Advertisement

Cancer Chemotherapy and Pharmacology

, Volume 81, Issue 5, pp 863–872 | Cite as

Cisplatin suppresses proliferation, migration and invasion of nasopharyngeal carcinoma cells in vitro by repressing the Wnt/β-catenin/Endothelin-1 axis via activating B cell translocation gene 1

  • Peng Yin
  • Guizhen Song
  • Zhenhua Jiang
Original Article

Abstract

Purpose

Nasopharyngeal carcinoma (NPC) is one of the most commonly diagnosed cancers worldwide with significantly high prevalence in Southern China. Chemoprevention of cancer with alkylating agent compounds could potentially reverse, suppress, or prevent cancer progression. Cisplatin (CIS) is an antineoplastic or cytotoxic platinum-based drug used for chemotherapy of different types of human cancers such as NPC. Nevertheless, the effects of CIS on the migration and invasion of human NPC cells and the underlying molecular mechanisms have not yet been fully scrutinized.

Methods

In this work, we tested the effect of CIS on the proliferation, migration and invasion of NPC cells. The results exhibited that this drug exerts remarkable inhibitory effects on the proliferation, migration and invasion of NPC cells in a dose-dependent manner. Western blotting and real time RT-PCR were used for expression analyses.

Results

We found that CIS treatment led to a dose-dependent inhibition of Endothelin-1 (ET1) expression, at protein as well as mRNA levels in NPC cells. CIS was also found to activate the expression of BTG1 in NPC cells. Moreover, mechanistic analyses revealed that CIS increased the expression of B cell translocation gene 1 (BTG1) to suppress the expression of ET1. Furthermore, we show that ET1 could not be induced in CIS-resistant cells with suppressed BTG1 expression, and subsequently demote the proliferation, migration and invasion of NPC cells.

Conclusions

These findings provided compelling evidence of the role of CIS in suppressing NPC metastasis and its underlying molecular mechanisms.

Keywords

Cisplatin Nasopharyngeal carcinoma Endothelin-1 B cell translocation gene 1 

Notes

Funding

None.

Compliance with ethical standards

Conflict of interest

Author Peng Yin declares that he has no conflict of interest. Author Guizhen Song declares that she has no conflict of interest. Author Zhenhua Jiang declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Cui Q, Feng FT, Xu M, Liu WS, Yao YY, Xie SH, Li XZ, Ye ZL, Feng QS, Chen LZ, Bei JX, Feng L, Huang QH, Jia WH, Cao SM, Chang ET, Ye W, Adami HO, Zeng YX (2016) Nasopharyngeal carcinoma risk prediction via salivary detection of host and Epstein–Barr virus genetic variants. Oncotarget.  https://doi.org/10.18632/oncotarget.11144 Google Scholar
  2. 2.
    Jin GQ, Yang J, Liu LD, Su DK, Wang DP, Zhao SF, Liao ZL (2016) The diagnostic value of 1.5-T diffusion-weighted MR imaging in detecting 5–10 mm metastatic cervical lymph nodes of nasopharyngeal carcinoma. Medicine 95(32):e4286.  https://doi.org/10.1097/md.0000000000004286 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lu L, Li J, Zhao C, Xue W, Han F, Tao T, Chang H, Jia W, Lu T (2016) Prognostic efficacy of combining tumor volume with Epstein-Barr virus DNA in patients treated with intensity-modulated radiotherapy for nasopharyngeal carcinoma. Oral Oncol 60:18–24.  https://doi.org/10.1016/j.oraloncology.2016.06.013 CrossRefPubMedGoogle Scholar
  4. 4.
    Maingon P, Blanchard P, Bidault F, Calmels L (2016) Radiotherapy for nasopharyngeal carcinoma. Cancer radiotherapie: journal de la Societe francaise de radiotherapie oncologique.  https://doi.org/10.1016/j.canrad.2016.07.031
  5. 5.
    Yao K, Yang S, Shen J, Zhang R, Li L (2016) HLA-DRB1 allele polymorphism and nasopharyngeal carcinoma risk: a meta-analysis. Eur Arch Oto-Rhino-Laryngol Off J Eur Fed Oto-Rhino-Laryngol Soc (EUFOS) Affil German Soc Oto-Rhino-Laryngol Head Neck Surg.  https://doi.org/10.1007/s00405-016-4264-2
  6. 6.
    Li JG, Venigalla P, Leeman JE, LaPlant Q, Setton J, Sherman E, Tsai J, McBride S, Riaz N, Lee N (2016) Patterns of nodal failure after intensity modulated radiotherapy for nasopharyngeal carcinoma. Laryngoscope.  https://doi.org/10.1002/lary.26139 Google Scholar
  7. 7.
    Wang Y, Wang ZQ, Jiang YX, Wang FH, Luo HY, Liang Y, Wang DS, Li YH (2016) A triplet chemotherapy regimen of cisplatin, fluorouracil and paclitaxel for locoregionally recurrent nasopharyngeal carcinoma cases contraindicated for re-irradiation/surgery. Expert Opin Pharmacother 17(12):1585–1590.  https://doi.org/10.1080/14656566.2016.1204293 CrossRefPubMedGoogle Scholar
  8. 8.
    Ngan R, Yiu H, Lau W, Yau S, Cheung F, Chan T, Kwok C, Chiu C, Au S, Foo W (2002) Combination gemcitabine and cisplatin chemotherapy for metastatic or recurrent nasopharyngeal carcinoma: report of a phase II study. Ann Oncol 13(8):1252–1258CrossRefPubMedGoogle Scholar
  9. 9.
    Group INCS., Trial VI (1996) Preliminary results of a randomized trial comparing neoadjuvant chemotherapy (cisplatin, epirubicin, bleomycin) plus radiotherapy vs. radiotherapy alone in stage IV (≥ N2, M0) undifferentiated nasopharyngeal carcinoma: a positive effect on progression-free survival. Int J Radiat Oncol Biol Phys 35(3):463–469CrossRefGoogle Scholar
  10. 10.
    Chan AT, Leung S, Ngan RK, Teo PM, Lau W, Kwan W, Hui EP, Yiu H, Yeo W, Cheung F (2005) Overall survival after concurrent cisplatin–radiotherapy compared with radiotherapy alone in locoregionally advanced nasopharyngeal carcinoma. J Natl Cancer Inst 97(7):536–539CrossRefPubMedGoogle Scholar
  11. 11.
    Rosanò L, Spinella F, Bagnato A (2013) Endothelin 1 in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 13(9):637–651CrossRefPubMedGoogle Scholar
  12. 12.
    Lin SX, Zhang Y, Lu J, Liu X, Li XP (2016) Silencing of endothelin-1 suppresses growth, migration, and invasion of nasopharyngeal carcinoma cells in vitro. J Southern Med Univ 36(7):915–920Google Scholar
  13. 13.
    McKenzie GA, Hinsley EE, Hunter K, Lambert DW (2014) The endothelin axis in head and neck cancer: a promising therapeutic opportunity? J Oral Pathol Med 43(6):395–404CrossRefPubMedGoogle Scholar
  14. 14.
    Mai HQ, Zeng ZY, Feng KT, Ye YL, Zhang CQ, Liang WJ, Guo X, Mo HY, Hong MH (2006) Therapeutic targeting of the endothelin a receptor in human nasopharyngeal carcinoma. Cancer Sci 97(12):1388–1395CrossRefPubMedGoogle Scholar
  15. 15.
    Zheng H-c, Li J, Shen D-f, Yang X-f, Zhao S, Wu Y-z, Takano Y, Sun H-z, Su R-J, Luo J-S (2015) BTG1 expression correlates with pathogenesis, aggressive behaviors and prognosis of gastric cancer: a potential target for gene therapy. Oncotarget 6 (23):19685CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Nahta R, Yuan LX, Fiterman DJ, Zhang L, Symmans WF, Ueno NT, Esteva FJ (2006) B cell translocation gene 1 contributes to antisense Bcl-2-mediated apoptosis in breast cancer cells. Mol Cancer Ther 5(6):1593–1601CrossRefPubMedGoogle Scholar
  17. 17.
    Cho JW, Kim JJ, Park SG, Lee DH, Lee SC, Kim HJ, Park BC, Cho S (2004) Identification of B-cell translocation gene 1 as a biomarker for monitoring the remission of acute myeloid leukemia. Proteomics 4(11):3456–3463CrossRefPubMedGoogle Scholar
  18. 18.
    Sun G, Wang Y, Cheng Y, Hu W (2014) The expression of BTG1 is downregulated in nasopharyngeal carcinoma and possibly associated with tumour metastasis. Mol Biol Rep 41(9):5979–5988CrossRefPubMedGoogle Scholar
  19. 19.
    Florea A-M, Büsselberg D (2011) Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers 3(1):1351–1371CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Fuertes MA, Alonso C, Pérez JM (2003) Biochemical modulation of cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. Chem Rev 103(3):645–662CrossRefPubMedGoogle Scholar
  21. 21.
    Rusch V, Klimstra D, Venkatraman E, Oliver J, Martini N, Gralla R, Kris M, Dmitrovsky E (1995) Aberrant p53 expression predicts clinical resistance to cisplatin-based chemotherapy in locally advanced non-small cell lung cancer. Can Res 55(21):5038–5042Google Scholar
  22. 22.
    Godwin AK, Meister A, O’Dwyer PJ, Huang CS, Hamilton TC, Anderson ME (1992) High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc Natl Acad Sci 89(7):3070–3074CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sun X-J, Zhang P, Li H-H, Jiang Z-W, Jiang C-C, Liu H (2013) Cisplatin combined with metformin inhibits migration and invasion of human nasopharyngeal carcinoma cells by regulating E-cadherin and MMP-9. APJCP 15(9):4019–4023Google Scholar
  24. 24.
    Li M, Balch C, Montgomery JS, Jeong M, Chung JH, Yan P, Huang TH, Kim S, Nephew KP (2009) Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer. BMC Med Genom 2:34.  https://doi.org/10.1186/1755-8794-2-34 CrossRefGoogle Scholar
  25. 25.
    Provenzani A, Fronza R, Loreni F, Pascale A, Amadio M, Quattrone A (2006) Global alterations in mRNA polysomal recruitment in a cell model of colorectal cancer progression to metastasis. Carcinogenesis 27(7):1323–1333.  https://doi.org/10.1093/carcin/bgi377 CrossRefPubMedGoogle Scholar
  26. 26.
    Koh TJ, Bulitta CJ, Fleming JV, Dockray GJ, Varro A, Wang TC (2000) Gastrin is a target of the beta-catenin/TCF-4 growth-signaling pathway in a model of intestinal polyposis. J Clin Investig 106(4):533–539.  https://doi.org/10.1172/JCI9476 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wielenga VJ, Smits R, Korinek V, Smit L, Kielman M, Fodde R, Clevers H, Pals ST (1999) Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am J Pathol 154(2):515–523.  https://doi.org/10.1016/S0002-9440(10)65297-2 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Filali M, Cheng N, Abbott D, Leontiev V, Engelhardt JF (2002) Wnt-3A/beta-catenin signaling induces transcription from the LEF-1 promoter. J Biol Chem 277(36):33398–33410.  https://doi.org/10.1074/jbc.M107977200 CrossRefPubMedGoogle Scholar
  29. 29.
    Hovanes K, Li TW, Munguia JE, Truong T, Milovanovic T, Lawrence Marsh J, Holcombe RF, Waterman ML (2001) Beta-catenin-sensitive isoforms of lymphoid enhancer factor-1 are selectively expressed in colon cancer. Nat Genet 28(1):53–57.  https://doi.org/10.1038/88264 PubMedGoogle Scholar
  30. 30.
    Jamora C, DasGupta R, Kocieniewski P, Fuchs E (2003) Links between signal transduction, transcription and adhesion in epithelial bud development. Nature 422(6929):317–322.  https://doi.org/10.1038/nature01458 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    ten Berge D, Koole W, Fuerer C, Fish M, Eroglu E, Nusse R (2008) Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell stem cell 3(5):508–518.  https://doi.org/10.1016/j.stem.2008.09.013 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Fan X, Zhou S, Zheng M, Deng X, Yi Y, Huang T (2017) MiR-199a-3p enhances breast cancer cell sensitivity to cisplatin by downregulating TFAM (TFAM). Biomed Pharmacother 88:507–514.  https://doi.org/10.1016/j.biopha.2017.01.058 CrossRefPubMedGoogle Scholar
  33. 33.
    Han X, Zhen S, Ye Z, Lu J, Wang L, Li P, Li J, Zheng X, Li H, Chen W, Zhao L, Li X (2017) A feedback loop between miR-30a/c-5p and DNMT1 mediates cisplatin resistance in ovarian cancer cells. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 41 (3):973–986.  https://doi.org/10.1159/000460618
  34. 34.
    Han X, Zhou Y, You Y, Lu J, Wang L, Hou H, Li J, Chen W, Zhao L, Li X (2017) TET1 promotes cisplatin-resistance via demethylating the vimentin promoter in ovarian cancer. Cell Biol Int.  https://doi.org/10.1002/cbin.10734 Google Scholar
  35. 35.
    Hao GJ, Hao HJ, Ding YH, Wen H, Li XF, Wang QR, Zhang BB (2017) Suppression of EIF4G2 by miR-379 potentiates the cisplatin chemosensitivity in nonsmall cell lung cancer cells. FEBS Lett.  https://doi.org/10.1002/1873-3468.12566 Google Scholar
  36. 36.
    He M, Chao L, You YP (2016) PRPS1 silencing reverses cisplatin resistance in human breast cancer cells. Biochem Cell Biol.  https://doi.org/10.1139/bcb-2016-0106 PubMedGoogle Scholar
  37. 37.
    Jiang Y, Wei YQ, Luo F, Zou LQ, Liu JY, Peng F, Huang MJ, He QM (2005) Gemcitabine and cisplatin in advanced nasopharyngeal carcinoma: a pilot study. Cancer Investig 23(2):123–128CrossRefGoogle Scholar
  38. 38.
    Li P, Yang X, Cheng Y, Zhang X, Yang C, Deng X, Li P, Tao J, Yang H, Wei J, Tang J, Yuan W, Lu Q, Xu X, Gu M (2017) MicroRNA-218 increases the sensitivity of bladder cancer to cisplatin by targeting Glut1. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 41(3):921–932.  https://doi.org/10.1159/000460505
  39. 39.
    Shi L, Yin W, Zhang Z, Shi G (2016) Down-regulation of miR-26b induces cisplatin resistance in nasopharyngeal carcinoma by repressing JAG1. FEBS Open Bio 6(12):1211–1219.  https://doi.org/10.1002/2211-5463.12135 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sivalingam KS, Paramasivan P, Weng CF, Vijaya Padma V (2017) Neferine potentiates the antitumor effect of cisplatin in human lung adenocarcinoma cells via a mitochondria-mediated apoptosis pathway. J Cell Biochem.  https://doi.org/10.1002/jcb.25937 PubMedGoogle Scholar
  41. 41.
    Stewart CA, Tong P, Cardnell RJ, Sen T, Li L, Gay CM, Masrorpour F, Fan Y, Bara RO, Feng Y, Ru Y, Fujimoto J, Kundu ST, Post LE, Yu K, Shen Y, Glisson BS, Wistuba I, Heymach JV, Gibbons DL, Wang J, Byers LA (2017) Dynamic variations in epithelial-to-mesenchymal transition (EMT), ATM, and SLFN11 govern response to PARP inhibitors and cisplatin in small cell lung cancer. Oncotarget.  https://doi.org/10.18632/oncotarget.15338 Google Scholar
  42. 42.
    Wu B, Liu ZY, Cui J, Yang XM, Jing L, Zhou Y, Chen ZN, Jiang JL (2017) F-box protein FBXO22 mediates polyubiquitination and degradation of CD147 to reverse cisplatin resistance of tumor cells. Int J Mol Sci.  https://doi.org/10.3390/ijms18010212 Google Scholar
  43. 43.
    Xiao LY, Kan WM (2017) Poly ADP-ribose polymerase inhibition suppresses cisplatin toxicity in chronic myeloid leukemia cells. Anti-cancer Drugs 28(3):316–321.  https://doi.org/10.1097/cad.0000000000000467 CrossRefPubMedGoogle Scholar
  44. 44.
    Yu N, Xiong Y, Wang C (2017) Bu-Zhong-Yi-Qi decoction, the water extract of chinese traditional herbal medicine, enhances cisplatin cytotoxicity in A549/DDP cells through induction of apoptosis and autophagy. BioMed Res Int 2017:3692797.  https://doi.org/10.1155/2017/3692797 PubMedPubMedCentralGoogle Scholar
  45. 45.
    Zhao X, He R, Liu Y, Wu Y, Kang L (2017) UPregulated single-stranded DNA-binding protein 1 induces cell chemoresistance to cisplatin in lung cancer cell lines. Mol Cell Biochem.  https://doi.org/10.1007/s11010-017-2970-8 Google Scholar
  46. 46.
    Zhu X, Ji M, Han Y, Guo Y, Zhu W, Gao F, Yang X, Zhang C (2017) PGRMC1-dependent autophagy by hyperoside induces apoptosis and sensitizes ovarian cancer cells to cisplatin treatment. Int J Oncol 50(3):835–846.  https://doi.org/10.3892/ijo.2017.3873 CrossRefPubMedGoogle Scholar
  47. 47.
    Rosano L, Spinella F, Bagnato A (2013) Endothelin 1 in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 13(9):637–651.  https://doi.org/10.1038/nrc3546 CrossRefPubMedGoogle Scholar
  48. 48.
    Zhao Y, Liao Q, Zhu Y, Long H (2011) Endothelin-1 promotes osteosarcoma cell invasion and survival against cisplatin-induced apoptosis. Clin Orthopaed Relat Res 469(11):3190–3199.  https://doi.org/10.1007/s11999-011-1939-2 CrossRefGoogle Scholar
  49. 49.
    Lee S, Ahn D (2008) Expression of Endothelin-1 and its receptors in cisplatin-induced acute renal failure in mice. Kor J Physiol Pharmacol Off J Kor Physiol Soc Kor Soc Pharmacol 12(4):149–153.  https://doi.org/10.4196/kjpp.2008.12.4.149 CrossRefGoogle Scholar
  50. 50.
    Del Bufalo D, Di Castro V, Biroccio A, Varmi M, Salani D, Rosano L, Trisciuoglio D, Spinella F, Bagnato A (2002) Endothelin-1 protects ovarian carcinoma cells against paclitaxel-induced apoptosis: requirement for Akt activation. Mol Pharmacol 61(3):524–532CrossRefPubMedGoogle Scholar
  51. 51.
    Mai HQ, Zeng ZY, Feng KT, Ye YL, Zhang CQ, Liang WJ, Guo X, Mo HY, Hong MH (2006) Therapeutic targeting of the endothelin a receptor in human nasopharyngeal carcinoma. Cancer Sci 97(12):1388–1395.  https://doi.org/10.1111/j.1349-7006.2006.00333.x CrossRefPubMedGoogle Scholar
  52. 52.
    Sun GG, Wang YD, Cheng YJ, Hu WN (2014) The expression of BTG1 is downregulated in nasopharyngeal carcinoma and possibly associated with tumour metastasis. Mol Biol Rep 41(9):5979–5988.  https://doi.org/10.1007/s11033-014-3475-0 CrossRefPubMedGoogle Scholar
  53. 53.
    Gao Y, Liu Z, Zhang X, He J, Pan Y, Hao F, Xie L, Li Q, Qiu X, Wang E (2013) Inhibition of cytoplasmic GSK-3beta increases cisplatin resistance through activation of Wnt/beta-catenin signaling in A549/DDP cells. Cancer Lett 336(1):231–239.  https://doi.org/10.1016/j.canlet.2013.05.005 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Otorhinolaryngology-Head and Neck SurgeryShandong Provincial Hospital Affiliated to Shandong UniversityJinanPeople’s Republic of China
  2. 2.Shandong Provincial Key Laboratory of OtologyJinanPeople’s Republic of China
  3. 3.Department of Otorhinolaryngology-Head and Neck SurgeryShengli Oilfield Central HospitalDongyingPeople’s Republic of China

Personalised recommendations