J, Zheng Y, Zhao MExosome (2017) Based cancer therapy: implication for targeting cancer stem cells. Front Pharmacol 7:533.  https://doi.org/10.3389/fphar.2016.00533 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M (2014) A comprehensive overview of exosomes as drug delivery vehicles-endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta 1846(1):75–87.  https://doi.org/10.1016/j.bbcan.2014.04.005 PubMedCrossRefGoogle Scholar
  49. 49.
    Vader P, Mol EA, Pasterkamp G, Schiffelers RM (2016) Extracellular vesicles for drug delivery. Adv Drug Deliv Rev 106(Pt A):148–156.  https://doi.org/10.1016/j.addr.2016.02.006 PubMedCrossRefGoogle Scholar
  50. 50.
    Ha D, Yang N, Nadithe V (2016) Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 6(4):287–296.  https://doi.org/10.1016/j.apsb.2016.02.001 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Munagala R, Aqil F, Jeyabalan J, Gupta RC (2016) Bovine milk-derived exosomes for drug delivery. Cancer Lett 371(1):48–61.  https://doi.org/10.1016/j.canlet.2015.10.020 PubMedCrossRefGoogle Scholar
  52. 52.
    Aqil F, Kausar H, Agrawal AK, Jeyabalan J, Kyakulaga AH, Munagala R, Gupta R (2016) Exosomal formulation enhances therapeutic response of celastrol against lung cancer. Exp Mol Pathol 101(1):12–21.  https://doi.org/10.1016/j.yexmp.2016.05.013 PubMedCrossRefGoogle Scholar
  53. 53.
    Xue W, Dahlman JE, Tammela T, Khan OF, Sood S, Dave A, Cai W, Chirino LM, Yang GR, Bronson R, Crowley DG, Sahay G, Schroeder A, Langer R, Anderson DG, Jacks T (2014) Small RNA combination therapy for lung cancer. Proc Natl Acad Sci USA 111(34):E3553–3561.  https://doi.org/10.1073/pnas.1412686111 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, Ju S, Mu J, Zhang L, Steinman L, Miller D, Zhang HG (2011) Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 19(10):1769–1779.  https://doi.org/10.1038/mt.2011.164 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Subra C, Laulagnier K, Perret B, Record M (2007) Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie 89(2):205–212. https://doi.org/10.1016/j.biochi.2006.10.014 PubMedCrossRefGoogle Scholar
  56. 56.
    Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29(4):341–345.  https://doi.org/10.1038/nbt.1807 PubMedCrossRefGoogle Scholar
  57. 57.
    Shtam TA, Kovalev RA, Varfolomeeva EY, Makarov EM, Kil YV, Filato MV (2013) Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal 11:88.  https://doi.org/10.1186/1478-811X-11-88 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, Lee JJ, Kalluri R (2017) Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546(7659):498–503.  https://doi.org/10.1038/nature22341 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Wang X, Cao L, Wang Y, Wang X, Liu N, You Y (2012) Regulation of let-7 and its target oncogenes (review). Oncol Lett 3(5):955–960.  https://doi.org/10.3892/ol.2012.609 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I, Muller RU, Straka E, Su L, Burki EA, Crowell RE, Patel R, Kulkarni T, Homer R, Zelterman D, Kidd KK, Zhu Y, Christiani DC, Belinsky SA, Slack FJ, Weidhaas JB (2008) A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res 68(20):8535–8540.  https://doi.org/10.1158/0008-5472.CAN-08-2129 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Nelson HH, Christensen BC, Plaza SL, Wiencke JK, Marsit CJ, Kelsey KT (2010) KRAS mutation, KRAS-LCS6 polymorphism, and non-small cell lung cancer. Lung Cancer 69(1):51–53.  https://doi.org/10.1016/j.lungcan.2009.09.008 PubMedCrossRefGoogle Scholar
  62. 62.
    Zhou B, Tang C, Li J (2017) k-RAS mutation and resistance to epidermal growth factor receptor-tyrosine kinase inhibitor treatment in patients with nonsmall cell lung cancer. J Cancer Res Ther 13(4):699–701.  https://doi.org/10.4103/jcrt.JCRT_468_17 PubMedCrossRefGoogle Scholar
  63. 63.
    Simoff MJ, Lally B, Slade MG, Goldberg WG, Lee P, Michaud GC, Wahidi MM, Chawla M (2013) Symptom management in patients with lung cancer: diagnosis and management of lung cancer, 3rd edn: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 143(5 Suppl):e455S–e497S.  https://doi.org/10.1378/chest.12-2366 PubMedCrossRefGoogle Scholar
  64. 64.
    Pardridge WM (2012) Drug transport across the blood–brain barrier. J Cereb Blood Flow Metab 32(11):1959–1972.  https://doi.org/10.1038/jcbfm.2012.126 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Peng Q, Zhang S, Yang Q, Zhang T, Wei XQ, Jiang L, Zhang CL, Chen QM, Zhang ZR, Lin YF (2013) Preformed albumin corona, a protective coating for nanoparticles based drug delivery system. Biomaterials 34(33):8521–8530.  https://doi.org/10.1016/j.biomaterials.2013.07.102 PubMedCrossRefGoogle Scholar
  66. 66.
    Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R, Yin VP, Lockman P, Bai S (2015) Exosome delivered anticancer drugs across the blood–brain barrier for brain cancer therapy in Danio rerio. Pharm Res 32(6):2003–2014.  https://doi.org/10.1007/s11095-014-1593-y PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Pitt JM, Charrier M, Viaud S, André F, Besse B, Chaput N, Zitvogel L (2014) Dendritic cell-derived exosomes as immunotherapies in the fight against cancer. J Immunol 193(3):1006–1011.  https://doi.org/10.4049/jimmunol.1400703 PubMedCrossRefGoogle Scholar
  68. 68.
    Robbins PD, Morelli AE (2014) Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 14(3):195–208.  https://doi.org/10.1038/nri3622 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Lamparski HG, Metha-Damani A, Yao JY, Patel S, Hsu DH, Ruegg C, Le Pecq JB (2002) Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods 270(2):211–226PubMedCrossRefGoogle Scholar
  70. 70.
    Viaud S, Théry C, Ploix S, Tursz T, Lapierre V, Lantz O, Zitvogel L, Chaput N (2010) Dendritic cell-derived exosomes for cancer immunotherapy: what’s next? Cancer Res 70(4):1281–1285.  https://doi.org/10.1158/0008-5472.CAN-09-3276 PubMedCrossRefGoogle Scholar
  71. 71.
    Pitt JM, André F, Amigorena S, Soria JC, Eggermont A, Kroemer G, Zitvogel L (2016) Dendritic cell-derived exosomes for cancer therapy. J Clin Invest 126(4):1224–1232.  https://doi.org/10.1172/JCI81137 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, Valente N, Shreeniwas R, Sutton MA, Delcayre A, Hsu DH, Le Pecq JB, Lyerly HK (2005) A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med 3(1):9.  https://doi.org/10.1186/1479-5876-3-9 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Besse B, Charrier M, Lapierre V, Dansin E, Lantz O, Planchard D, Le Chevalie T, Livartoski A, Barlesi F, Laplanche A, Ploix S, Vimond N, Peguillet I, Théry C, Lacroix L, Zoernig I, Dhodapkar K, Dhodapkar M, Viaud S, Soria JC, Reiners KS, Pogge von Strandmann E, Vély F, Rusakiewicz S, Eggermont A, Pitt JM, Zitvogel L, Chaput N (2015) Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology 5(4):e1071008.  https://doi.org/10.1080/2162402X.2015.1071008 PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Kumar L, Verma S, Vaidya B, Gupta VExosomes (2015) Natural carriers for siRNA delivery. Curr Pharm Des 21(31):4556–4565PubMedCrossRefGoogle Scholar
  75. 75.
    Vendrell JA, Mau-Them FT, Béganton B, Godreuil S, Coopman P, Solassol J (2017) Circulating cell free tumor DNA detection as a routine tool for lung cancer patient management. Int J Mol Sci.  https://doi.org/10.3390/ijms18020264 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Ma M, Zhu H, Zhang C, Sun X, Gao X, Chen G (2015) “Liquid biopsy"-ctDNA detection with great potential and challenges. Ann Transl Med 3(16):235.  https://doi.org/10.3978/j.issn.2305-5839.2015.09.29 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, Liu CL, Neal JW, Wakelee HA, Merritt RE, Shrager JB, Loo BW Jr, Alizadeh AA, Diehn M (2014) An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 20(5):548–554.  https://doi.org/10.1038/nm.3519 PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, Le Quesne J, Moore DA, Veeriah S, Rosenthal R, Marafioti T, Kirkizlar E, Watkins TBK, McGranahan N, Ward S, Martinson L, Riley J, Fraioli F, Al Bakir M, Grönroos E, Zambrana F, Endozo R, Bi WL, Fennessy FM, Sponer N, Johnson D, Laycock J, Shafi S, Czyzewska-Khan J, Rowan A, Chambers T, Matthews N, Turajlic S, Hiley C, Lee SM, Forster MD, Ahmad T, Falzon M, Borg E, Lawrence D, Hayward M, Kolvekar S, Panagiotopoulos N, Janes SM, Thakrar R, Ahmed A, Blackhall F, Summers Y, Hafez D, Naik A, Ganguly A, Kareht S, Shah R, Joseph L, Marie Quinn A, Crosbie PA, Naidu B, Middleton G, Langman G, Trotter S, Nicolson M, Remmen H, Kerr K, Chetty M, Gomersall L, Fennell DA, Nakas A, Rathinam S, Anand G, Khan S, Russell P, Ezhil V, Ismail B, Irvin-Sellers M, Prakash V, Lester JF, Kornaszewska M, Attanoos R, Adams H, Davies H, Oukrif D, Akarca AU, Hartley JA, Lowe HL, Lock S, Iles N, Bell H, Ngai Y, Elgar G, Szallasi Z, Schwarz RF, Herrero J, Stewart A, Quezada SA, Peggs KS, Van Loo P, Dive C, Lin CJ, Rabinowitz M, Aerts HJWL., Hackshaw A, Shaw JA, Zimmermann BG; TRACERx Consortium; PEACE Consortium, Swanton C (2017) Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 545(7655):446–451.  https://doi.org/10.1038/nature22364 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, Veeriah S, Shafi S, Johnson DH, Mitter R, Rosenthal R, Salm M, Horswell S, Escudero M, Matthews N, Rowan A, Chambers T, Moore DA, Turajlic S, Xu H, Lee SM, Forster MD, Ahmad T, Hiley CT, Abbosh C, Falzon M, Borg E, Marafioti T, Lawrence D, Hayward M, Kolvekar S, Panagiotopoulos N, Janes SM, Thakrar R, Ahmed A, Blackhall F, Summers Y, Shah R, Joseph L, Quinn AM, Crosbie PA, Naidu B, Middleton G, Langman G, Trotter S, Nicolson M, Remmen H, Kerr K, Chetty M, Gomersall L, Fennell DA, Nakas A, Rathinam S, Anand G, Khan S, Russell P, Ezhil V, Ismail B, Irvin-Sellers M, Prakash V, Lester JF, Kornaszewska M, Attanoos R, Adams H, Davies H, Dentro S, Taniere P, O’Sullivan B, Lowe HL, Hartley JA, Iles N, Bell H, Ngai Y, Shaw JA, Herrero J, Szallasi Z, Schwarz RF, Stewart A, Quezada SA, Le Quesne J, Van Loo P, Dive C, Hackshaw A, Swanton C; TRACERx Consortium (2017) Tracking the evolution of non-small-cell lung cancer. N Engl J Med 376(22):2109–2121.  https://doi.org/10.1056/NEJMoa1616288 PubMedCrossRefGoogle Scholar
  80. 80.
    Fisher R, Pusztai L, Swanton C (2013) Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer 108(3):479–485.  https://doi.org/10.1038/bjc.2012.581 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Weber B, Meldgaard P, Hager H, Wu L, Wei W, Tsai J, Khalil A, Nexo E, Sorensen BS (2014) Detection of EGFR mutations in plasma and biopsies from non-small cell lung cancer patients by allele-specific PCR assays. BMC Cancer.  https://doi.org/10.1186/1471-2407-14-294 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Yu PP, Vose JM, Hayes DF (2015) Genetic cancer susceptibility testing: increased technology, increased complexity. J Clin Oncol 33(31):3533–3534.  https://doi.org/10.1200/JCO.2015.63.3628 PubMedCrossRefGoogle Scholar
  83. 83.
    Riely GJ, Yu Haegfr (2015) The paradigm of an oncogene-driven lung cancer. Clin Cancer Res 21(10):2221–2226.  https://doi.org/10.1158/1078-0432.CCR-14-3154 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Mok TS, Wu Y-L, Ahn M-J, Garassino MC, Kim HR, Ramalingam SS, Shepherd FA, He Y, Akamatsu H, Theelen WS, Lee CK, Sebastian M, Templeton A, Mann H, Marotti M, Ghiorghiu S, Papadimitrakopoulou VA; AURA3 Investigators (2017) Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med 376(7):629–640.  https://doi.org/10.1056/NEJMoa1612674 PubMedCrossRefGoogle Scholar
  85. 85.
    Jänne PA, Yang JC, Kim DW, Planchard D, Ohe Y, Ramalingam SS, Ahn MJ, Kim SW, Su WC, Horn L, Haggstrom D, Felip E, Kim JH, Frewer P, Cantarini M, Brown KH, Dickinson PA, Ghiorghiu S, Ranson M (2015) AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med 372(18):1689–1699.  https://doi.org/10.1056/NEJMoa1411817 PubMedCrossRefGoogle Scholar
  86. 86.
    Castellanos-Rizaldos E, Grimm DG, Tadigotla V, Hurley J, Healy J, Neal PL, Sher M, Venkatesan R, Karlovich C, Raponi M, Krug AK, Noerholm M, Tannous J, Tannous BA, Raez LE, Skog J (2018) Exosome-based detection of EGFR T790M in plasma from non-small cell lung cancer patients. Clin Cancer Res.  https://doi.org/10.1158/1078-0432.CCR-17-3369 (epub ahead of print) PubMedCrossRefGoogle Scholar
  87. 87.
    Yu Q, Huang F, Zhang M, Ji H, Wu S, Zhao Y, Zhang C, Wu J, Wang B, Pan B, Zhang X, Guo W (2017) Multiplex picoliter-droplet digital PCR for quantitative assessment of EGFR mutations in circulating cell-free DNA derived from advanced non-small cell lung cancer patients. Mol Med Rep 16(2):1157–1166.  https://doi.org/10.3892/mmr.2017.6712 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Karlovich C, Goldman JW, Sun JM, Mann E, Sequist LV, Konopa K, Wen W, Angenendt P, Horn L, Spigel D, Soria JC, Solomon B, Camidge DR, Gadgeel S, Paweletz C, Wu L, Chien S, O’Donnell P, Matheny S, Despain D, Rolfe L, Raponi M, Allen AR, Park K, Wakelee H (2016) Assessment of EGFR mutation status in matched plasma and tumor tissue of NSCLC patients from a phase i study of rociletinib (CO-1686). Clin Cancer Res.  https://doi.org/10.1158/1078-0432.CCR-15-1260 PubMedCrossRefGoogle Scholar
  89. 89.
    Luo J, Shen L, Zheng D (2014) Diagnostic value of circulating free DNA for the detection of EGFR mutation status in NSCLC: a systematic review and meta-analysis. Sci Rep.  https://doi.org/10.1038/srep06269 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Vallée A, Marcq M, Bizieux A, Kouri CE, Lacroix H, Bennouna J, Douillard JY, Denis MG (2013) Plasma is a better source of tumor-derived circulating cell-free DNA than serum for the detection of EGFR alterations in lung tumor patients. Lung Cancer 82(2):373–374.  https://doi.org/10.1016/j.lungcan.2013.08.014 PubMedCrossRefGoogle Scholar
  91. 91.
    Al-Moundhri M, O’Brien M, Souberbielle BE (1998) Immunotherapy in lung cancer. Br J Cancer 78(3):282–288PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Brahmer JR, Pardoll DM (2013) Immune checkpoint inhibitors: making immunotherapy a reality for the treatment of lung cancer. Cancer Immunol Res 1(2):85–91.  https://doi.org/10.1158/2326-6066.CIR-13-0078 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Sgambato A, Casaluce F, Sacco PC, Palazzolo G, Maione P, Rossi A, Ciardiello F, Gridelli C (2016) Anti PD-1 and PDL-1 immunotherapy in the treatment of advanced non-small cell lung cancer (NSCLC): a review on toxicity profile and its management. Curr Drug Saf 11(1):62–68PubMedCrossRefGoogle Scholar
  94. 94.
    Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, Chen L, Pardoll DM, Topalian SL, Anders RA (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 20(19):5064–5074.  https://doi.org/10.1158/1078-0432.CCR-13-3271 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Jiang Y, Li Y, Zhu B (2015) T-cell exhaustion in the tumor micro environment. Cell Death Dis 6:e1792.  https://doi.org/10.1038/cddis.2015.162 PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, Barlesi F, Kohlhäufl M, Arrieta O, Burgio MA, Fayette J, Lena H, Poddubskaya E, Gerber DE, Gettinger SN, Rudin CM, Rizvi N, Crinò L, Blumenschein GR Jr, Antonia SJ, Dorange C, Harbison CT, Graf Finckenstein F, Brahmer JR (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373(17):1627–1639.  https://doi.org/10.1056/NEJMoa1507643 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Pai-Scherf L, Blumenthal GM, Li H, Subramaniam S, Mishra-Kalyani PS, He K, Zhao H, Yu J, Paciga M, Goldberg KB, McKee AE, Keegan P, Pazdur R (2017) FDA approval summary: pembrolizumab for treatment of metastatic non-small cell lung cancer: first-line therapy and beyond. Oncologist 22(11):1392–1399.  https://doi.org/10.1634/theoncologist.2017-0078 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, Biedrzycki B, Donehower RC, Zaheer A, Fisher GA, Crocenzi TS, Lee JJ, Duffy SM, Goldberg RM, de la Chapelle A, Koshiji M, Bhaijee F, Huebner T, Hruban RH, Wood LD, Cuka N, Pardoll DM, Papadopoulos N, Kinzler KW, Zhou S, Cornish TC, Taube JM, Anders RA, Eshleman JR, Vogelstein B, Diaz LA Jr (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–2520.  https://doi.org/10.1056/NEJMoa1500596 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, Desa J, Hill A, Axelson M, Moss RA, Goldberg MV, Cao ZA, Ledeine JM, Maglinte GA, Kopetz S, André T (2017) Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142) :an open-label, multicentre, phase 2 study. Lancet Oncol 18(9):1182–1191.  https://doi.org/10.1016/S1470-2045(17)30422-9 PubMedCrossRefGoogle Scholar
  100. 100.
    Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML, Rekhtman N, Moreira AL, Ibrahim F, Bruggeman C, Gasmi B, Zappasodi R, Maeda Y, Sander C, Garon EB, Merghoub T, Wolchok JD, Schumacher TN, Chan TA (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128.  https://doi.org/10.1126/science.aaa1348 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, Kohrt HE, Horn L, Lawrence DP, Rost S, Leabman M, Xiao Y, Mokatrin A, Koeppen H, Hegde PS, Mellman I, Chen DS, Hodi FS. (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515(7528):563–567.  https://doi.org/10.11038/nature14011 PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Fricke F, Lee J, Michalak M, Warnken U, Hausser I, Suarez-Carmona M, Halama N, Schnölzer M, Kopitz J, Gebert J (2017) TGFBR2-dependent alterations of exosomal cargo and functions in DNA mismatch repair-deficient HCT116 colorectal cancer cells. Cell Commun Signal 15(1):14.  https://doi.org/10.1186/s12964-017-0169-y PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Ilié M, Szafer-Glusman E, Hofman V, Chamorey E, Lalvée S, Selva E, Leroy S, Marquette CH, Kowanetz M, Hedge P, Punnoose E, Hofman P (2018) Detection of PD-L1 in circulating tumor cells and white blood cells from patients with advanced non-small-cell lung cancer. Ann Oncol 29(1):193–199.  https://doi.org/10.1093/annonc/mdx636 PubMedCrossRefGoogle Scholar
  104. 104.
    Kennedy SR, Schmitt MW, Fox EJ, Kohrn BF, Salk JJ, Ahn EH, Prindle MJ, Kuong KJ, Shen JC, Risques RA, Loeb LA (2014) Detecting ultralow-frequency mutations by duplex sequencing. Nat Protoc 9(11):2586–2606.  https://doi.org/10.1038/nprot.2014.170 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Wang K, Lai S, Yang X, Zhu T, Lu X, Wu CI, Ruan J (2017) Ultrasensitive and high-efficiency screen of de novo low-frequency mutations by o2n-seq. Nat Commun 8:15335.  https://doi.org/10.1038/ncomms15335 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Sun K, Jiang P, Chan KC, Wong J, Cheng YK, Liang RH, Chan WK, Ma ES, Chan Chan SL, Cheng SH, Chan RW, Tong YK, Ng SS, Wong RS, Hui DS, Leung TN, Leung TY, Lai PB, Chiu RW, Lo YM (2015) Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc Natl Acad Sci USA 112(40):E5503–E5512.  https://doi.org/10.1073/pnas.1508736112 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Lehmann-Werman R, Neiman D, Zemmour H, Moss J, Magenheim J, Vaknin-Dembinsky A, Rubertsson S, Nellgård B, Blennow K, Zetterberg H, Spalding K, Haller MJ, Wasserfall CH, Schatz DA, Greenbaum CJ, Dorrell C, Grompe M, Zick A, Hubert A, Maoz M, Fendrich V, Bartsch DK, Golan T, Ben Sasson SA, Zamir G, Razin A, Cedar H, Shapiro AM, Glaser B, Shemer R, Dor Y (2016) Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proc Natl Acad Sci USA 113(13):E1826–E1834.  https://doi.org/10.1073/pnas.1519286113 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of MedicineSichuan UniversityChengduChina
  2. 2.Department of Respiratory Medicine IIThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina

Personalised recommendations