Cancer Chemotherapy and Pharmacology

, Volume 81, Issue 4, pp 705–716 | Cite as

Electrophilic derivatives of omega-3 fatty acids counteract lung cancer cell growth

  • Liboria Siena
  • Chiara Cipollina
  • Serena Di Vincenzo
  • Maria Ferraro
  • Andreina Bruno
  • Mark Gjomarkaj
  • Elisabetta Pace
Original Article



17-oxo-DHA is an electrophilic keto-derivative of the omega-3 fatty acid docosahexaenoic acid (DHA) endogenously generated by cyclooxygenase-2 and a cellular dehydrogenase. 17-oxo-DHA displays anti-inflammatory and cytoprotective actions. DHA, alone or in combination with standard chemotherapy, displays antitumor activity. However, the effects of electrophilic keto-derivatives of DHA on cancer growth have never been evaluated. We investigated whether 17-oxo-DHA, alone or in combination with gemcitabine, displayed antitumor effects. Furthermore, we evaluated whether the enzyme 15-prostaglandin dehydrogenase (15-PGDH) was required for transducing the antitumor effects of DHA.


A panel of five histologically different human non-small cell lung cancer (NSCLC) cell lines was used. Cells were treated with 17-oxo-DHA and gemcitabine, alone or in combination, and apoptosis, proliferation, Fas and FasL expression (mRNA and protein) and active caspase-3/7 and -8 were assessed. Furthermore, an inhibitor of 15-PGDH was used to test the involvement of this enzyme in mediating the antitumor effects of DHA.


17-oxo-DHA (50 µM, 72 h) significantly reduced proliferation, increased cell apoptosis, Fas and FasL expression as well as active caspase-8 and -3/7. When 17-oxo-DHA was given in combination with gemcitabine, stronger effects were observed compared to gemcitabine alone. The enzyme 15-PGDH was required for DHA to promote its full anti-apoptotic effect suggesting that enzymatically generated keto-derivatives of DHA mediate its antitumor actions.


Data herein provided, demonstrate that 17-oxo-DHA displays antitumor effects in NSCLC cell lines. Of note, the combination of 17-oxo-DHA plus gemcitabine, resulted in stronger anticancer effects compared to gemcitabine alone.


Lung cancer Apoptosis Anti-cancer drugs Gemcitabine Combination therapy Electrophilic lipids Omega-3 polyunsaturated fatty acids 15-hydroxyprostaglandin dehydrogenase Fas Fas Ligand Caspases 



Docosahexaenoic acid


Non-small cell lung cancer


Fas ligand

n-3 PUFAs

Omega-3 polyunsaturated fatty acids


15-hydroxyprostaglandin dehydrogenase





Liboria Siena designed the study and performed the majority of the experiments. Liboria Siena suddenly died on November 2, 2016. Chiara Cipollina contributed to study design, performed the experiments, contributed to data interpretation and manuscript writing. Serena Di Vincenzo, Maria Ferraro, Andreina Bruno performed the experiments and participated to data interpretation. Mark Gjomarkaj contributed to the interpretation of the data. Elisabetta Pace performed the statistical analysis of the data, contributed to data interpretation and manuscript writing and declares that she has had access to and takes responsibility for the integrity of the data.


This work was supported by the Italian National Research Council and Fondazione Ri.MED without a specific grant number.

Compliance with ethical standards

Conflict of interest

All author declare that they have no conflicts of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors. Informed consent is not required for this study.


  1. 1.
    Siegel R, Ward E, Brawley O, Jemal A (2011) Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 61(4): 212–236. CrossRefGoogle Scholar
  2. 2.
    Le Chevalier T, Scagliotti G, Natale R et al (2005) Efficacy of gemcitabine plus platinum chemotherapy compared with other platinum containing regimens in advanced non-small-cell lung cancer: a meta-analysis of survival outcomes. Lung Cancer 47(1):69–80. CrossRefPubMedGoogle Scholar
  3. 3.
    Schiller JH, Harrington D, Belani CP et al (2002) Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med, 346(2): 92–98. CrossRefGoogle Scholar
  4. 4.
    Sooman L, Gullbo J, Bergqvist M et al (2017) Synergistic effects of combining proteasome inhibitors with chemotherapeutic drugs in lung cancer cells. BMC Res Notes 10(1):544. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Vendrely V, Peuchant E, Buscail E et al (2017) Resveratrol and capsaicin used together as food complements reduce tumor growth and rescue full efficiency of low dose gemcitabine in a pancreatic cancer model. Cancer Lett 390:91–102. CrossRefPubMedGoogle Scholar
  6. 6.
    Tuya N, Wang Y, Tong L et al (2017) Trichosanthin enhances the antitumor effect of gemcitabine in non-small cell lung cancer via inhibition of the PI3K/AKT pathway. Exp Ther Med 14(6):5767–5772. PubMedPubMedCentralGoogle Scholar
  7. 7.
    Kim N, Jeong S, Jing K et al (2015) Docosahexaenoic acid induces cell death in human non-small cell lung cancer cells by repressing mTOR via AMPK activation and PI3K/Akt inhibition. Biomed Res Int. 239764.
  8. 8.
    Yin Y, Sui C, Meng F, Ma P, Jiang Y (2017) The omega-3 polyunsaturated fatty acid docosahexaenoic acid inhibits proliferation and progression of non-small cell lung cancer cells through the reactive oxygen species-mediated inactivation of the PI3K/Akt pathway. Lipids Health Dis 16(1):87. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhang G, Panigrahy D, Mahakian LM et al (2013) Epoxy metabolites of docosahexaenoic acid (DHA) inhibit angiogenesis, tumor growth, and metastasis. Proc Natl Acad Sci USA 110(16):6530–6535. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cockbain AJ, Toogood GJ, Hull MA (2012) Omega-3 polyunsaturated fatty acids for the treatment and prevention of colorectal cancer. Gut 61(1): 135–149. CrossRefGoogle Scholar
  11. 11.
    Yao QH, Zhang XC, Fu T et al (2014) omega-3 polyunsaturated fatty acids inhibit the proliferation of the lung adenocarcinoma cell line A549 in vitro. Mol Med Rep 9(2):401–406. CrossRefPubMedGoogle Scholar
  12. 12.
    Zajdel A, Wilczok A, Tarkowski M. (2015) Toxic effects of n-3 polyunsaturated fatty acids in human lung A549 cells. Toxicol In Vitro, 30(1 Pt B): 486–491. Google Scholar
  13. 13.
    Miccadei S, Masella R, Mileo AM S Gessani (2016) Omega3 polyunsaturated fatty acids as immunomodulators in colorectal cancer: new potential role in adjuvant therapies. Front Immunol 7:486. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Abdelmagid SA, MacKinnon JL, Janssen SM, Ma DW (2016) Role of n-3 polyunsaturated fatty acids and exercise in breast cancer prevention: identifying common targets. Nutr Metab Insights 9:71–84. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chagas TR, Borges DS, de Oliveira PF et al (2017) Oral fish oil positively influences nutritional-inflammatory risk in patients with haematological malignancies during chemotherapy with an impact on long-term survival: a randomised clinical trial. J Hum Nutr Diet, PubMedGoogle Scholar
  16. 16.
    Sanchez-Lara K, Turcott JG, Juarez-Hernandez E et al (2014) Effects of an oral nutritional supplement containing eicosapentaenoic acid on nutritional and clinical outcomes in patients with advanced non-small cell lung cancer: randomised trial. Clin Nutr 33(6):1017–1023. CrossRefPubMedGoogle Scholar
  17. 17.
    Finocchiaro C, Segre O, Fadda M et al (2012) Effect of n-3 fatty acids on patients with advanced lung cancer: a double-blind, placebo-controlled study. Br J Nutr 108(2): 327–333. CrossRefGoogle Scholar
  18. 18.
    Manni A, El-Bayoumy K, Skibinski CG et al (2015) Combination of antiestrogens and omega-3 fatty acids for breast cancer prevention. Biomed Res Int 638645.
  19. 19.
    Murphy RA, Mourtzakis M, Chu QS et al (2011) Supplementation with fish oil increases first-line chemotherapy efficacy in patients with advanced nonsmall cell lung cancer. Cancer 117(16):3774–3780. CrossRefPubMedGoogle Scholar
  20. 20.
    Li S, Qin J, Tian C et al (2014) The targeting mechanism of DHA ligand and its conjugate with Gemcitabine for the enhanced tumor therapy. Oncotarget 5(11):3622–3635. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Haqq J, Howells LM, Garcea G, Dennison AR (2016) Targeting pancreatic cancer using a combination of gemcitabine with the omega-3 polyunsaturated fatty acid emulsion, Lipidem. Mol Nutr Food Res. 60(6): 1437–1447. CrossRefPubMedGoogle Scholar
  22. 22.
    Cipollina C, Salvatore SR, Muldoon MF, Freeman BA, Schopfer FJ (2014) Generation and dietary modulation of anti-inflammatory electrophilic omega-3 fatty acid derivatives. Plos One 9(4)ARTN e94836.
  23. 23.
    Wendell SG, Golin-Bisello F, Wenzel S et al (2015) 15-Hydroxyprostaglandin dehydrogenase generation of electrophilic lipid signaling mediators from hydroxy omega-3 fatty acids. J Biol Chem. 290(9): 5868–5880. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Keenan AH, Pedersen TL, Fillaus K et al (2012) Basal omega-3 fatty acid status affects fatty acid and oxylipin responses to high-dose n3-HUFA in healthy volunteers. J Lipid Res 53(8):1662–1669. CrossRefGoogle Scholar
  25. 25.
    Yang P, Cartwright C, Chan D et al (2014) Anticancer activity of fish oils against human lung cancer is associated with changes in formation of PGE2 and PGE3 and alteration of Akt phosphorylation. Mol Carcinog 53(7): 566–577. CrossRefGoogle Scholar
  26. 26.
    Woodcock CC, Huang Y, Woodcock SR et al (2017) Nitro-fatty acid inhibition of triple negative breast cancer cell viability, migration, invasion and tumor growth. J Biol Chem, Google Scholar
  27. 27.
    Groeger AL, Cipollina C, Cole MP et al (2010) Cyclooxygenase-2 generates anti-inflammatory mediators from omega-3 fatty acids. Nat Chem Biol 6(6): 433–441. CrossRefGoogle Scholar
  28. 28.
    Fink SP, Yamauchi M, Nishihara R et al (2014) Aspirin and the risk of colorectal cancer in relation to the expression of 15-hydroxyprostaglandin dehydrogenase (HPGD). Sci Transl Med 6(233):233re2. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Siena L, Pace E, Ferraro M et al (2014) Gemcitabine sensitizes lung cancer cells to Fas/FasL system-mediated killing. Immunology 141(2): 242–255. CrossRefGoogle Scholar
  30. 30.
    Shameem IA, Kurisu H, Matsuyama H, Shimabukuro T, Naito K (1994) Direct and indirect effects of recombinant human granulocyte-colony stimulating factor on in vitro colony formation of human bladder cancer cells. Cancer Immunol Immunother 38(6):353–357CrossRefPubMedGoogle Scholar
  31. 31.
    Dela Cruz CS, Tanoue LT, Matthay RA (2011) Lung cancer: epidemiology, etiology, and prevention. Clin Chest Med 32(4): 605–644. CrossRefGoogle Scholar
  32. 32.
    Hu X, Pu K, Feng X et al (2016) Role of gemcitabine and pemetrexed as maintenance therapy in advanced NSCLC: a systematic review and meta-analysis of randomized controlled trials. PLoS One 11(3):e0149247. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    van Moorsel CJ, Veerman G, Bergman AM et al (1997) Combination chemotherapy studies with gemcitabine. Semin Oncol 24(2 Suppl 7): S7-17–S7-23Google Scholar
  34. 34.
    Peters GJ, Ruiz VW, van Haperen AM, Bergman et al (1996) Preclinical combination therapy with gemcitabine and mechanisms of resistance. Semin Oncol 23(5 Suppl 10):16–24PubMedGoogle Scholar
  35. 35.
    Peters GJ, Bergman AM, Ruiz van VW, Haperen et al (1995) Interaction between cisplatin and gemcitabine in vitro and in vivo. Semin Oncol 4(Suppl 11):72–79Google Scholar
  36. 36.
    Bergman AM, Ruiz VW, van Haperen G, Veerman CM (1996) Kuiper, and G.J. Peters. Synergistic interaction between cisplatin and gemcitabine in vitro. Clin Cancer Res 2(3):521–530PubMedGoogle Scholar
  37. 37.
    van Moorsel CJ, Pinedo HM, Veerman G et al (1999) Mechanisms of synergism between cisplatin and gemcitabine in ovarian and non-small-cell lung cancer cell lines. Br J Cancer 80(7): 981–990. CrossRefGoogle Scholar
  38. 38.
    van Moorsel CJ, Pinedo HM, Smid K et al (2000) Schedule-dependent pharmacodynamic effects of gemcitabine and cisplatin in mice bearing Lewis lung murine non-small cell lung tumours. Eur J Cancer 36(18):2420–2429CrossRefPubMedGoogle Scholar
  39. 39.
    Ferreira CG, Span SW, Peters GJ, Kruyt FA, Giaccone G (2000) Chemotherapy triggers apoptosis in a caspase-8-dependent and mitochondria-controlled manner in the non-small cell lung cancer cell line NCI-H460. Cancer Res 60(24):7133–7141PubMedGoogle Scholar
  40. 40.
    Ferreira CG, Tolis C, Span SW et al (2000) Drug-induced apoptosis in lung cnacer cells is not mediated by the Fas/FasL (CD95/APO1) signaling pathway. Clin Cancer Res 6(1):203–212PubMedGoogle Scholar
  41. 41.
    Morgan MA, Parsels LA, Kollar LE et al (2008) The combination of epidermal growth factor receptor inhibitors with gemcitabine and radiation in pancreatic cancer. Clin Cancer Res 14(16): 5142–5149. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Yu X, Li Y, Yu Y et al (2016) Associations between FAS rs2234767 and FASL rs763110 polymorphisms and the risk of lung cancer: a meta-analysis of 39,736 subjects. Onco Targets Ther 9:2049–2056. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Fulda S (2013) Regulation of cell death in cancer-possible implications for immunotherapy. Front Oncol 3:29. PubMedPubMedCentralGoogle Scholar
  44. 44.
    Nazim UM, Moon JH, Lee YJ, Seol JW, Park SY (2017) PPARgamma activation by troglitazone enhances human lung cancer cells to TRAIL-induced apoptosis via autophagy flux. Oncotarget 8(16):26819–26831. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Pace E, Melis M, Siena L et al (2000) Effects of gemcitabine on cell proliferation and apoptosis in non-small-cell lung cancer (NSCLC) cell lines. Cancer Chemother Pharmacol. 46(6): 467–476. CrossRefGoogle Scholar
  46. 46.
    Chang CL, Hsu YT, Wu CC et al (2013) Dose-dense chemotherapy improves mechanisms of antitumor immune response. Cancer Res 73(1): 119–127. CrossRefGoogle Scholar
  47. 47.
    Pace E, Siena L, Ferraro M et al (2006) Role of prostaglandin E2 in the invasiveness, growth and protection of cancer cells in malignant pleuritis. Eur J Cancer 42(14):2382–2389. CrossRefPubMedGoogle Scholar
  48. 48.
    Huang G, Eisenberg R, Yan M et al (2008) 15-Hydroxyprostaglandin dehydrogenase is a target of hepatocyte nuclear factor 3beta and a tumor suppressor in lung cancer. Cancer Res. 68(13): 5040–5048. CrossRefGoogle Scholar
  49. 49.
    Hughes D, Otani T, Yang P et al (2008) NAD+-dependent 15-hydroxyprostaglandin dehydrogenase regulates levels of bioactive lipids in non-small cell lung cancer. Cancer Prev Res (Phila) 1(4): 241–249. Scholar
  50. 50.
    Li Y, Li S, Sun D, Song L, Liu X (2014) Expression of 15-hydroxyprostaglandin dehydrogenase and cyclooxygenase-2 in non-small cell lung cancer: correlations with angiogenesis and prognosis. Oncol Lett 8(4):1589–1594. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Ding Y, Tong M, Liu S, Moscow JA, Tai HH (2005) NAD+-linked 15-hydroxyprostaglandin dehydrogenase (15-PGDH) behaves as a tumor suppressor in lung cancer. Carcinogenesis 26(1):65–72. CrossRefPubMedGoogle Scholar
  52. 52.
    Lu D, Han C, Wu T (2014) 15-PGDH inhibits hepatocellular carcinoma growth through 15-keto-PGE2/PPARgamma-mediated activation of p21WAF1/Cip1. Oncogene 33(9):1101. -12.CrossRefPubMedGoogle Scholar
  53. 53.
    Yao L, Han C, Song K et al (2015) Omega-3 polyunsaturated fatty acids upregulate 15-PGDH expression in cholangiocarcinoma cells by inhibiting miR-26a/b expression. Cancer Res. 75(7): 1388–1398. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Istituto di Biomedicina e Immunologia Molecolare-Consiglio Nazionale delle RicerchePalermoItaly
  2. 2.Fondazione Ri.MEDPalermoItaly

Personalised recommendations